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Introduction 

Human interaction with automation is becom-

ing increasingly complex as automation becomes 

more sophisticated.  At the forefront of this chal-

lenge are settings where one or a few humans, who 

may be concurrently involved in other tasks such as 

flying an aircraft, are expected to control, or at least 

supervise, multi-agent teams of unmanned vehicles.  

Such interactions place an extreme burden on the 

information processing and decision-making capa-

bilities of the human(s) involved, and therefore, 

demand sophisticated methods of communication 

of intent and of feedback on system performance 

against objectives, as well as, perhaps, management 

of the humans‟ limited resources against the vari-

ous roles that they and the automated assets can 

occupy.    

There is, however, an existing human activity 

which roughly matches the challenges and oppor-

tunities of this domain and which, therefore, pro-

vides a guide for designing human interaction:  the 

role of a quarterback or captain in team sports.  

Team captains do not command all the actions of 

all players on their teams, but they do continue to 

“control” them at a higher level of abstraction by 

commanding pre-defined plays—plays which de-

fine a goal and an acceptable set of behaviors for 

each player.   

In ongoing research on the DARPA Mixed In-

itiative Control of Automata teams program, we are 

refining the concept of a „Playbook Interface‟ to 

allow a human to express his or her intent to mul-

tiple unmanned vehicles and sophisticated planning 

and control software to stipulate or constrain the 

methods that the automated agents use to achieve 

that intent.  Our Playbook Interface is based on a 

model of the tasks and goals possible in the do-

main, shared by both humans and automated 

agents, that facilitates communication about intents 

and outcomes and can serve as the basis of a wide 

variety of user interfaces ranging from extremely 

detailed (for use in pre-mission planning and play 

development) to extremely streamlined (for in-

flight „play calling‟).  We will present the architec-

ture required for a Playbook Interface, the various 

interaction styles it supports, and a preliminary ex-

ample implementing this approach in an Unmanned 

Combat Air Vehicle (UCAV) domain. 

Problems in Current UCAV Control 

Current technologies and approaches require 

intensive human involvement in the control of un-

manned vehicles.
1
  Currently deployed Unmanned 

Air and Combat Air Vehicles (UAVs and UCAVs) 

in use in Afghanistan are said to require four to five 

human controllers while in flight, each of whom is 

fully engaged in various forms of low-level, fre-

quently joystick-based, control of the aircraft, its 

sensors or other ship‟s systems.  Furthermore, cur-

rent approaches to the use of UAVs and UCAVs 

generally require that they fly alone—not only are 

cooperative teams of vehicles a yet-to-be-achieved 

vision, but current domestic operations even require 

that the airspace through which UAVs travel be 

cleared of other, human-piloted aircraft [1].  While 

there are various reasons for these restrictions, at 

least one of them is the reduced complexity asso-

ciated with a simplified operational environment. 

Yet in both military and commercial applica-

tions, many dreams of the potential for unmanned 

vehicles rely on the ability to reduce or even re-

verse this operational equation.  Cooperative teams 

                                                      
1 While our current work is focused on Unmanned Combat Air 

Vehicles, much of the argument for the nature of control of 

multiple vehicles and much of our particular approach applies 

equally well to any form of unmanned vehicle—air, ground, 

sea, space, etc.   
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of unmanned surveillance vehicles hold the poten-

tial to enable long term monitoring of a large area 

for potentially hostile entities and time-critical mo-

bile targets. Large teams of small, portable robots 

could revolutionize urban warfare, disaster relief, 

firefighting and hostage situations by providing 

rapid reconnaissance of a building or other site.  

Light weight, low cost, high endurance UAVs ca-

pable of simultaneously monitoring all of the Ama-

zon or the Indian Ocean are critically needed for 

the atmospheric and environmental studies needed 

to address global warming.  Finally, the coopera-

tion of a human pilot with one or more UCAV 

„wingmen‟ would provide a suitable mix of human 

responsibility and oversight, yet limited threat for 

loss of life, in many near-term military roles.   

Yet all of these visions require a substantial 

change in the way humans interact with unmanned 

vehicles.  Simultaneous and continuous joystick 

control of multiple vehicles is simply beyond the 

workload and attentional capacity of human opera-

tors.  While allowing cooperative teams of un-

manned vehicles to be operated on a multiple hu-

man to one vehicle basis might be feasible, it would 

certainly reduce the cost effectiveness and opera-

tional roles for such vehicles.   

Instead, we must seek ways in which single 

humans, perhaps already engaged in workload in-

tensive operations of their own (such as flying their 

own aircraft) can control teams of unmanned ve-

hicles.  This is, in fact, the goal of DARPA‟s 

Mixed-Initiative Control of Automata teams 

(MICA) program.  MICA seeks to demonstrate hu-

man-in-the-loop control technologies that will al-

low a single human to control five or more UCAVs 

in an operationally realistic military simulation. 

