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Abstract
This paper describes development and perfor-

mance analysis of an active failure management
system for the commuter and business aircraft
control recovery. System failures are detected and
isolated using a hierarchy of techniques that is cho-
sen to ensure minimal disruption of operations and
to minimize the number of false alarms. Successive
layers in the diagnostics hierarchy are increasingly
invasive. Higher layers will be invoked only when
lower layers indicate a potential problem. Once a
failure has been detected and identi�ed, the fail-
ure can be accommodated in several ways, from
passive pilot cueing to active autopilot recon�gu-
ration. This paper also describes some preliminary
pilot cueing strategies and displays to alert pilots
to true failures, provide guidance on recommended
responses, and inform the pilot of any recon�gu-
rations. 1

1. Introduction
To achieve safety goals in air travel proposed

for the next decade, it will become necessary,
among other measures, to actively deal with and
recover from a large class of aircraft system fail-
ures. In general terms the class of problems that
need to be addressed are common among the dif-
ferent segments of the air transport market. How-
ever, there are su�cient di�erences in the vehicles
and their equipment, operations, and commercial-
ization to justify studying the di�erent segments
of the markets separately. We develop and ana-
lyze performance of an active failure management
for control recovery system for the commuter and
business aircraft.

We focus on commuter aircraft for the regional

1This research has been conducted under cooperative
agreement #NCC-1-334 with NASA Langley Research
Center and task order #1003 under contract NAS1-00107
with NASA Langley Research Center

airlines because commuter airline crashes are far
more common than those for commercial trans-
ports. Reference [1] provides data on the circum-
stances and malfunctions associated with com-
muter airline crashes during the period 1983-1988.
Study places the 118 crashes studied into 10 mu-
tually exclusive categories. Of these, the largest
numbers of cases cited were due to mechanical fail-
ure during climb-out, cruise, and approach (20)
and to loss of control on takeo�/landing (22). Al-
though aircraft icing falls somewhat lower on the
list above, we include it here because we believe it
too is amenable to advanced control solutions.

We address detection, isolation, and accom-
modation of selected mechanical failures as well
as aircraft icing. Such failures will be uncovered
by failure detection and system parameter iden-
ti�cation and dealt with using a combination of
pilot cueing, and autopilot recon�guration wher-
ever feasible.

We select the class of jet aircraft to be exam-
ined along with a general model representative for
that class suitable for simulation studies. We de-
�ne several candidate failure scenarios (e.g., air-
craft icing, failures of control surface actuators,
stuck or oating control surfaces, etc.) that are
both common occurrences and amenable to im-
proved control solutions. In this paper we develop
detection algorithm and an algorithm that allows
the rapid on-board identi�cation of the parame-
ters associated with a six-degree-of-freedom non-
linear model of an aircraft and parameters associ-
ated with individual actuators.

The parameter ID uses time-domain signals,
but initial parameter estimates can also be ob-
tained from linearizations of the nonlinear sys-
tem about several operating points. For the time-
domain parameter ID, we assume that we can
measure all control inputs and states, and that the
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state derivatives can be computed from the state
values (see later section). Noise at the input (e.g.
wind gust) a�ects the measured state and actual
state in the same way, so it can act as additional
excitation which can actually help parameter es-
timation. Noise at the output (e.g. unmodeled
dynamics) a�ects the measured state but not the
actual state, so output noise leads to errors in the
parameter estimates.

We are currently developing autopilot recon-
�guration algorithms to accommodate failures
wherever possible and to provide pilot cueing to
inform the pilot of the current situation, potential
responses, and any autopilot recon�guration. Per-
formance is determined by simulations of the fail-
ure detection and system parameter identi�cation
algorithms, and autopilot recon�gurations under
the de�ned failure scenarios.

2. Previous Work
References [3, 15, 14] describe many of the

techniques which we use in the current paper.
They describe both the parameter identi�cation
algorithms and their application to aircraft. They
also describe various other algorithms and con-
sider the trade o� between using recursive least
squares v.s. using a batch algorithm on a moving
window of data. They also discuss the issues as-
sociated with turning o� the identi�cation when
insu�cient excitation is present, and e�ects of
damage occurring (parameters value jumps) some-
where inside a window of data. Standard results
for linear least squares problems can be found in
[5] and [6]. Reference [7] contains many standard
results in linear system identi�cation.

Control surface e�ectiveness degradation due
to icing has been extensively investigated [9, 8].
Reference [8] describes parameter identi�cation for
on-ight detection of aircraft icing.

