
Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 1

A PLAYBOOK INTERFACE FOR MIXED INITIATIVE CONTROL OF

MULTIPLE UNMANNED VEHICLE TEAMS

Christopher A. Miller, Harry B. Funk, Smart Information Flow Technologies, Minneapolis, MN.

Michael Dorneich and Stephen D. Whitlow, Honeywell Laboratories, Minneapolis, MN.

Introduction

Human interaction with automation is becom-

ing increasingly complex as automation becomes

more sophisticated. At the forefront of this chal-

lenge are settings where one or a few humans, who

may be concurrently involved in other tasks such as

flying an aircraft, are expected to control, or at least

supervise, multi-agent teams of unmanned vehicles.

Such interactions place an extreme burden on the

information processing and decision-making capa-

bilities of the human(s) involved, and therefore,

demand sophisticated methods of communication

of intent and of feedback on system performance

against objectives, as well as, perhaps, management

of the humans‟ limited resources against the vari-

ous roles that they and the automated assets can

occupy.

There is, however, an existing human activity

which roughly matches the challenges and oppor-

tunities of this domain and which, therefore, pro-

vides a guide for designing human interaction: the

role of a quarterback or captain in team sports.

Team captains do not command all the actions of

all players on their teams, but they do continue to

“control” them at a higher level of abstraction by

commanding pre-defined plays—plays which de-

fine a goal and an acceptable set of behaviors for

each player.

In ongoing research on the DARPA Mixed In-

itiative Control of Automata teams program, we are

refining the concept of a „Playbook Interface‟ to

allow a human to express his or her intent to mul-

tiple unmanned vehicles and sophisticated planning

and control software to stipulate or constrain the

methods that the automated agents use to achieve

that intent. Our Playbook Interface is based on a

model of the tasks and goals possible in the do-

main, shared by both humans and automated

agents, that facilitates communication about intents

and outcomes and can serve as the basis of a wide

variety of user interfaces ranging from extremely

detailed (for use in pre-mission planning and play

development) to extremely streamlined (for in-

flight „play calling‟). We will present the architec-

ture required for a Playbook Interface, the various

interaction styles it supports, and a preliminary ex-

ample implementing this approach in an Unmanned

Combat Air Vehicle (UCAV) domain.

Problems in Current UCAV Control

Current technologies and approaches require

intensive human involvement in the control of un-

manned vehicles.
1
 Currently deployed Unmanned

Air and Combat Air Vehicles (UAVs and UCAVs)

in use in Afghanistan are said to require four to five

human controllers while in flight, each of whom is

fully engaged in various forms of low-level, fre-

quently joystick-based, control of the aircraft, its

sensors or other ship‟s systems. Furthermore, cur-

rent approaches to the use of UAVs and UCAVs

generally require that they fly alone—not only are

cooperative teams of vehicles a yet-to-be-achieved

vision, but current domestic operations even require

that the airspace through which UAVs travel be

cleared of other, human-piloted aircraft [1]. While

there are various reasons for these restrictions, at

least one of them is the reduced complexity asso-

ciated with a simplified operational environment.

Yet in both military and commercial applica-

tions, many dreams of the potential for unmanned

vehicles rely on the ability to reduce or even re-

verse this operational equation. Cooperative teams

1 While our current work is focused on Unmanned Combat Air

Vehicles, much of the argument for the nature of control of

multiple vehicles and much of our particular approach applies

equally well to any form of unmanned vehicle—air, ground,

sea, space, etc.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 2

of unmanned surveillance vehicles hold the poten-

tial to enable long term monitoring of a large area

for potentially hostile entities and time-critical mo-

bile targets. Large teams of small, portable robots

could revolutionize urban warfare, disaster relief,

firefighting and hostage situations by providing

rapid reconnaissance of a building or other site.

Light weight, low cost, high endurance UAVs ca-

pable of simultaneously monitoring all of the Ama-

zon or the Indian Ocean are critically needed for

the atmospheric and environmental studies needed

to address global warming. Finally, the coopera-

tion of a human pilot with one or more UCAV

„wingmen‟ would provide a suitable mix of human

responsibility and oversight, yet limited threat for

loss of life, in many near-term military roles.

Yet all of these visions require a substantial

change in the way humans interact with unmanned

vehicles. Simultaneous and continuous joystick

control of multiple vehicles is simply beyond the

workload and attentional capacity of human opera-

tors. While allowing cooperative teams of un-

manned vehicles to be operated on a multiple hu-

man to one vehicle basis might be feasible, it would

certainly reduce the cost effectiveness and opera-

tional roles for such vehicles.

Instead, we must seek ways in which single

humans, perhaps already engaged in workload in-

tensive operations of their own (such as flying their

own aircraft) can control teams of unmanned ve-

hicles. This is, in fact, the goal of DARPA‟s

Mixed-Initiative Control of Automata teams

(MICA) program. MICA seeks to demonstrate hu-

man-in-the-loop control technologies that will al-

low a single human to control five or more UCAVs

in an operationally realistic military simulation.

An Informed Delegation Approach

While human control of multiple UCAVs

represents a significant, novel challenge for human-

automation interaction, the notion of a heavily oc-

cupied human “controlling” the action of multiple

agents is common in human-human interaction.

Human supervisors have long relied on other hu-

mans to act for them when out of communication

range or under communication restrictions—for

example, until very recently in remote business,

commercial and legal activities and, still in many

cases, in military domains. Similarly, human man-

agers continue to rely on human subordinates to

provide the skills and workload capacity to manage

large organizations and physical plants of all sorts

ranging from aircraft carriers to nuclear power fa-

cilities to shopping malls and factory floors.