An Informed Delegation Approach 

While human control of multiple UCAVs 

represents a significant, novel challenge for human-

automation interaction, the notion of a heavily oc-

cupied human “controlling” the action of multiple 

agents is common in human-human interaction. 

Human supervisors have long relied on other hu-

mans to act for them when out of communication 

range or under communication restrictions—for 

example, until very recently in remote business, 

commercial and legal activities and, still in many 

cases, in military domains.  Similarly, human man-

agers continue to rely on human subordinates to 

provide the skills and workload capacity to manage 

large organizations and physical plants of all sorts 

ranging from aircraft carriers to nuclear power fa-

cilities to shopping malls and factory floors. 

Perhaps the most obvious and formalized ex-

ample of such interactions is in sports—where a 

coach may supervise the actions of a team of many 

players from the sidelines or a single player (a 

quarterback or captain) may give “orders” to other 

team members while him- or herself fully engaged 

in ongoing activity.  Such interaction is made poss-

ible by the pre-definition of bounded sets of proce-

dural- and goal-directed activities called “plays”.  

The fact that all team-members share the same de-

finition of a play, combined with the fact that team 

members can be relied upon to intelligently apply 

that procedure to the current situation, means that 

very complex behaviors can be activated with very 

little time or workload commitment on the part of a 

human „supervisor.‟  We will have more to say 

about the use of “playbooks” in vehicle control be-

low. 

Human-human task delegation has been stu-

died under the headings of communication of intent 

[2,3] and team situation awareness [4].  The key to 

good human-human performance in these domains 

is informed delegation—that is, a supervisor‟s pro-

viding of tasking instructions to a subordinate in a 

way that maintains several attributes: 

1. The subordinate has substantial knowledge 

about and capabilities within the domain.  The 

greater these are the greater the potential for the 

supervisor to offload tasks (including higher level 

decision making and course of action selection 

tasks) on the subordinate. 

2. The supervisor is aware of the subordi-

nate‟s capabilities and limitations and will either 

not task the subordinate beyond his/her abilities or 

will provide more explicit instructions and over-

sight when there is doubt about those abilities. 

3. The “language” available for delegation in-

structions is: 

1. easy to use,  
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2. adaptable to a variety of time and situation-

al constraints, 

3. affords discussing tasks, goals and con-

straints (as well as world and equipment 

states) as first order objects, and 

4. most importantly, is shared by both supe-

rior and subordinate. 

4. The act of delegation defines a space of 

control authority within which the subordinate may 

act.  This authority need not be complete (e.g., re-

quired checking with the supervisor before pro-

ceeding with specific actions or resources), but the 

greater the authority, the greater the workload re-

duction on the supervisor. 

5. Items 2 and 4 together imply that the space 

of control authority delegated to automation is flex-

ible—that the supervisor can choose to delegate 

more or less “space”, and more or less authority 

within that space (that is, range of control options), 

to automation.  Item 3 implies that the language 

available for delegation must make the task of de-

legating feasible and robust—enabling, for exam-

ple, the provision of detailed instructions on how 

the supervisor wants a task to be performed or a 

simple statement of the desired goal outcome.  

Conversely, it is also important that both parties 

understand the language similarly so that, even 

when communication is terse, a shared understand-

ing of the delegated control space results. 

We have been developing an approach to hu-

man-automation interaction that retains the benefits 

of both automation and of good human-human del-

egation.  This approach is based on the metaphor of 

a sports team playbook, but the playbook is com-

posed of a hierarchical task model shared between a 

human user and a variety of planning and control 

software components.  This provides the opportuni-

ty for the human to „task‟ the automation very flex-

ibly—in all of the ways that s/he might delegate 

tasks to a knowledgeable human assistant.  

Delegation-based approaches provide a variety 

of payoffs that traditional, static function allocation 

approaches lack [5].  These include improved situa-

tion awareness, more accurate usage decisions, ba-

lanced mental workload, increased user acceptance, 

improved overall human + machine performance 

and even improved user physical and mental health.  

Most of these benefits accrue precisely because the 

human operator can remain actively engaged in the 

creation, review and monitoring of the activities 

that even a large team of autonomous agents may 

perform.  The human can be in charge of what the 

team of vehicles does even without being in direct 

and complete control of every action—in the sense 

that s/he would be using, say, joystick control.   

Below, we discuss the architecture and repre-

sentation required to create a delegation system 

based on a playbook metaphor.  Then we present a 

usage scenario from an implemented delegation-

system prototype illustrating how a “playbook” of 

shared tasks can allow a human supervisor to “task” 

a team of UCAVs at a variety of levels.   