Reference [10] presents a general methodology
for adaptive control using multiple models, switch-
ing and tuning. This method allows a controller
to operate in multiple environments by recogniz-
ing which environment is currently in existence
and servicing it appropriately. The concept of us-
ing multiple models for switching or tuning is not
new in control theory. Multiple model Kalman
�lters were studied in the 1970's. In this paper
we present a practical applicatiom of active air-
craft failure management system whose adaption
is based on on-board aircraft aerodynamic param-
eter identi�cation. This method allows for the pi-
lot cueing strategies to deal with such failures, and
for control recon�guration strategies to prevent a

failed vehicle from entering an extreme ight con-
dition whenever possible.

3. Active Failure Management
System failures are detected and isolated using

a hierarchy of techniques that is chosen to ensure
minimal disruption of operations and to minimize
the number of false alarms. Successive layers in
the hierarchy are increasingly invasive. Higher lay-
ers will be invoked only when lower layers indicate
a potential problem.

3.1. Failure Detection

Failure detection de�nes the �rst layer in hi-
erarchy. It operates full time and requires no ex-
ternal test signals and includes its own hierarchy
of methods.

Hardware-based failure monitors provide the
�rst line of defense in failure detection. Commuter
aircraft today have failure monitors covering vari-
ous health aspects of the engine, hydraulics, aux-
iliary power, sensors, actuators, control surfaces,
etc. These monitors are particularly useful for iso-
lating simple problems: stuck actuator, surface
hard overs, etc. But they are prone to common
mode failures that set o� multiple alarms simulta-
neously and contribute to pilot confusion. Many
commuter aircraft also have sensors to detect ic-
ing, but these too are not always reliable. Thus,
we will augment them with other methods.

Model-Based failure detection algorithms pro-
vide the next line of defense and are based upon
simple comparisons of true aircraft responses to
those of an internal model. Parameters for this
internal model will be determined using system
identi�cation.

3.2. Failure Isolation

Failure detection in our terminology indicates
only a potential failure. We rely on system pa-
rameter identi�cation, which de�nes the next two
layers in a hierarchy to both con�rm that a fail-
ure has occurred and to isolate that failure to a
particular element. Reliable system identi�cation
requires the use of test signals to excite the sys-
tem to be identi�ed. Occasional pilot inputs and
scheduled autopilot maneuvers do provide useful
test signals for identi�cation, but they are rela-
tively infrequent during much of the ight. When
the failure detection algorithm indicates a poten-
tial failure, it will usually be necessary to inject
a test signal to con�rm this possibility and iso-
late the failure. We use classical detection theory
methods to strike an acceptable balance between



false alarms (detecting a failure where none exists)
and misses (not detecting a failure where one ex-
ists). Preliminary results will be presented later
in the paper.

To minimize disruption to operations, we will
�rst inject test signals into the null space of the
inputs using redundant control surfaces such that
these signals (ideally) cancel one another and
thereby do not excite aircraft motion. This al-
lows detection of failures among redundant con-
trol surfaces, where available, and is particularly
useful for identifying changes in surface e�ective-
ness. Where redundancy does not exist, we will
use more general test signals that do excite air-
craft motion. In general, test signals must be
large enough so as not to be dominated by sen-
sor noise and disturbances (i.e., gust inputs). On
the other hand control inputs can not be too large
since injecting test signals into the null space of
the inputs using redundant control surfaces could
be hazardous in the presence of actual failures.
This is because the null space is no longer what it
was before the failure. These general test signals
should produce relatively small accelerations and
need only last for a few seconds and even then
only when failure detection indicates a potential
problem.

3.3. Control Recovery
To accommodate failures wherever possible

autopilot recon�guration algorithms and pilot cue-
ing strategy have to be developed. Pilot cueing is
necessary to inform the pilot of the current situa-
tion, potential responses, and any autopilot recon-
�guration. Control recovery will allow real-time
in-ight updates to the aircraft autopilot in the
face of con�rmed and isolated failures. As such
it is a potential alternative primarily for newly
designed aircraft or for retro�t aircraft that are
scheduled for ight control upgrades. Improved
pilot cueing is the more likely option for the older
retro�t market. Nevertheless, autopilot recon�g-
uration will be considered and will likely play a
critical role in failures for which control bandwidth
exceeds pilot capabilities (e.g., yaw damper). Au-
topilot recon�guration consists of two steps: con-
trol reallocation and control recon�guration.