Perhaps the most obvious and formalized ex-

ample of such interactions is in sports—where a

coach may supervise the actions of a team of many

players from the sidelines or a single player (a

quarterback or captain) may give “orders” to other

team members while him- or herself fully engaged

in ongoing activity. Such interaction is made poss-

ible by the pre-definition of bounded sets of proce-

dural- and goal-directed activities called “plays”.

The fact that all team-members share the same de-

finition of a play, combined with the fact that team

members can be relied upon to intelligently apply

that procedure to the current situation, means that

very complex behaviors can be activated with very

little time or workload commitment on the part of a

human „supervisor.‟ We will have more to say

about the use of “playbooks” in vehicle control be-

low.

Human-human task delegation has been stu-

died under the headings of communication of intent

[2,3] and team situation awareness [4]. The key to

good human-human performance in these domains

is informed delegation—that is, a supervisor‟s pro-

viding of tasking instructions to a subordinate in a

way that maintains several attributes:

1. The subordinate has substantial knowledge

about and capabilities within the domain. The

greater these are the greater the potential for the

supervisor to offload tasks (including higher level

decision making and course of action selection

tasks) on the subordinate.

2. The supervisor is aware of the subordi-

nate‟s capabilities and limitations and will either

not task the subordinate beyond his/her abilities or

will provide more explicit instructions and over-

sight when there is doubt about those abilities.

3. The “language” available for delegation in-

structions is:

1. easy to use,

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 3

2. adaptable to a variety of time and situation-

al constraints,

3. affords discussing tasks, goals and con-

straints (as well as world and equipment

states) as first order objects, and

4. most importantly, is shared by both supe-

rior and subordinate.

4. The act of delegation defines a space of

control authority within which the subordinate may

act. This authority need not be complete (e.g., re-

quired checking with the supervisor before pro-

ceeding with specific actions or resources), but the

greater the authority, the greater the workload re-

duction on the supervisor.

5. Items 2 and 4 together imply that the space

of control authority delegated to automation is flex-

ible—that the supervisor can choose to delegate

more or less “space”, and more or less authority

within that space (that is, range of control options),

to automation. Item 3 implies that the language

available for delegation must make the task of de-

legating feasible and robust—enabling, for exam-

ple, the provision of detailed instructions on how

the supervisor wants a task to be performed or a

simple statement of the desired goal outcome.

Conversely, it is also important that both parties

understand the language similarly so that, even

when communication is terse, a shared understand-

ing of the delegated control space results.

We have been developing an approach to hu-

man-automation interaction that retains the benefits

of both automation and of good human-human del-

egation. This approach is based on the metaphor of

a sports team playbook, but the playbook is com-

posed of a hierarchical task model shared between a

human user and a variety of planning and control

software components. This provides the opportuni-

ty for the human to „task‟ the automation very flex-

ibly—in all of the ways that s/he might delegate

tasks to a knowledgeable human assistant.

Delegation-based approaches provide a variety

of payoffs that traditional, static function allocation

approaches lack [5]. These include improved situa-

tion awareness, more accurate usage decisions, ba-

lanced mental workload, increased user acceptance,

improved overall human + machine performance

and even improved user physical and mental health.

Most of these benefits accrue precisely because the

human operator can remain actively engaged in the

creation, review and monitoring of the activities

that even a large team of autonomous agents may

perform. The human can be in charge of what the

team of vehicles does even without being in direct

and complete control of every action—in the sense

that s/he would be using, say, joystick control.

Below, we discuss the architecture and repre-

sentation required to create a delegation system

based on a playbook metaphor. Then we present a

usage scenario from an implemented delegation-

system prototype illustrating how a “playbook” of

shared tasks can allow a human supervisor to “task”

a team of UCAVs at a variety of levels.

A Playbook Architecture for Delega-

tion Interactions

Delegation interactions require a shared voca-

bulary in which task performance can be discussed

by human and automation. They further require

automation with substantial, autonomous reasoning

capability about how to perform tasks and achieve

goals within a domain. This same reasoning can be

used to improve the safety and efficacy of plans

developed by allowing the automation to review

and critique human plans. Finally, a “playbook”

approach to delegation streamlines the delegation

interaction by offering a compiled set of plans, or

„plays‟, with short, easily-commanded labels that

can be further modified as needed.

There are three primary challenges involved in

Mission

Analysis

Event

Handling

Event

Handling

Control

Algorithms

Control

Algorithms

Instructions

Feedback

Provably correct

plans

Provably safe

reactions

System control

Shared Task Model

Playbook

UI

‘Plant’

Figure 1. General delegation system architecture.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 4

constructing delegation system:

1. A shared vocabulary must be developed, via

which the operator can flexibly pose tasks to

the automation and automation can report how

it will perform them.

2. Sufficient knowledge must be built into the au-

tomation to enable it to make intelligent choic-

es within the instructions provided.

3. One or more user interfaces to permit inspec-

tion and manipulation of the vocabulary to pose

and review tasks rapidly and easily.

Figure 1 presents our general architecture for

delegation systems. The three primary components

each address one of the challenges described above.