A Playbook Architecture for Delega-

tion Interactions 

Delegation interactions require a shared voca-

bulary in which task performance can be discussed 

by human and automation.  They further require 

automation with substantial, autonomous reasoning 

capability about how to perform tasks and achieve 

goals within a domain.  This same reasoning can be 

used to improve the safety and efficacy of plans 

developed by allowing the automation to review 

and critique human plans.  Finally, a “playbook” 

approach to delegation streamlines the delegation 

interaction by offering a compiled set of plans, or 

„plays‟, with short, easily-commanded labels that 

can be further modified as needed. 

There are three primary challenges involved in 
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constructing delegation system:   

1. A shared vocabulary must be developed, via 

which the operator can flexibly pose tasks to 

the automation and automation can report how 

it will perform them. 

2. Sufficient knowledge must be built into the au-

tomation to enable it to make intelligent choic-

es within the instructions provided. 

3. One or more user interfaces to permit inspec-

tion and manipulation of the vocabulary to pose 

and review tasks rapidly and easily.   

Figure 1 presents our general architecture for 

delegation systems. The three primary components 

each address one of the challenges described above. 

A User Interface (UI) in the form of a “Playbook” 

and a Mission Analysis Component (MAC) com-

municate with each other and with the operator via 

a Shared Task Model. The operator delegates by 

posing instructions in the form of desired goals, 

tasks, partial plans or constraints, via the Playbook 

UI, using the task structures of the shared task 

model. The MAC is an automated planning system 

which understands these instructions and (a) eva-

luates them for feasibility and/or b) expands them 

to produce fully execut-

able plans.  The MAC 

may draw on special 

purpose tools (such as a 

route planner) to per-

form these functions, 

wrapping them in its 

task-sensitive environ-

ment.   

Outside of the dele-

gation system, but es-

sential to its use in con-

trolling or managing 

unmanned vehicles, are 

two additional compo-

nents.  Once an accept-

able plan is created, it is 

passed to an Event 

Handling component, 

which is a reactive 

planning system capa-

ble of making moment 

by moment adjustments 

to the plan during ex-

ecution.  The Event 

Handling component then passes these instructions 

to traditional control algorithms that actually effect 

behaviors via controlled system automation (sen-

sors and effectors) in the traditional manner.   

These components are described in more detail 

in other publications [5, 6, 7, 8].  Here, we will fo-

cus on the core representation and concepts that 

enable the expression of delegation instructions—

the calling of a „play‟ in our playbook system. 

Shared Task Model 

A critical technology for delegation systems is 

the ability to represent and reference the goals and 

plans users have in operating automation. By expli-

citly representing these entities in a format that is 

familiar yet interpretable by a planning system, we 

gain a level of human/system coordination beyond 

that previously possible.  We call such a representa-

tion a task model, because it models the tasks or 

methods which are known means of accomplishing 

desired ends within a domain.  Figure 2 is a graphi-

cal depiction of a small portion of a hypothetical 

task model for UCAV operations.   
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Figure 2. Graphical representation of a partial UCAV task model. 
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A Task Model Formalism 

A task model must meet several requirements to 

support a delegation system. First, it must represent 

some set of tasks that the system (in this case, a 

team of UCAVs) is capable of performing.  This is 

unlike traditional human factors approaches to task 

analysis [9] where the human‟s actions are the fo-

cus of the analysis and the resulting model.  The 

reason for encoding system tasks in the task model 

is because the model will serve as the framework 

for delegation interactions.  The human will use 

this task model to command system tasks, hence it 

must contain and be focused on those tasks rather 

than tasks the human is performing. 

Task models are hierarchical and contain partial-

ly ordered sequential constraints.  Task models 

should also, generally, include conditional branch-

ing logic.  The model in Figure 2 illustrates all of 

these properties.  At its highest level is a single, 

parent task “Perform Mission”.  Perform Mission, 

however, can be decomposed into various methods 

or types of mission performance—in this simple 

model, limited to Combat Air Patrol (CAP), Air 

and Ground Attack missions.  The diamond which 

splits the flow lines into three alternate paths 

through each of these mission types indicates that 

these high level tasks are related in an “OR” fa-

shion—generally, only one can be done at a time.  

Furthermore, the fact that there is no flow path that 

does not include at least one of these paths indi-

cates that (if this were our complete model) at least 

one of these high level mission tasks would have to 

be assigned in any mission the UCAVs were to fly.   

The Ground Attack mission task is expanded 

further in Figure 2.  The expansion indicates that 

Ground Attack must consist of Ingress, Target At-

tack and Egress sub-tasks and that it may also in-

clude an optional Defense Suppression sub-task.  