For some types of failures, recon�guration may
be as simple as replacing one failed control surface
with another similar surface and possibly making
minor gain adjustments (e.g, split surface, where
one half fails). In other cases, it may require re-
placing a failed surface with dissimilar surfaces,
which could require recomputing the entire control

allocation matrix. In yet more extreme cases (e.g.,
loss of hydraulics), it may require augmenting tra-
ditional control inputs with very non-traditional
ones. We refer to all of the mentioned strategies
as control reallocation.

4. Parameter Identi�cation
Given a nonlinear dynamical system repre-

sented by a system of ordinary di�erential equa-
tions, with states x and inputs u:

_x = f(x; u)

our goal is to identify unknown parameters in the
function f . To simplify the identi�cation pro-
cess, we can make use of the fact that if f has
certain smoothness properties, then f can be ap-
proximated arbitrarily well by a nominal value,
fnom(x; u), plus a linear combination of nonlinear
basis functions, b(x; u), where the coe�cients in
the linear combination form the unknown param-
eter matrix, H.:

_x = f(x; u)

= fnom(x; u) +H � b(x; u) + �

y = C x+ �; (1)

where

x 2 Rn y 2 Rp u 2 Rm b 2 Rq f 2 Rn

H 2 Rn�q C 2 Rp�n p � n

(2)

and � and � denote residual and measurement
noise, respectively.

If only some rows of f(x; u) depend on uknown
parameters, then the parameter matrix H can be
factored into a known matrix, gx, times a smaller
unknown coe�cient matrix, Hx.

H = gx �Hx

Hx 2 Rn1�q gx 2 Rn�n1

The size of jj�jj decreases as the number of
basis functions increases. As the number of ba-
sis functions increase, the number of columns of
the coe�cient matrices, H and Hx, also increases.
Knowledge of the physics of the problem allows the
choice of a small number of nonlinear basis func-
tions that still give adequately small residual. Af-
ter the basis functions have been chosen, the value
of the coe�cient matrix, H , must be determined.
This can be done using either of two methods:



1) Using multiple linearizations
2) Using time domain data
The �rst method is used to initialize the pa-

rameters when several linearizations are available.
The second method is used to re�ne the param-
eters using ight data, and can also be used to
update the parameters after a failure has occured.

Both methods lead to a linear matrix equation
for H of the form: F = C �H �G, with solution:
C �H = F �GT � (G �GT )�1.

If the matrix C is chosen so that C gx = I ,
then C �H = C � gx �Hx = Hx, so F = (CH)G =
Hx � G with solution: Hx = FGT � (GGT )�1.
When the G matrix is not full column rank, then a
matrix, D, can be used to select only the columns
of G that matter.

4.1. Parameter ID using Linearizations
Before using time-domain data to update

the parameter matrix, H , it is often possi-
ble to get initial parameter estiamtes from lin-
earizations of the full nonlinear simulation rep-
resented by f(x; u). Linearization of the orig-
inal system, about trim point i, gives: _x =
f(x0i; u0i)+ [A;B]i[x�x0i; u�u0i]. Linearization
of the parameterized approximation of the system
gives: _x = [fnom(x0i; u0i) + H � bnom(x0i; u0i)] +
[@fnom=@[x; u] +H@b=@[x; u]][x� x0i; u� u0i]

Setting the right-had sides of the above lin-
earizations equal to each other, gives two sets of
linear equations for the constant H matrix:

f(x0i; u0i) = fnom(x0i; u0i) +H � b(x0i; u0i)

[A;B]i = [@fnom=@[x; u] +H @b=@[x; u]]j(x0i;u0i)

which can be combined to form: F = (CH)G,
where F = [F1; F2; :::; Fk ] and G = [G1; G2; :::; Gk]
with entries given by:

Fi = Ci[f(x0i; u0i)� fnom(x0i; u0i); [A;B]i �
@fnom
@[x;u] j(x0i;u0i)]Di

Gi = [b(x0i; u0i); f@b=@[x; u]gj(x0i;u0i)]Di

4.2. Time Domain Identi�cation
After obtaining initial estimates for the pa-

rameter matrix, H , as described in the previous
section, time domain data can be used to re�ne
the parameter estimates. Time domain data can
also be used to update the parameters after a fail-
ure has changed the values of the parameters.

For our aircraft model, we represent the aero
forces and moments with the Hx � b(x; u) term,
while all other terms of the dynamics may be put
into fnom(x; u). This is because minor failure of
the aircraft can signi�cantly change the aero co-
e�cients, while having only a small e�ect on the

mass and moment coe�cients in fnom(x; u) and
gx.