A User Interface (UI) in the form of a “Playbook”

and a Mission Analysis Component (MAC) com-

municate with each other and with the operator via

a Shared Task Model. The operator delegates by

posing instructions in the form of desired goals,

tasks, partial plans or constraints, via the Playbook

UI, using the task structures of the shared task

model. The MAC is an automated planning system

which understands these instructions and (a) eva-

luates them for feasibility and/or b) expands them

to produce fully execut-

able plans. The MAC

may draw on special

purpose tools (such as a

route planner) to per-

form these functions,

wrapping them in its

task-sensitive environ-

ment.

Outside of the dele-

gation system, but es-

sential to its use in con-

trolling or managing

unmanned vehicles, are

two additional compo-

nents. Once an accept-

able plan is created, it is

passed to an Event

Handling component,

which is a reactive

planning system capa-

ble of making moment

by moment adjustments

to the plan during ex-

ecution. The Event

Handling component then passes these instructions

to traditional control algorithms that actually effect

behaviors via controlled system automation (sen-

sors and effectors) in the traditional manner.

These components are described in more detail

in other publications [5, 6, 7, 8]. Here, we will fo-

cus on the core representation and concepts that

enable the expression of delegation instructions—

the calling of a „play‟ in our playbook system.

Shared Task Model

A critical technology for delegation systems is

the ability to represent and reference the goals and

plans users have in operating automation. By expli-

citly representing these entities in a format that is

familiar yet interpretable by a planning system, we

gain a level of human/system coordination beyond

that previously possible. We call such a representa-

tion a task model, because it models the tasks or

methods which are known means of accomplishing

desired ends within a domain. Figure 2 is a graphi-

cal depiction of a small portion of a hypothetical

task model for UCAV operations.

Potential alternative, no stipulations

Partial stipulation of task or its subtasks

Partial stipulation by pilot

Pop up window for parameter stipulation

Take OffTake Off Assemble
Fly to

Objective
Prepare

for Split

Ingress

Conditional node
Join node

Objective

Location: ___H6___

Actor: all

Target

Attack
Egress

JJ

JJ

SS

JJ

Defense

Suppression

Decoy

ARTY

Support

Auxiliary

Attack

JJ

Perform

Mission

JJ

Ground

Attack

Air Attack

CAP

Figure 2. Graphical representation of a partial UCAV task model.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 5

A Task Model Formalism

A task model must meet several requirements to

support a delegation system. First, it must represent

some set of tasks that the system (in this case, a

team of UCAVs) is capable of performing. This is

unlike traditional human factors approaches to task

analysis [9] where the human‟s actions are the fo-

cus of the analysis and the resulting model. The

reason for encoding system tasks in the task model

is because the model will serve as the framework

for delegation interactions. The human will use

this task model to command system tasks, hence it

must contain and be focused on those tasks rather

than tasks the human is performing.

Task models are hierarchical and contain partial-

ly ordered sequential constraints. Task models

should also, generally, include conditional branch-

ing logic. The model in Figure 2 illustrates all of

these properties. At its highest level is a single,

parent task “Perform Mission”. Perform Mission,

however, can be decomposed into various methods

or types of mission performance—in this simple

model, limited to Combat Air Patrol (CAP), Air

and Ground Attack missions. The diamond which

splits the flow lines into three alternate paths

through each of these mission types indicates that

these high level tasks are related in an “OR” fa-

shion—generally, only one can be done at a time.

Furthermore, the fact that there is no flow path that

does not include at least one of these paths indi-

cates that (if this were our complete model) at least

one of these high level mission tasks would have to

be assigned in any mission the UCAVs were to fly.

The Ground Attack mission task is expanded

further in Figure 2. The expansion indicates that

Ground Attack must consist of Ingress, Target At-

tack and Egress sub-tasks and that it may also in-

clude an optional Defense Suppression sub-task.

The expansion of the Ingress subtask illustrates se-

quential and conditional task relationships: there

must be a Take-Off subtask and it must precede all

other subtasks. On the other hand, the conditional

split associated with an empty branch around As-

semble indicates that this task may either be per-

formed or not, but it‟s location indicates that, if

performed, it must come before Fly to Objective.

By contrast, the expansion of the Defense Sup-

pression task illustrates functional decomposition.

The conditional branch here indicates that, if De-

fense Suppression is done, there are three known

methods of performing it: the ARTY Support, De-

coy and Auxiliary Attack sub-tasks. Any one of

these can be, but one of them must be, used if the

Defense Suppression task is to be accomplished.

Primitive Tasks and Stopping Criteria

A task model used for delegation is intended to

provide both humans and automation a shared lan-

guage for talking about tasks to be performed in the

domain. It is also intended to encode the know-

ledge that the automation needs in order to reason

about the domain in the same way that the human

does. In some sense, the intent of the task model is

to give planning or control automation the capabili-

ty to participate in a pre-mission briefing in the

same fashion that a human pilot can. When a

commander calls a team together and says “Today

we‟re going to fly a Ground Attack mission,” s/he

can be reasonably certain that the pilots all share a

common understanding of what that means, of what

kinds of activities they are likely and unlikely to be

doing during the mission, of the range of parame-

ters remaining to be specified before they‟ll really

be able to fly the mission, and of what parameters

they‟ll be called upon to specify and decisions

they‟ll make themselves during flight.

The decomposition employed by the task model

must provide these things as well. As can be seen

in Figure 2, when flight or planning automation

understands this task model, it will know (as a hu-

man pilot would) that a “Ground Attack” mission

will consist of Ingress, Attack and Egress sub-tasks.

It also knows that it must be told what the target of

the attack is, but that it may decide what route to

take to get there, etc.