The expansion of the Ingress subtask illustrates se-

quential and conditional task relationships: there 

must be a Take-Off subtask and it must precede all 

other subtasks.  On the other hand, the conditional 

split associated with an empty branch around As-

semble indicates that this task may either be per-

formed or not, but it‟s location indicates that, if 

performed, it must come before Fly to Objective.   

By contrast, the expansion of the Defense Sup-

pression task illustrates functional decomposition.   

The conditional branch here indicates that, if De-

fense Suppression is done, there are three known 

methods of performing it: the ARTY Support, De-

coy and Auxiliary Attack sub-tasks.  Any one of 

these can be, but one of them must be, used if the 

Defense Suppression task is to be accomplished. 

Primitive Tasks and Stopping Criteria 

A task model used for delegation is intended to 

provide both humans and automation a shared lan-

guage for talking about tasks to be performed in the 

domain.  It is also intended to encode the know-

ledge that the automation needs in order to reason 

about the domain in the same way that the human 

does.  In some sense, the intent of the task model is 

to give planning or control automation the capabili-

ty to participate in a pre-mission briefing in the 

same fashion that a human pilot can.  When a 

commander calls a team together and says “Today 

we‟re going to fly a Ground Attack mission,” s/he 

can be reasonably certain that the pilots all share a 

common understanding of what that means, of what 

kinds of activities they are likely and unlikely to be 

doing during the mission, of the range of parame-

ters remaining to be specified before they‟ll really 

be able to fly the mission, and of what parameters 

they‟ll be called upon to specify and decisions 

they‟ll make themselves during flight.   

The decomposition employed by the task model 

must provide these things as well.  As can be seen 

in Figure 2, when flight or planning automation 

understands this task model, it will know (as a hu-

man pilot would) that a “Ground Attack” mission 

will consist of Ingress, Attack and Egress sub-tasks.  

It also knows that it must be told what the target of 

the attack is, but that it may decide what route to 

take to get there, etc. 

The question of how deeply to decompose tasks 

is inevitable in task modeling [10].  The finest level 

tasks in a decomposition are frequently called pri-

mitive tasks, and the conceptual level at which de-

composition ceases is determined by stopping crite-

ria.  Stopping criteria may be practical as much as 

theoretical—if there is no need to make a finer dis-

tinction or maintain a model of tasks below a given 

level, then that level is a fine one to stop at.   

For delegation systems, we actually have two 

stopping levels that, though they may sometimes be 

synonymous, are conceptually distinct.  Human 

Primitive Tasks (HPTs) are the lowest level at 

which a human operator can or would want to inte-
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ract with the delegation system.  Automation Primi-

tive Tasks (APTs) are the lowest level at which the 

automation needs to reason about performance to 

effect behavior.  Typically, APTs must be executa-

ble by existing control software.  Alternatively, as 

in our Playbook, if Event Handling software exists 

to reason in real time about low-level operator se-

lection, the then APTs will need to reach the input 

level for the Event Handling software. 

For example, for a given application the human 

operator may want or need to dictate low-level mo-

tion commands such as Achieve Speed X (with a 

specific speed parameter value) or Maintain Atti-

tude Y.  These would then be HPTs for that appli-

cation.  For another application, these low level 

tasks may be unnecessary and the HPTs might, in-

stead, be at the level of Move to Position.  In either 

case, in order to actually effect movement behavior, 

the automation would need to reason beyond even 

speed and attitude settings to still lower level tasks 

such as Set Flaps, Set Trim  Tabs, Adjust Fuel In-

jectors, etc.  These are the sorts of tasks that will, 

typically, be at the APT level.  Generally, HPTs 

will exist higher in the hierarchy than APTs but the 

two levels may be identical for some applications.  

Task Model States 

In order to support delegation reasoning, the task 

model used by a delegation system must be capable 

of existing in several different states.  Before any 

mission planning or human delegation has been 

done, the task model exists in a completely unins-

tantiated state.  We call this an General Task Model 

(GTM).  This corresponds loosely to the knowledge 

a pilot might have before coming into the briefing 

room.  S/he knows a great deal about what consti-

tutes a Ground Attack task—which subtasks it can 

entail and in what orders, what subtasks simply will 

not be a part of it (because, if they were used, the 

mission would be called something else), which 

equipment is likely to be used and which would be 

nonsensical, even how long it is likely to take—but 

s/he knows nothing about this particular mission 

including whether or not it will contain a Ground 

Attack task. 

As the mission commander and the pilots begin 

to discuss today‟s mission, they create a specific 

instance of the GTM.  The top-level node for a mis-

sion will always be the Perform Mission task 

shown in Figure 2, but the lower level tasks in-

tended for this particular mission will differ.  