If the aero coe�cients themselves are consid-
ered as nonlinear functions of the state, those nom-
inal nonlinear functions could either be put into
the fnom(x; u) function, or Hx could be consid-
ered as a nominal nonlinear function plus a lin-
ear perturbation to be estimated. Hx(x; u) =
Hx0(x; u)+�Hx. Noise on the states can cause the
nominal nonlinear table lookup values fnom(x; u)
and Hx0(x; u) to be noisy, therefore the states
should be �ltered before being used in those func-
tions. It is assumed that x and u can be measured
with sensors. Then by comparing the di�erenti-
ated value of the measured x with the computed
values of fnom(x; u) and b(x; u), the coe�cient ma-
trix Hx can be computed.

The least-squares procedure for determining
the parameter matrix acts to average out any high
frequency noise introduced by di�erentiation of
the noisy state. One concern is that the noise can
cause biases in some cases, so any ampli�cation of
the noise due to di�erentiation of the state could
increase the size of the bias. It has been shown in
[4] that if b(x; u) = u and there is no noise on u,
then the least squares parameter solution will not
be biased.

After acquiring k samples, let

Fk = C [ _x(t1)� fnom(x(t1); u(t1)); :::;

_x(tk)� fnom(x(tk); u(tk))]

Gk = [b(x(t1); u(t1)); :::; b(x(tk); u(tk))]

C �H = C � gx �Hx = Hx = Hx0 +�Hx

The Gk matrix is size q � k where k � q, so we
have an over-determined linear algebra problem to
solve for Hx.

Fk = HxGk = (Hx0 +�Hx)Gk

We may have some a-priori knowledge of what the
value of the Hx matrix should be. In this case, we
can bias the computed answer to stay close to the
preferred value Hx0.

The unweighted least squares problem, can be
weighted with a q� q weighting matrix W to keep
�Hx small. This can be done as follows:

[0; Fk �Hx0Gk] = �Hx[W;Gk]

Let �1 be the largest singular value of the q � k
matrix G. Then a quantitative estimate on how
much the size of jj�Hx(W )jj2 is reduced by the
presence of the weighting matrix W is given by:
jj�Hx(W )jj � jj�Hx(0)jj �1

2

w2+�12
� jj�Hx(0)jj:



De�ne the inverse covariance matrix Pk
�1 =

([W;Gk][W;Gk ]T )�1, so P0
�1 = (WW T )�1 and

and de�ne �Hx0 = 0
The iterative update for the n � q parameter

matrix update is given by:

�Hxk+1 = �Hxk +

[C( _xk+1 � fnomk+1)�Hx0bk+1]bTk+1Pk
�1

�+ bTk+1Pk
�1bk+1

while the inverse covariance matrix update is:

Pk+1
�1 = [Pk

�1 �
Pk

�1bk+1bk+1
TPk

�1

�+ bTk+1Pk
�1bk+1

]=�

where 0 < � � 1 is a forgetting factor on the old
data which replaces data that is i samples old with
�i times that old data.

Once we have a solution for �Hxk, we can
obtain (�H)k = gx �Hxk

In order to obtain a well-conditioned identi�-
cation computation, it is necessary to have su�-
cient excitation, either from pilot maneuvers or
external signal injection (e.g. sinusoids, square
waves, or random noise).

When there are redundant actuators, then sig-
nals can be injected into the kernel of @f(x; u)=@u
without a�ecting _x. This type of injection
can be used to identify the additional terms in
@f(x; u)=@u that are not identi�able from aircraft
maneuvers alone.

The external signal generator is only turned on
when the failure detection ag signal has exceeded
some threshold size. This prevents excessive actu-
ator wear, and avoids annoying the pilot. The
pilot can see the surfaces moving when signals are
being injected, and if the kernel of @f(x; u)=@u
is not accurately computed, the injected signals
could have some a�ect on _x; which the pilot would
feel. If the batch least-squares solution is used this
time interval is �xed, but with the iterative solu-
tion, the parameter identi�cation can be turned
o� whenever the error has decreased below some
threshold value.

5. Pilot Cueing
A preliminary design of a cueing system for a

hierarchy of active ight management techniques
is presented in this paper. The automation in the
system for active management of aircraft system
failures, both active and passive, is responsible for
detecting, isolating, and potentially compensating
for upset conditions. It is vital that the pilots be
aware of the automation as the automation man-
ages faults. Thus, among the preliminary designs

introduced in this paper, a dedicated display is
necessary to support the pilot's awareness of the
automation as it performs its tasks.