The question of how deeply to decompose tasks

is inevitable in task modeling [10]. The finest level

tasks in a decomposition are frequently called pri-

mitive tasks, and the conceptual level at which de-

composition ceases is determined by stopping crite-

ria. Stopping criteria may be practical as much as

theoretical—if there is no need to make a finer dis-

tinction or maintain a model of tasks below a given

level, then that level is a fine one to stop at.

For delegation systems, we actually have two

stopping levels that, though they may sometimes be

synonymous, are conceptually distinct. Human

Primitive Tasks (HPTs) are the lowest level at

which a human operator can or would want to inte-

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 6

ract with the delegation system. Automation Primi-

tive Tasks (APTs) are the lowest level at which the

automation needs to reason about performance to

effect behavior. Typically, APTs must be executa-

ble by existing control software. Alternatively, as

in our Playbook, if Event Handling software exists

to reason in real time about low-level operator se-

lection, the then APTs will need to reach the input

level for the Event Handling software.

For example, for a given application the human

operator may want or need to dictate low-level mo-

tion commands such as Achieve Speed X (with a

specific speed parameter value) or Maintain Atti-

tude Y. These would then be HPTs for that appli-

cation. For another application, these low level

tasks may be unnecessary and the HPTs might, in-

stead, be at the level of Move to Position. In either

case, in order to actually effect movement behavior,

the automation would need to reason beyond even

speed and attitude settings to still lower level tasks

such as Set Flaps, Set Trim Tabs, Adjust Fuel In-

jectors, etc. These are the sorts of tasks that will,

typically, be at the APT level. Generally, HPTs

will exist higher in the hierarchy than APTs but the

two levels may be identical for some applications.

Task Model States

In order to support delegation reasoning, the task

model used by a delegation system must be capable

of existing in several different states. Before any

mission planning or human delegation has been

done, the task model exists in a completely unins-

tantiated state. We call this an General Task Model

(GTM). This corresponds loosely to the knowledge

a pilot might have before coming into the briefing

room. S/he knows a great deal about what consti-

tutes a Ground Attack task—which subtasks it can

entail and in what orders, what subtasks simply will

not be a part of it (because, if they were used, the

mission would be called something else), which

equipment is likely to be used and which would be

nonsensical, even how long it is likely to take—but

s/he knows nothing about this particular mission

including whether or not it will contain a Ground

Attack task.

As the mission commander and the pilots begin

to discuss today‟s mission, they create a specific

instance of the GTM. The top-level node for a mis-

sion will always be the Perform Mission task

shown in Figure 2, but the lower level tasks in-

tended for this particular mission will differ.

Hence, delegation in the context of mission plan-

ning means developing a shared, specific instance

of the GTM where specific tasks are highlighted as

being intended for performance. We call this in-

stance a Specified Task Instance Model (STIM).

The process of specifying the GTM to produce a

STIM involves two different types of actions: task

selection and parameter specification. Wherever

choices of tasks occur in the GTM, specific options

must be chosen. For example, in Figure 2 above, a

choice must be made as to which high level task

will be the focus of the mission: CAP, Air Attack

or Ground Attack. Similarly, under Ingress, a

choice must be made as to whether or not this

STIM will include an assemble task or not.

The second type of specifying action is to fill in

parameter values for the tasks which are chosen.

An uninstantiated task in the GTM is called a task

template. Task templates, in fact, define a range of

behaviors that we have agreed to label with the

name of the task. For example, the Achieve Speed

task described above is a general task template suit-

able for commanding any speed of which the air-

craft is capable. Instantiating the generic template

involves inputting a specific value (or range) for

this instance of the task. A particular set of para-

meter inputs is illustrated in Figure 2 for the Fly to

Objective task— the objective‟s location. Particu-

larly problematic parameter values generally in-

cluded for all tasks in the model are a start and end

time (or duration). While these are clearly impor-

tant things to know about a task, they are very diffi-

cult to stipulate a priori for many tasks, especially

low level ones.

The process of instantiating the GTM to make

it an STIM proceeds both in time (sequentially

through the time planned for the mission events)

and in depth along the decomposition dimension of

the task model. A Fully-Specified Task Instance

Model (Full STIM) is one in which all tasks have

been decomposed and specified to the APT level.

All task options have been selected and all specific

parameter values have been chosen. The only prac-

tical examples of Full STIMs are mission traces—

that is, histories of missions actually flown. While

it would be possible to create an Full STIM for a

mission, it would be nearly useless as a planning or

delegation artifact because it would have been

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 7

over-planned. It would include tasks like Achieve

Flap Setting with parameter values like Setting =

3.17 degrees at Start Time = 13:42:27.16. To plan

to this level of detail much in advance is clearly

useless because the need for this flap setting can

only be determined fractions of a second before it is

needed. While it would be possible for a mission

commander to make such a plan, it would be a

waste of time because it would be invalidated long

before the pilots left the ground.

Thus, in delegation, we almost always work

with Partially Specified Task Instance Models (Par-

tial STIMs). These are STIMs in which only some

of the choices have been made, leaving the rest as

free variables to be decided later. A Partial STIM

is not a full plan in the artificial intelligence sense,

but it may well be a full mission plan in the sense

that a commander might give it to a pilot—leaving

many decisions to be made during flight. Any mis-

sion which is only decomposed to the HPT level

will necessarily be a Partial STIM, but delegation

can easily be done with Partial STIMs that are not

decomposed all the way to HPTs. From the figure

above, the commander could stipulate that this mis-

sion (that is, the Partial STIM under development)

will involve a Ground Attack task but not provide

any further stipulation about whether or not the

mission will include a Defense Suppression task,

leaving that decision to his/her pilots.