Hence, delegation in the context of mission plan-

ning means developing a shared, specific instance 

of the GTM where specific tasks are highlighted as 

being intended for performance.  We call this in-

stance a Specified Task Instance Model (STIM).   

The process of specifying the GTM to produce a 

STIM involves two different types of actions: task 

selection and parameter specification.  Wherever 

choices of tasks occur in the GTM, specific options 

must be chosen.  For example, in Figure 2 above, a 

choice must be made as to which high level task 

will be the focus of the mission: CAP, Air Attack 

or Ground Attack.  Similarly, under Ingress, a 

choice must be made as to whether or not this 

STIM will include an assemble task or not.   

The second type of specifying action is to fill in 

parameter values for the tasks which are chosen.  

An uninstantiated task in the GTM is called a task 

template.  Task templates, in fact, define a range of 

behaviors that we have agreed to label with the 

name of the task.  For example, the Achieve Speed 

task described above is a general task template suit-

able for commanding any speed of which the air-

craft is capable.  Instantiating the generic template 

involves inputting a specific value (or range) for 

this instance of the task.  A particular set of para-

meter inputs is illustrated in Figure 2 for the Fly to 

Objective task— the objective‟s location.  Particu-

larly problematic parameter values generally in-

cluded for all tasks in the model are a start and end 

time (or duration).  While these are clearly impor-

tant things to know about a task, they are very diffi-

cult to stipulate a priori for many tasks, especially 

low level ones. 

The process of instantiating the GTM to make 

it an STIM proceeds both in time (sequentially 

through the time planned for the mission events) 

and in depth along the decomposition dimension of 

the task model.  A Fully-Specified Task Instance 

Model (Full STIM) is one in which all tasks have 

been decomposed and specified to the APT level.  

All task options have been selected and all specific 

parameter values have been chosen.  The only prac-

tical examples of Full STIMs are mission traces—

that is, histories of missions actually flown.  While 

it would be possible to create an Full STIM for a 

mission, it would be nearly useless as a planning or 

delegation artifact because it would have been 
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over-planned.  It would include tasks like Achieve 

Flap Setting with parameter values like Setting = 

3.17 degrees at Start Time = 13:42:27.16.  To plan 

to this level of detail much in advance is clearly 

useless because the need for this flap setting can 

only be determined fractions of a second before it is 

needed.  While it would be possible for a mission 

commander to make such a plan, it would be a 

waste of time because it would be invalidated long 

before the pilots left the ground.   

Thus, in delegation, we almost always work 

with Partially Specified Task Instance Models (Par-

tial STIMs).  These are STIMs in which only some 

of the choices have been made, leaving the rest as 

free variables to be decided later.  A Partial STIM 

is not a full plan in the artificial intelligence sense, 

but it may well be a full mission plan in the sense 

that a commander might give it to a pilot—leaving 

many decisions to be made during flight.  Any mis-

sion which is only decomposed to the HPT level 

will necessarily be a Partial STIM, but delegation 

can easily be done with Partial STIMs that are not 

decomposed all the way to HPTs.  From the figure 

above, the commander could stipulate that this mis-

sion (that is, the Partial STIM under development) 

will involve a Ground Attack task but not provide 

any further stipulation about whether or not the 

mission will include a Defense Suppression task, 

leaving that decision to his/her pilots. 

A special type of Partial STIM is an Executable 

STIM.  This is a Partial STIM that has been de-

fined, by human and/or machine, to a complete 

enough degree to make it executable by the control 

system.  Here, enough of the possible variation in 

what could constitute a mission has been declared 

for the system to be able to do the rest.  Just as the 

commander would not expect to walk into the brief-

ing room and tell his/her pilots only “okay, today I 

want you to fly a mission.  Go to it,” so a delega-

tion system needs at least a bit more framing infor-

mation. 

This is the goal of pre-mission planning—to get 

the intended STIM to a point where the automated 

planning and/or control software can execute a mis-

sion which fulfills it.  What is needed in order to 

make a Partial STIM an Executable STIM is, as 

might be expected, a function of the planning and 

control software.  If, say, a set of waypoints is re-

quired before a path planner can create a path for a 

UCAV, then the Partial STIM must stipulate tasks 

which include that information.  Sophisticated 

planning software, such as we have been develop-

ing for the interface described below, may well be 

capable of creating a executable plan even from 

very high level tasks in the hierarchy.  In practice, 

however, we frequently require certain parameters 

to be stipulated by the human even though planning 

software might be capable of deciding them on its 

own.  Target designation is one such example. 