The full set of displays in the pilot cueing sys-
tem is derived from a framework [DR00] of in-
formation requirements that addresses situation
awareness by explicitly representing the automa-
tion as an agent that performs fault management
tasks (detect, diagnose, prognose, and compen-
sate) in the operational environment (either en-
vironment, system, aircraft, or mission). Given
a prioritization and categorization scheme, alerts
are realized on multiple displays including aural
alerts, visual cues and symbology on existing ight
displays, dedicated messages, and �nally a dedi-
cated situation awareness display.

Figure 1 illustrates a conceptual design of a
Control Upset Automation Situation Awareness
(CUASA) display. There are three primary com-
ponents: (1) the primary ight control surface dis-
play, which depicts the control surface displace-
ment within the scale of its (possible revised) lim-
its, (2) the control authority display, which con-
veys to the pilot what the new limits (placed
on the control inputs by the automation's recon-
�guration) are on the three degrees of freedom:
roll, pitch, and yaw, and (3) the message area,
where dedicated messages alerting the pilot to
automation-related tasks are presented.

Figure 1: Integrated Message Area and Situation
Awareness Display

6. Control Recon�guration
In-ight system parameter identi�cation ulti-

mately provides the potential for in-ight control
law recon�guration. We address robustness to
identi�cation errors by limiting authority of pa-



rameter corrections derived from system identi�-
cation.

The controller is parameterized with the co-
e�cients in the H matrix, provided by the pa-
rameter identi�cation algorithm. The controller
starts out with the nominal value of the param-
eters, and is updated continuously with the cur-
rent estimate of the parameter values. The dy-
namic inversion controller uses the plant model
given in Section 7.1. Let f0(x) = f(Hx; x; 0) and
G0(x) =

@f(Hx;x;0)
@u :

The desired dynamics are of the form:

_x = A(x� xcmd); xcmd = T � cv

where T 2 Rn�m and cv 2 Rm are the m external
command inputs.

With u 2 Rm, m outputs can be controlled
with these m inputs. Let C 2 Rm�n be a matrix
that selects which combinations of the state will
be controlled. Then, the portions of the desired
dynamics that can be obtained are:

C _x = CA(x � T � cv)

Setting the right hand side of this equal to the
right hand side of:

C _x = C f0(x) + C G0(x) � u

Gives:

CA(x� T � cv) = C f0(x) + C G0(x)u

Solving for u gives the controller as a function of
x and the external input, cv:

u = (C G0(x))�1C[A(x � Tcv)� f0(x)]

7. Simulation Results
Model-based monitoring and diagnosis of a

physical system requires well-constrained dynam-
ical models of the system. The ability to generate
models that accurately describe dynamics of sys-
tem behavior in normal and faulty conditions is
the key to modeling for diagnostics.

7.1. Aircraft Model
Let v be the body-axis velocity, ! be the

body-axis angular rate, e3 be a unit vector in
the down direction (third column of the rotation
matrix from inertial coordinates to body coordi-
nates), and let h be the altitude. Let the inputs
consist of a subvector of thrusts, Thrust 2 Rm1

and a subvector of surface deection, � 2 Rm2 . Let
J be the moment of inertia matrix, mass be the

mass, S the wing area and Baero = diag([b; c; b])
where b is the wingspan and c is the chord.

The corresponding nonlinear aircraft model's
states and input vectors are given by:

x = [vT ; !T ; e3(�; �); h]
T 2 R10

u = [ThrustT ; �T ]T 2 Rm m = m1 +m2:

where e3T e3 = 1 and
e3 = [� sin(�); cos(�) sin(�); cos(�) cos(�)]T ,

fnom(x; u) =

2
664
�! � v + ge3
�J�1! � J!
�! � e3
�e3T v

3
775

H = gxHx where

gx =

2
4 I3=mass 03�3

03�3 J�1Baero

04�3 04�3

3
5

Hx 2 R6�m, is a dimensionless coe�cient matrix
to be identi�ed, and the basis functions, b(x; u),
have units of force.

The choice of basis functions for system pa-
rameter identi�cation is driven by the fact that
the parameters need to be identi�ed very quickly.
This does not give us time to move very far in
the (x; u) space, so we can only expect to identify
a linear (plus bias) approximation of the model.
We want to be able to identify the e�ectiveness of
each actuator, so each component of u is a basis
function. The only other parameters that are not
well known (after failure) are the coe�cients that
determine the aero forces and moments, which de-
pend on v 2 R3, ! 2 R3, and u 2 Rm. The
dependence of the aero forces and torques on jjvjj
is well known, but their dependence on v=jjvjj, and
! may be signi�cantly altered when failure occurs.