A special type of Partial STIM is an Executable

STIM. This is a Partial STIM that has been de-

fined, by human and/or machine, to a complete

enough degree to make it executable by the control

system. Here, enough of the possible variation in

what could constitute a mission has been declared

for the system to be able to do the rest. Just as the

commander would not expect to walk into the brief-

ing room and tell his/her pilots only “okay, today I

want you to fly a mission. Go to it,” so a delega-

tion system needs at least a bit more framing infor-

mation.

This is the goal of pre-mission planning—to get

the intended STIM to a point where the automated

planning and/or control software can execute a mis-

sion which fulfills it. What is needed in order to

make a Partial STIM an Executable STIM is, as

might be expected, a function of the planning and

control software. If, say, a set of waypoints is re-

quired before a path planner can create a path for a

UCAV, then the Partial STIM must stipulate tasks

which include that information. Sophisticated

planning software, such as we have been develop-

ing for the interface described below, may well be

capable of creating a executable plan even from

very high level tasks in the hierarchy. In practice,

however, we frequently require certain parameters

to be stipulated by the human even though planning

software might be capable of deciding them on its

own. Target designation is one such example.

Play Calling

The shared vocabulary of tasks, their instantia-

tion parameters and the relationships between them,

therefore, provides a means of communication be-

tween user and system, permitting delegation. Bet-

ter yet, if (as in our playbook system), the vocabu-

lary can be used by a planning system to construct

valid strings of sub-tasks to accomplish a parent

task, then the architecture supports a highly flexible

form of delegation interaction very similar to the

relationship a mission commander can have with

the well-trained pilots in his/her squadron.

We refer to the delegation interaction between a

human operator and automated software (whether

onboard, offboard or a combination thereof) con-

trolling one or more UCAVs as play calling. The

operator who „calls plays‟ must interact directly

with the task model, activating and combining tasks

at various levels of decomposition. This capability

is provided via the Playbook UI, though the nature

of that UI and the levels and combinations of plays

available may differ from application to applica-

tion. We also provide a planning system, the Mis-

sion Analysis Component depicted in Figure 1, that

can understand the operator‟s tasking commands

and either evaluate them for performability or, de-

velop an executable plan that obeys, yet fleshes

them out.

The operator must interact with the task model,

both to understand possible actions and, more im-

portantly, to declare those tasks, goals, partial plans

and constraints s/he wishes the system to pursue.

Just as a quarterback or team captain can activate a

complex behavior by referring to a simple play

name or can spend additional time combining play

elements or tweaking parameters, so operators are

able to tune their interaction with automation via

the Playbook UI to fit available time and contexts.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 8

In practice, this means that the operator begins

with a generic and uninstantiated version of the

task model—the GTM described above. The Play-

book UI must enable the two actions described

above for turning a GTM into a Partial STIM:

1. Play selection from among viable alter-

natives, and

2. Play parameter instantiation.

The set of selection and parameterization actions

performed must result in an Executable STIM if the

resulting plan is to be flown.

The Role of the MAC

In our approach, these tasks are not performed

by the human commander alone. Instead, the hu-

man interacts with the Mission Analysis Compo-

nent (MAC) illustrated in Figure 1. The MAC is a

planning system which understands and uses the

task model to create feasible plans to the level of

input required by the Event Handling software.

Since it „speaks the same language‟ of tasks as the

human, it is capable of taking directions from the

user and planning within them.

The MAC [6] operates over Partial STIMs pro-

vided by the operator to: (1) analyze the operator‟s

plan for feasibility and goal achievement and (2)

automatically generate candidate plan completions

in keeping with the partial plan the human imposes.

The MAC can critique [11] the operator-specified

plan for feasibility and constraint violations and

weed out candidate sub-plays that have been made

infeasible by earlier decisions. Finally, the MAC

can complete a partial plan (that is, produce an Ex-

ecutable STIM) from whatever level the human

chooses to hand over. The MAC will either incor-

porate and obey those portions of the plan the hu-

man specified, or report why an executable plan

cannot be completed within constraints.

The MAC uses a hierarchical task network plan-

ner [12] in conjunction with constraint propagation

techniques [13, 14] to perform the functions de-

scribed above. By using the same structures of the

task model that the human uses, the MAC‟s con-

cepts of available „plays‟ necessarily mirror those

of the user. In turn, the MAC must manage the re-

sources, deadlines, etc., checking for feasibility and

conflicts between alternative plan in-stances. The

MAC represents these limited quantities as con-

straints on and between individual plan operators

that are maintained by a constraint management

engine, but these plan operators are sequenced and

composed in conjunction with a human operator.

As the human constructs a plan, the MAC conti-

nuously determines the feasibility of the plan.

„Feasibility‟ is the projected plan‟s ability to

achieve the declared goal state (the top level task)

within resource limitations. When asked to check

for feasibility or complete a plan, the MAC fleshes

out the non-APT tasks in the plan by asserting one

or more subtask methods that can fulfill the parent

goal. When critiquing, the MAC provides feedback

on the feasibility of the currently specified plan.

The MAC can aid decisions by having feasible

plays at the next decomposition level be presented

and infeasible ones eliminated or „grayed out,‟ if

desired. Alternatively, when in plan completion

mode, the MAC can select its best completion ac-

cording to resource usage criteria. The UI then dis-

plays the planning decisions to the user, who can

retract choices, or make better-informed decisions

from among the available, feasible plans.