Play Calling 

The shared vocabulary of tasks, their instantia-

tion parameters and the relationships between them, 

therefore, provides a means of communication be-

tween user and system, permitting delegation.  Bet-

ter yet, if (as in our playbook system), the vocabu-

lary can be used by a planning system to construct 

valid strings of sub-tasks to accomplish a parent 

task, then the architecture supports a highly flexible 

form of delegation interaction very similar to the 

relationship a mission commander can have with 

the well-trained pilots in his/her squadron.   

We refer to the delegation interaction between a 

human operator and automated software (whether 

onboard, offboard or a combination thereof) con-

trolling one or more UCAVs as play calling.  The 

operator who „calls plays‟ must interact directly 

with the task model, activating and combining tasks 

at various levels of decomposition.  This capability 

is provided via the Playbook UI, though the nature 

of that UI and the levels and combinations of plays 

available may differ from application to applica-

tion.  We also provide a planning system, the Mis-

sion Analysis Component depicted in Figure 1, that 

can understand the operator‟s tasking commands 

and either evaluate them for performability or, de-

velop an executable plan that obeys, yet fleshes 

them out.  

The operator must interact with the task model, 

both to understand possible actions and, more im-

portantly, to declare those tasks, goals, partial plans 

and constraints s/he wishes the system to pursue. 

Just as a quarterback or team captain can activate a 

complex behavior by referring to a simple play 

name or can spend additional time combining play 

elements or tweaking parameters, so operators are 

able to tune their interaction with automation via 

the Playbook UI to fit available time and contexts. 
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In practice, this means that the operator begins 

with a generic and uninstantiated version of the 

task model—the GTM described above.  The Play-

book UI must enable the two actions described 

above for turning a GTM into a Partial STIM:  

1. Play selection from among viable alter-

natives, and  

2. Play parameter instantiation. 

The set of selection and parameterization actions 

performed must result in an Executable STIM if the 

resulting plan is to be flown.   

The Role of the MAC 

In our approach, these tasks are not performed 

by the human commander alone.  Instead, the hu-

man interacts with the Mission Analysis Compo-

nent (MAC) illustrated in Figure 1.  The MAC is a 

planning system which understands and uses the 

task model to create feasible plans to the level of 

input required by the Event Handling software.  

Since it „speaks the same language‟ of tasks as the 

human, it is capable of taking directions from the 

user and planning within them.   

The MAC [6] operates over Partial STIMs pro-

vided by the operator to: (1) analyze the operator‟s 

plan for feasibility and goal achievement and (2) 

automatically generate candidate plan completions 

in keeping with the partial plan the human imposes.  

The MAC can critique [11] the operator-specified 

plan for feasibility and constraint violations and 

weed out candidate sub-plays that have been made 

infeasible by earlier decisions.  Finally, the MAC 

can complete a partial plan (that is, produce an Ex-

ecutable STIM) from whatever level the human 

chooses to hand over. The MAC will either incor-

porate and obey those portions of the plan the hu-

man specified, or report why an executable plan 

cannot be completed within constraints.  

The MAC uses a hierarchical task network plan-

ner [12] in conjunction with constraint propagation 

techniques [13, 14] to perform the functions de-

scribed above.  By using the same structures of the 

task model that the human uses, the MAC‟s  con-

cepts of available „plays‟ necessarily mirror those 

of the user.  In turn, the MAC must manage the re-

sources, deadlines, etc., checking for feasibility and 

conflicts between alternative plan in-stances.  The 

MAC represents these limited quantities as con-

straints on and between individual plan operators 

that are maintained by a constraint management 

engine, but these plan operators are sequenced and 

composed in conjunction with a human operator.   

As the human constructs a plan, the MAC conti-

nuously determines the feasibility of the plan.  

„Feasibility‟ is the projected plan‟s ability to 

achieve the declared goal state (the top level task) 

within resource limitations.  When asked to check 

for feasibility or complete a plan, the MAC fleshes 

out the non-APT tasks in the plan by asserting one 

or more subtask methods that can fulfill the parent 

goal.  When critiquing, the MAC provides feedback 

on the feasibility of the currently specified plan.  

The MAC can aid decisions by having feasible 

plays at the next decomposition level be presented 

and infeasible ones eliminated or „grayed out,‟ if 

desired. Alternatively, when in plan completion 

mode, the MAC can select its best completion ac-

cording to resource usage criteria. The UI then dis-

plays the planning decisions to the user, who can 

retract choices, or make better-informed decisions 

from among the available, feasible plans.  