If we choose y =

�
mass v

Baero
�1 J !

�
then

C =

�
mass � I3 03�3 03�4

03�3 (Baero)�1J 03�4

�
and we get C gx = I6.

To obtain aero forces and moments that are
quadratic in speed, and the dynamic derivatives
that are bilinear in v and !, as well as input terms
from thrust and surface deections, the basis func-
tions are chosen as:

b(x; u) =2
66664

1
2�Sjjvjj

2

1
2�Sjjvjjv

1
2�jjvjjSBaero !

Thrust
1
2�Sjjvjj

2�

3
77775 2 R7+m



.
Let Cf and C� be the dimensionless aero-

coe�cients that determine the forces and torques
due to aero-dynamics. Then the coe�cient matrix

we need to identify is Hx =

�
Hv

H!

�
where:

Hv =

"
Cf0(

v
jjvjj

; u);
@Cf ( v

jjvjj ; u)

@( v
kvk )

; Cf! ;
@Cf ( v

kvk ; u)

@u

#

and

H! =

"
C�0(

v
jjvjj

; u);
@C� ( v

kvk ; u)

@( v
kvk )

; C�! ;
@C�!(

v
kvk ; u)

@u

#

The individual actuators are represented as
third order systems. The torque dynamics are
represented by a �rst order lag and the surface
dynamics are represented by a second order sys-
tem. This lag is connected to the surface dynamics
through a switch that has three positions: 1) Dur-
ing normal operation the output of the lag goes
through a switch into the surface dynamics. 2) In
the case of a stuck surface, a high gain forces the
surface position to a stuck position. 3) In the case
of a oating surface, no actuator torque is applied
to the surface dynamics. Therefore, the oating
surface position is driven entirely by the aerody-
namic hinge moment.

7.2. Aircraft Parameter Initialization

The basis functions are chosen so that all the
aero terms scale with dynamic pressure. To cal-
ibrate this system that is quadratic in speed, we
need at least two linearizations at two di�erent
speeds, since at a single speed, the top four rows
of b(x,u) are dependent:

1
2
�Sjjvjj

�
jjvjj
v

�
=

1
2
�Sjjvjj

�
vT =jjvjj

I3

�
v

The only nonzero rows ofH are the top 6 rows,
so C will be chosen to select all or some of the top
six rows. This means that only the top 6 rows of
fnom(x; u) need to be computed, so if Euler an-
gles are used instead of the e3 part of the state, it
will not matter. In order to compute H based on
linearization data, we need to compute the partial
derivative of fnom(x; u) and b(x; u). To simplify
the expressions, we will assume that we are trim-
ming about a value of the state that has ! = 0.

@fnom
@[x; u]

=

2
664

�~! ~v gI3 03�1 03�m
03�3 03�3 03�3 03�1 03�m
03�3 ~e3 �~! 03�1 03�m
03�3 03�3 �eT3 03�1 03�m

3
775

where ~v is the 3�3 skew sysmetric matrix formed
from the elements of v, such that v � w = ~vw.
The @b=@[x; u] matrix is sparse, with the only non-
trivial computations being: @jjvjj2=@v = 2vT and
@(jjvjjv)=@v = jjvjj [I3 + (v=jjvjj)(v=jjvjj)T ]

Actually, � depends on the state h, but the
@b=@h column of the above matrix will be elimi-
nated anyway by the D matrix. We will choose
typically

C =

�
mass � I3 03�3 03�4

03�3 (Baero)�1J 03�4

�

which gives CH = Hx, or C =
[03�3; (Baero)�1J; 03�4] if we only want to iden-
tify the coe�cients associated with the angular dy-
namics, in the bottom 3 rows of Hx. For the above
choice of basis functions, we will choose typically

D =

2
4 I7 07�m

04�7 04�m
0m�7 Im

3
5

since the basis functions are only a function of the
�rst six states, [v; !], and all the m inputs.

For the �rst choice of C we get:

C[f � fnom; @fnom=@[x; u]] =�
�mass � g � e3 �mass � ~! mass � ~v 03�m

03�1 03�3 03�3 03�m

�

This (7+m)�(7+m) matrix is only rank 6+m,
since its upper 4 rows are only rank 3. The left
kernel of the matrix is [jjvjj;�vT ; 01�(3+m)]. This
is due to the fact that the �rst 4 basis functions
are not independent at a single speed. To solve for
CH in this quadratic model, we need at least two
linearizations [A;B]i; (x0i; u0i); i = 1; 2. Let F =
[F1; F2], G = [G1; G2]. Then the equation for CH
is: F = (CH)G andHx = C�H = FGT (GGT )�1.