In combination, feasibility checking and plan

expansion make it possible, but not required, for

the MAC to generate effective plans with a mini-

mum of user involvement. Continual feasibility

analysis minimizes the effort expended on dead-

ends while encouraging the user to specify the mis-

sion critical details as early as possible. Once these

are stipulated, the development of the plan can be

left entirely to the MAC with the assurance that it

will produce a plan that is both feasible within its

constraint knowledge and in keeping with the oper-

ator‟s stipulations. If time permits (or lack of trust

demands), the user may provide increasingly de-

tailed instructions by selecting among available

plan alternatives, down to the HPT level.

The Playbook UI

The user‟s interaction with the task model and

the MAC is via a user interface (UI). Some re-

quirements for the Playbook UI include: (1) the set

of tasks (e.g., maneuvers, procedures, etc.)

represented must be those any well-trained operator

should know, (2) the general task templates can be

composed and instantiated to create many specific

mission plans, (3) the operator may select tasks at

various hierarchical levels, leaving the lower levels

to be composed by the MAC, and (4) operators may

either require or prohibit the use of specific tasks or

of specific resources for a task.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 9

One of the strengths of using the shared task

model as an infrastructure is that it enables a wide

diversity of UIs—each customized for their context

of use. Figure 3 illustrates some potential usage

alternatives and describes the level(s) of the Task

Network they would likely interact with.

For example, a commander responsible for a

large number of assets (typically, one of higher

rank—say, Lt. Col. and above) might be con-

strained to delegate only at the higher levels of the

network and to leave those assets more autonomy

to develop their plans at the lower, executable lay-

ers of the network. By contrast, a lower level

commander (say, captain or below), would likely

want to very carefully task assets and review even

the lowest levels of the plans they create.

Both of those examples presume that delegation

and tasking is done a priori, during a mission plan-

ning phase; but the task network also supports very

dynamic, in flight delegation through play calling.

Here, plays are labels associated with intermediate-

level tasks in the network. The label references a

constrained range of variance for the tasks beneath

it. By „calling the play‟ (that is, activating or refe-

rencing the label), the human authorizes the auto-

mation to perform any variation of the sub-tasks

which fall under that heading. For example, a hu-

man pilot in flight might command an unmanned

wingman to “Reconnoiter” with a specific area as a

required parameter value. While this is a very

speedy delegation command for, potentially, a very

complex behavior, it would leave the UCAV with

the authority to take any path or speed it deemed

appropriate to perform that action. The tradeoff

would involve improved speed of delegation with

decreased sensitivity in what can be commanded.

Again, similar to play calling on a basketball court,

vs. play calling during a time out on the side lines

vs. play development back in the locker room be-

tween games (an activity that may require special

tools from a UI).

Some generally useful attributes of a delegation

system‟s UI are described below. In the following

section, we describe one Playbook prototype we

have developed for ground-based planning of

UCAV missions.

First, a delegation system UI must include some

ability to access and command pre-defined tasks

from a library, usually at various hierarchical le-

vels. Second, most applications will benefit from

more elaborate (and sensitive) communication than

simply accessing a pre-defined task. This can be

provided minimally by allowing the operator to in-

stantiate the parameters of a task. More elaborate-

ly, plays/tasks may need to be composed into long-

er sequences (e.g., missions). A mission plan com-

position workspace and tool separate from a „play

calling‟ tool will help in these cases. Third, many

domains will require creating new tasks or plays,

either from scratch or by storing the results of earli-

er composition. A different tool, or mode, should

support this type of interaction. Fourth, most do-

mains will need to visualize the performance and

outcome of commanded plays. Normal automation

interfaces may provide these in a raw form, but re-

ferencing performance against the intended plays

should improve user understanding. Finally, the UI

must support interaction with the MAC via issuing

partial tasking instructions for completion, receiv-

ing critiques, and previewing and accepting or mod-

ifying MAC-generated plans.

Interacting directly with an explicit task model

(as illustrated below) meets most of these require-

ments, but we have found that it helps to make the

UI multi-modal. Visualization of the task model

shows causal and sequential relationships, it does

not do a good job of conveying the particular assets

involved in each task, temporal duration of events,

geographical location and progression of events and

objects, etc. Furthermore, as Oviatt [15] has found,

interaction with a domain-specific visualization

such as a map in the context of a known task can be

a very efficient method of specifying and visualiz-

ing task parameters.

Novel Play Creation

High Level Planning and Control

Low Level Planning

and Control

„In-Flight‟ Control

Novel Play Creation

High Level Planning and Control

Low Level Planning

and Control

„In-Flight‟ Control

Figure 3. Different uses of the task model.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 10

Usage Scenario

The following scenario illustrates how a user

might interact with the delegation prototype we

have developed to plan a UCAV mission. Building

on prior Honeywell control algorithms and simula-

tion work supporting scenarios of multiple uninha-

bited F-16s, we developed a delegation interface to

enable a human leader to lay out a mission plan.

This interface will support the stipulation of full

and partial plans and constraints for the UCAVs

either separately or in conjunction. To date, we

have concentrated on a ground-based tasking inter-

face due to its lighter demands on user, simulation

and interface design. However, we believe that

suitable interface modifications will suit this ap-

proach to in-flight tasking as well.