In combination, feasibility checking and plan 

expansion make it possible, but not required, for 

the MAC to generate effective plans with a mini-

mum of user involvement.  Continual feasibility 

analysis minimizes the effort expended on dead-

ends while encouraging the user to specify the mis-

sion critical details as early as possible.  Once these 

are stipulated, the development of the plan can be 

left entirely to the MAC with the assurance that it 

will produce a plan that is both feasible within its 

constraint knowledge and in keeping with the oper-

ator‟s stipulations.  If time permits (or lack of trust 

demands), the user may provide increasingly de-

tailed instructions by selecting among available 

plan alternatives, down to the HPT level. 

The Playbook UI 

The user‟s interaction with the task model and 

the MAC is via a user interface (UI).  Some re-

quirements for the Playbook UI include: (1) the set 

of tasks (e.g., maneuvers, procedures, etc.) 

represented must be those any well-trained operator 

should know, (2) the general task templates can be 

composed and instantiated to create many specific 

mission plans, (3) the operator may select tasks at 

various hierarchical levels, leaving the lower levels 

to be composed by the MAC, and (4) operators may 

either require or prohibit the use of specific tasks or 

of specific resources for a task.   



Miller, Christopher A., Funk, Harry B., Dorneich, Michael C., Whitlow, Stephen, (2002). “A Playbook Interface for Mixed Initiative Control of Multiple 

Unmanned Vehicle Teams,” Proceedings of the 21st Annual Meeting of the Digital Avionics Systems Conference, Irvine CA, 27-31 October 2002. 

 9 

One of the strengths of using the shared task 

model as an infrastructure is that it enables a wide 

diversity of UIs—each customized for their context 

of use.  Figure 3 illustrates some potential usage 

alternatives and describes the level(s) of the Task 

Network they would likely interact with.   

For example, a commander responsible for a 

large number of assets (typically, one of higher 

rank—say, Lt. Col. and above) might be con-

strained to delegate only at the higher levels of the 

network and to leave those assets more autonomy 

to develop their plans at the lower, executable lay-

ers of the network.  By contrast, a lower level 

commander (say, captain or below), would likely 

want to very carefully task assets and review even 

the lowest levels of the plans they create.   

Both of those examples presume that delegation 

and tasking is done a priori, during a mission plan-

ning phase; but the task network also supports very 

dynamic, in flight delegation through play calling.  

Here, plays are labels associated with intermediate-

level tasks in the network.  The label references a 

constrained range of variance for the tasks beneath 

it.  By „calling the play‟ (that is, activating or refe-

rencing the label), the human authorizes the auto-

mation to perform any variation of the sub-tasks 

which fall under that heading.  For example, a hu-

man pilot in flight might command an unmanned 

wingman to “Reconnoiter” with a specific area as a 

required parameter value.  While this is a very 

speedy delegation command for, potentially, a very 

complex behavior, it would leave the UCAV with 

the authority to take any path or speed it deemed 

appropriate to perform that action.  The tradeoff 

would involve improved speed of delegation with 

decreased sensitivity in what can be commanded.  

Again, similar to play calling on a basketball court, 

vs. play calling during a time out on the side lines 

vs. play development back in the locker room be-

tween games (an activity that may require special 

tools from a UI).   

Some generally useful attributes of a delegation 

system‟s UI are described below.  In the following 

section, we describe one Playbook prototype we 

have developed for ground-based planning of 

UCAV missions. 

First, a delegation system UI must include some 

ability to access and command pre-defined tasks 

from a library, usually at various hierarchical le-

vels.  Second, most applications will benefit from 

more elaborate (and sensitive) communication than 

simply accessing a pre-defined task.  This can be 

provided minimally by allowing the operator to in-

stantiate the parameters of a task.  More elaborate-

ly, plays/tasks may need to be composed into long-

er sequences (e.g., missions).  A mission plan com-

position workspace and tool separate from a „play 

calling‟ tool will help in these cases.  Third, many 

domains will require creating new tasks or plays, 

either from scratch or by storing the results of earli-

er composition.  A different tool, or mode, should 

support this type of interaction.  Fourth, most do-

mains will need to visualize the performance and 

outcome of commanded plays.  Normal automation 

interfaces may provide these in a raw form, but re-

ferencing performance against the intended plays 

should improve user understanding.  Finally, the UI 

must support interaction with the MAC via issuing 

partial tasking instructions for completion, receiv-

ing critiques, and previewing and accepting or mod-

ifying MAC-generated plans.   

Interacting directly with an explicit task model 

(as illustrated below) meets most of these require-

ments, but we have found that it helps to make the 

UI multi-modal.  Visualization of the task model 

shows causal and sequential relationships, it does 

not do a good job of conveying the particular assets 

involved in each task, temporal duration of events, 

geographical location and progression of events and 

objects, etc.  Furthermore, as Oviatt [15] has found, 

interaction with a domain-specific visualization 

such as a map in the context of a known task can be 

a very efficient method of specifying and visualiz-

ing task parameters. 