The matric, Ci = C scales the �rst six rows
and D selects the �rst seven and last m columns
of the functions, partial derivatives and [A;B]i.

Calibrating Nonlinearities in (�; �):
The basis functions used above were nonlin-

ear in jjvjj to handle changes in dynamic pressure,
but they only captured constant plus linear vari-
ation in the unit vector v=jjvjj. To calibrate the
coe�cients in a larger H matrix that multiplies
higher order terms in v=jjvjj, we need to use either
time domain data that has large (�; �) excursions,
or use multiple linearizations about several (�; �)



points. When using several linearizations, we need
to know the mass and moment-of-inertia matrix
for each linearization. In this case, we can use a
di�erent Ci for each linearization:

Ci =

�
massiI3 03�3 03�4

03�3 (Baero)�1Ji 03�4

�

resulting in linear equations for Hx rather than
H , where Hx = Ci � H . In the previ-
ouse example, the basis functions that depended
only on the velocity vector, v, part of the
state were: �q � S � [1; v=jjvjj], where v=jjvjj =
[cos(�) cos(�); sin(�); sin(�) cos(�)]T , so we cap-
ture �rst-order terms in the unit vector v=jjvjj.
To capture the aero functions as arbitrary func-
tions of (�; �), ie for v=jjvjj anywhere on the unit
sphere, we can use spherical harmonics (which are
orthonormal if evaluated over the entire 2-sphere)
as basis functions. Let v = [U ;V ;W ]. Spherical
harmonics, truncated to second order, multiplied
by jjvjj2, are:

[jjvjj2; jjvjjv; (5V V �2jjvjj2)=3; (10=3)(UU�WW );

(10=3)(2UW ); (10=3)(V U); (10=3)(VW )]

Four linearizations should be used to calibrate
the H matrix that multiplies these second-order
terms. For example, linearize about (�; �) =
f(�0; 0); (�0+��; 0); (�0; ��); (�0+��; ��)g. Note
that if all linearizations are done about V = 0
(ie � = 0), then the 5V V � 2jjvjj2 term can be
dropped.

7.3. Failure Scenarios
The set of failure scenarios to be addressed

will include speci�c conditions (e.g., aircraft icing,
control surface e�ectiveness degradation, stuck or
oating control surface, etc.) that occur often and
are amenable to advanced control solutions. We
will handle icing conditions and control surface
e�ectiveness degradation by modifying the coe�-
cients in the aerodynamic tables. Individual con-
trol surface e�ectiveness degradation will be im-
plemented by scaling the corresponding column of
the surface e�ectiveness matrix. Unlike the situa-
tion with stuck and oating surfaces, control sur-
face e�ectiveness degradation cannot be detected
by fault detection and isolation sensors. There-
fore detecting these types of faults requires sys-
tem identi�cation techniques. Control surface ef-
fectiveness degradation faults always cause sud-
den changes in aerodynamic coe�cients, while ice
buildup slowly changes aerodynamic coe�cients.

This has an impact on the identi�cation tech-
niques used. Various identi�cation techniques that
will be considered are documented in the bibliog-
raphy ([3, 5, 7, 14, 4, 6, 15].)

Aircraft performance characteristics are di-
rectly dependant on the aerodynamic quantities of
the aircraft, especially lift and drag. The loss of
performance due to lift and drag degradation and
impact of icing on the stability behavior of an air-
plane observed in some accidents[11, 12] have in-
creased the awareness about the signi�cance of air-
craft icing. Studies conducted at the NASA Lewis
Research Center have indicated that in icing con-
dition aircraft dynamics experience a decrease in
lift and an increase in drag compared to the clean
aircraft. These e�ects could be observed even with
the ice protection system activated. Dimensionless
stability and control derivatives for the longitudi-
nal ight dynamics of the Twin Otter have been
estimated for both clean and iced conditions, and
are available in the literature ([13, 2]). It is as-
sumed that icing a�ected only the derivatives.

7.4. Fault Management Simulation Tests

Active fault management system, uses the air-
craft model described in the subsection 7.1, and
compares the state derivative of the detection
model with the derivative of the states of the ac-
tual aircraft. Since we don't have an actual air-
craft to work with, we simply compare the de-
tection model with the "truth" model of the air-
craft during system performance analysis simula-
tion tests.