Figure 4 shows the five primary regions of the

prototype Playbook UI. The upper half of the

screen is a Mission Composition Space that shows

the Partial STIM composed thus far. The lower left

corner of the interface is an Available Resource

Space, currently presenting the set of aircraft avail-

able for use. The lower right corner contains an

interactive Terrain Map of the area of interest, used

to facilitate interactions with significant geographic

information content. The space between these two

lower windows (empty at startup) is a Resource in

Use Space—once resources (e.g., UCAVs, muni-

tions, etc.) are selected for use, they will be moved

to this workspace, where they can be interacted

with in more detail. Finally, the lower set of con-

trol buttons is always present for interaction with

the system. This includes options such as “Finish

Plan” for handing the partial plan off to the MAC

for completion and/or review and “Show Schedule”

for obtaining a Gantt chart timeline of the activities

planned for each actor, etc.

At startup, the Mission Composition Space

presents the three top-level plays (or „mission

types‟) the system currently knows about: currently,

Interdiction, Airfield Denial, and Suppress Enemy

Air Defenses (SEAD). The mission leader would

interact with the playbook to, first, declare that the

overall mission task for the day was, say, “Airfield

Denial.” In principle, the user could define a new

top-level play either by reference to existing task

structures or completely from scratch, but this ca-

pability has not been implemented yet.

Clicking on “Air-

field Denial” produces

a pop-up menu with

options for the user to

tell the MAC to “Plan

this Task” (that is,

develop a plan to ac-

complish it) or indi-

cate that the user will

“Choose airfield deni-

al” as a task that s/he

will flesh out further.

The pop-up menu also

contains a context-

sensitive list of op-

tional subtasks that

the operator can

choose to include un-

der this task. This list

is generated by the

MAC with reference

to the existing task

structures in the task

model, filtered for Figure 4. Prototype Playbook Interface for UCAV Mission Planning.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 11

current feasibility.

At this point, having been told only that the

task for the day is “Airfield Denial,” a team of

trained pilots would have a very good general pic-

ture of the mission they would fly. Similarly, the

delegation system (via the Shared Task Model)

knows that a typical airfield denial plan consists of

ingress, attack and egress phases and that it may

also contain a suppress air defense task before or in

parallel with the attack task. But just as a leader

instructing a human flight team could not leave the

delegation instructions at a simple „Let‟s do an Air-

field Denial mission today,‟ so the operator is re-

quired to provide more information. Here, the hu-

man must provide four additional items: a target, a

homebase, a staging and a rendezvous point. Most

of these activities are geographical in nature and

users typically find it easier to perform them with

reference to a terrain map. Hence, by selecting any

of them from the pop up menu, the user enables

direct interaction with the Terrain Map to designate

an appropriate point. Since the Playbook knows

what task and parameter the point is meant to indi-

cate, appropriate semantics are preserved between

user and system. As for all plans, the specific air-

craft to be used may be selected by the user or left

to the MAC. If the user wishes to make the selec-

tion, s/he views available aircraft in the Available

Resource Space and chooses them by clicking and

moving them to the Resources in Use Area.

The mission leader working with a team of

human pilots could, if time, mission complexity or

degree of trust made it desirable, hand the mission

planning task off to the team members at this point.

The playbook operator can do this as well, handing

the task to the MAC via the “Finish Plan” button.

The leader might wish, however, to provide sub-

stantially more detailed delegation instructions.

S/he can do this by progressively interacting with

the UI to provide deeper layers of task selection, or

to impose constraints or stipulations on the re-

sources to be used, way-points to be flown, etc.

For example, after the user chooses „Airfield

Denial‟ the system knows, via the Shared Task

Model, that this task must include an Ingress sub-

task (as illustrated in Figure 4). To provide de-

tailed instructions about how to perform the Ingress

task, the user must choose it, producing a “generic”

Ingress task template from the GTM. This is not a

default method of doing “Ingress” but a generic,

uninstantiated template—corresponding to what a

human expert knows about what constitutes an In-

gress task and how it can or should be performed.

A trained pilot knows that Ingress can be done ei-

ther in formation or in dispersed mode and, in ei-

ther case, must involve a “Take Off” subtask fol-

lowed by one or more “Fly to Location” subtasks.

Similarly, the playbook user can select from availa-

ble options (e.g., formation vs. dispersed Ingress,

altitude constraints on takeoff, etc.) on context-

sensitive, MAC-generated menus appropriate to

each level of decomposition of the task model.

The user can continue to specify and instan-

tiate tasks down to the HPT level. In practice, in

order to preserve control stability, it may frequently

be the case that the HPT level is not synonymous

with the APT level where the sub-tasks are beha-

viors the control algorithms (see Figure 1) in our

simulator can be relied upon to execute in flight.

The MAC and the Event Handling component are,

collectively, responsible for driving the plan to the

APT level and creating an Executable STIM.

In practice, however, users will frequently be

willing to stop planning before reaching even the

HPT level. This may be because the user trusts the

system to be able to develop an acceptable plan, or

because the current situation doesn‟t require a par-

ticularly sophisticated or sensitive plan, or because

s/he does not have time to develop a plan to the

granularity of the HPTs—a case that is of particular

interest in trying to enable a single commander to

control and task multiple UCAVs. Our approach

supports this capability by allowing, at any point

after the initial selection of the top level mission

task and its required parameters, the tasker to hand

the partly developed plan over to the MAC for

completion and/or review. In extreme cases, a via-

ble “Airfield Denial” plan could be created in our

prototype with as few as five selections and more

sophisticated planning capabilities could readily

reduce this number further. If the MAC is incapa-

ble of developing a viable plan within the con-

straints imposed, (e.g., if the user has stipulated

distant targets that exceed aircraft fuel supplies) it

will inform the user of these problems.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 12

Conclusions and Future Work

We are currently at work developing Playbook

concepts to support ground-based human mission

planning and control of multiple UCAVs for the

DARPA MICA project. This work is placing em-

phasis on more active monitoring and control of

UCAVs while they execute a pre-planned mission

plan than illustrated in the earlier prototype de-

scribed herein. Similarly, we are exploring appro-

priate levels of depth for both APTs and HPTs, and

for defining useful collections of tasks which can

be called via simple labels as plays.