The aircraft model could be considered to con-
tain two major parts: the 6-dof aircraft in one
part, and the actuator dynamics in the other part.
Therefore the detection model is also separated in
that way. The 6-dof aircraft model is done in a
uni�ed way, using vector notation, while the actu-
ator dynamics are done separately for each of the
four actuators. In this paper we will present only
results from the simulation that exercises the fault
detection, isolation, and accomodation for the 6-
dof aircraft, together with the truth model of the
aircraft and all actuators. Realistic noise and bias
are added to the sensors, and Dryden gust models
have been incorporated into the simulation. Gust
levels 1, 2, and 3 correspond to a standard devi-
ation of gust magnitude of 0ft/sec, 5ft/sec, and
10ft/sec respectively.

We have a list of faults to choose from, each
represented by a di�erent perturbation to the Hx

matrix. Each fault introduces a random change in
the coe�cients in the last 3 rows of the aileron,



elevator and rudder deection columns of the Hx

matrix (Modeling aileron, elevator and rudder ef-
fectiveness degradation).

Figure 2 shows results of a Monte-Carlo sim-
ulation in which 1000 simulations were run. For
testing purposes, we chose a simulation with two
successive faults. Fault sizes were randomly vary-
ing from 0% to 50% in size, and gust level was 3.
Each fault was fault number 4 which denotes per-
turbing 3 � 3 block of coe�cient matrix Hx that
corresponds to _p; _q; _r rows and �a; �e; �r columns.
After each fault occurs, a pitch doublet, yaw dou-
blet, roll doublet, and speed step are introduced
to give su�cient excitation for I.D. In each case
the detection algorithm determined the fault in a
timely way and the fault isolation code computed
an estimate of the new aero torque coe�cients (the
bottom half, i.e. the last three rows of the Hx

matrix). The least-squares procedure described
in earlier sections was used. The controller had
a bandwidth of wc = 3 radss in the three attitude
loops, and a bandwidth of �c = :3 rads in the speed
loop. The bottom plot on Figure 2 shows the ratio
of the time the estimator was on to the total time
for fault. The fault size is determined by averag-
ing the size of the change in the perturbed param-
eters. Some points of interest on these charts are
any points that are on either axis. Points on the
vertical axis represent false alarms (no fault, but
estimator is on), and points on the horizontal axis
represent missed detections (there is a fault, but
estimator does not turn on). The top plot on Fig-
ure 2 shows the amount of time after a fault occurs
before the estimator detects the fault. Points that
would be on the line 'never turns on' if it were ex-
tended are missed detections, and faults that are
below the 'never turns on' line on the vertical axis
are false alarms. Points on the horizontal axis (de-
lay time = 0) are the result of the second or third
fault occurring before the ID signal has completely
receded from the previous fault.

To illustrate quality of parameter estimation
we show simulation results from a test in which
a random fault was introduced to the aileron, el-
evator and rudder (aileron fault 21:92%, elevator
fault 21:15%, rudder fault 31:50%. Simulation re-
sults are shown in Figure 3. The detection algo-
rithm determined failure in a timely way. Failure
isolation code computed an estimate of the new
aero torque coe�cients (the last three rows of the
Hx matrix coresponding to _p, _q, _r), after the detec-
tion algorithm determined that there was a failure.
The least-squares procedure described earlier was
used and estimation error was smaller than 3:3%.
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Figure 2: Aircraft FDI Monte-Carlo Simulation

The controller had a bandwidth of wc = 3 radss
in the three attitude loops, and a bandwidth of
�c = 0:3 rads in the speed loop. After the fault
occurs, a pitch doublet, yaw doublet, roll doublet,
and speed step are introduced to give su�cient ex-
citation for ID. Then, the controller recon�gures
using the newly identi�ed parameters. The �rst
bars are the original parameter values. The sec-
ond bars are the damaged values. The third bars
are the estimated values.

8. Conclusion
This paper describes the initial phase of de-

velopment and analysis of an active failure man-
agement system for control recovery of commuter
and business aircraft. Failure detection algorithms
that can reliably detect and isolate system fail-
ures with minimal disruption of normal aircraft
operations have been developed. To accommodate
identi�ed failures wherever possible, autopilot re-
con�guration algorithms and pilot cueing strategy
have been addressed. Pilot cueing is necessary to
inform the pilot of current situation, potential re-
sponses, and any autopilot recon�guration . Pre-
liminary versions of failure management has been
implemented for the 6-dof aircraft with promising
results.
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Figure 3: Identi�ed 6-dof coe�cients
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