We are also engaged in research on the use of

delegation approaches to in-flight control of

UCAVs and of one‟s own aircraft. This work de-

mands not only consideration of novel user inter-

face concepts but, equally importantly, of control

stability issues in delegating tasks at various levels

from human to automation or vice versa.

In future work, we are interested in validating

improvements provided by delegation systems ei-

ther in terms of overall system performance, or in

terms of human situation awareness, engagement,

etc., or both. The literature gives us every reason to

believe that such benefits should accrue [5], but we

have yet to develop a sufficiently rich human-in-

the-loop simulation in order to be able to test them.

Acknowledgements

We would like to thank Dan Bugajski, Don

Shaner, John Allen and David Musliner for their

help in the development and implementation of the

ideas presented. Robert Goldman deserves special

mention as instrumental in realizing the operation

of the MAC and its integration with a human-

understandable task model. Robert Goldman and

Michael Pelican were responsible for the specific

design and implementation of the example shown

in Figure 4. The initial formulation of the Playbook

concept and the development of the prototype inter-

face described here was funded by a Honeywell

Initiatives Grant. Additional work reported here

was funded by the DARPA Mixed Initiative Con-

trol of Automata Teams program, under sub-

contract to Honeywell, and by a DARPA Small

Business Innovative Research contract # DAAH01-

02-C-R163 to the U.S. Army Aviation and Missile

Command titled “Multi-Modal Control for Auto-

matic Vehicle Management Systems” to SIFT.

[1] Clarke, Tom, June 6, 2002, “Flying Free” Na-

ture, Vol. 417, pp. 582-583.

[2] Klein, G., 1998, Sources of Power; How People

Make Decisions, Cambridge, MA; MIT Press.

[3]Shattuck, L.G.and D.D. Woods, 2000, “Commu-

nication of Intent in Military Command and Control

Systems,” In Carol McCann and Ross Pigeau

(Eds.), The Human in Command: Exploring the

Modern Military Experience, New York: Kluwer

Academic/Plenum Publishers, pp. 279-292.

[4] McNesese, M., Salas, E. and Endsley, M., 2001,

New Trends in Cooperative Activities. Human Fac-

tors and Ergonomics Society; Santa Monica, CA.

[5] Miller, C. and Parasuraman, R. Submitted. De-

signing for Flexible Human-Automation Interac-

tion: Playbooks for Supervisory Control. Submit-

ted for publication in Systems, Man and Cybernet-

ics: Part A—Systems and Humans.

[6] Goldman, R., K. Haigh, D. Musliner, & M. Pe-

lican, 2000, “MACBeth; A Multi-Agent, Con-

straint-based Planner,” in Notes of the AAAI Wkshp

on Constraints and AI Planning, Austin, TX, pp. 1-

7.

[7] Musliner, D., E. Durfee & K. Shin, 1993,

“CIRCA: A cooperative intelligent real-time con-

trol architecture,” IEEE Trans. on Sys. Man & Cy-

ber., vol. 23, pp. 1561-1574.

[8] Miller, C., R. Goldman, & M. Pelican, 2000,

“Tasking Interfaces for Flexible Interaction with

Automation: Keeping the Operator in Control,”

Proceedings of the Conference on Human Interac-

tion with Complex Systems, Urbana-Champaign, Ill.

May.

[9] Kirwan, B. and Ainsworth, L., 1992, A Guide to

Task Analysis, London; Taylor and Francis.

[10] Shepherd, A., 1989, “Analysis and Training in

Information Technology Tasks” in Diaper, D. (Ed.)

Task Analysis for Human-Computer Interaction,

Chichester, UK; Ellis Horwood, pp. 15-55.

Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002.

 13

[11] Guerlain, S., 1995, “Using the critiquing ap-

proach to cope with brittle expert systems” Proc.

HFES 39th Annual Mtg., Santa Monica, CA; Octo-

ber, pp. 233-237

[12] Erol, K, Hendler, J., and Nau, E., 1994,

“UMCP: A sound and complete procedure for hie-

rarchical task network planning,” in AI Plan. Sys.:

Proc. of 2
nd

 Int. Conf., K. Hammond, Ed., Los Al-

tos, CA, pp. 249-254.

[13]Hentenryck, P., 1989, Constraint Satisfaction

in Logic Programming. Cambridge, MA: MIT

Press.

[14] Jaffar, J. and Michaylov, S., 1987, “Methodol-

ogy and implementation of a CLP system,” Proc. of

4
th
 Int. Conf. Logic Prgmng, Cambridge, MA: MIT

Press.

[15]Oviatt, S., 1998, “User-centered modeling for

spoken language and multimodal interfaces,” in M.

Maybury & W. Wahlster, (Eds.), Intelligent User

Interfaces, San Fansisco; Morgan-Kaufman, pp.

620-630.