Novel Play Creation

High Level Planning and Control

Low Level Planning 

and Control

„In-Flight‟ Control

Novel Play Creation

High Level Planning and Control

Low Level Planning 

and Control

„In-Flight‟ Control

Figure 3.  Different uses of the task model. 
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Usage Scenario 

The following scenario illustrates how a user 

might interact with the delegation prototype we 

have developed to plan a UCAV mission. Building 

on prior Honeywell control algorithms and simula-

tion work supporting scenarios of multiple uninha-

bited F-16s, we developed a delegation interface to 

enable a human leader to lay out a mission plan.  

This interface will support the stipulation of full 

and partial plans and constraints for the UCAVs 

either separately or in conjunction. To date, we 

have concentrated on a ground-based tasking inter-

face due to its lighter demands on user, simulation 

and interface design. However, we believe that 

suitable interface modifications will suit this ap-

proach to in-flight tasking as well. 

Figure 4 shows the five primary regions of the 

prototype Playbook UI.  The upper half of the 

screen is a Mission Composition Space that shows 

the Partial STIM composed thus far.  The lower left 

corner of the interface is an Available Resource 

Space, currently presenting the set of aircraft avail-

able for use.  The lower right corner contains an 

interactive Terrain Map of the area of interest, used 

to facilitate interactions with significant geographic 

information content.   The space between these two 

lower windows (empty at startup) is a Resource in 

Use Space—once resources (e.g., UCAVs, muni-

tions, etc.) are selected for use, they will be moved 

to this workspace, where they can be interacted 

with in more detail.  Finally, the lower set of con-

trol buttons is always present for interaction with 

the system.  This includes options such as “Finish 

Plan” for handing the partial plan off to the MAC 

for completion and/or review and “Show Schedule” 

for obtaining a Gantt chart timeline of the activities 

planned for each actor, etc. 

At startup, the Mission Composition Space 

presents the three top-level plays (or „mission 

types‟) the system currently knows about: currently, 

Interdiction, Airfield Denial, and Suppress Enemy 

Air Defenses (SEAD).  The mission leader would 

interact with the playbook to, first, declare that the 

overall mission task for the day was, say, “Airfield 

Denial.”  In principle, the user could define a new 

top-level play either by reference to existing task 

structures or completely from scratch, but this ca-

pability has not been implemented yet.   

Clicking on “Air-

field Denial” produces 

a pop-up menu with 

options for the user to 

tell the MAC to “Plan 

this Task” (that is, 

develop a plan to ac-

complish it) or indi-

cate that the user will 

“Choose airfield deni-

al” as a task that s/he 

will flesh out further.  

The pop-up menu also 

contains a context-

sensitive list of op-

tional subtasks that 

the operator can 

choose to include un-

der this task.  This list 

is generated by the 

MAC with reference 

to the existing task 

structures in the task 

model, filtered for Figure 4. Prototype Playbook Interface for UCAV Mission Planning. 
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current feasibility.   

At this point, having been told only that the 

task for the day is “Airfield Denial,” a team of 

trained pilots would have a very good general pic-

ture of the mission they would fly.  Similarly, the 

delegation system (via the Shared Task Model) 

knows that a typical airfield denial plan consists of 

ingress, attack and egress phases and that it may 

also contain a suppress air defense task before or in 

parallel with the attack task.  But just as a leader 

instructing a human flight team could not leave the 

delegation instructions at a simple „Let‟s do an Air-

field Denial mission today,‟ so the operator is re-

quired to provide more information.  Here, the hu-

man must provide four additional items: a target, a 

homebase, a staging and a rendezvous point. Most 

of these activities are geographical in nature and 

users typically find it easier to perform them with 

reference to a terrain map.  Hence, by selecting any 

of them from the pop up menu, the user enables 

direct interaction with the Terrain Map to designate 

an appropriate point.  Since the Playbook knows 

what task and parameter the point is meant to indi-

cate, appropriate semantics are preserved between 

user and system. As for all plans, the specific air-

craft to be used may be selected by the user or left 

to the MAC. If the user wishes to make the selec-

tion, s/he views available aircraft in the Available 

Resource Space and chooses them by clicking and 

moving them to the Resources in Use Area.   

The mission leader working with a team of 

human pilots could, if time, mission complexity or 

degree of trust made it desirable, hand the mission 

planning task off to the team members at this point.  

The playbook operator can do this as well, handing 

the task to the MAC via the “Finish Plan” button.  

The leader might wish, however, to provide sub-

stantially more detailed delegation instructions.  

S/he can do this by progressively interacting with 

the UI to provide deeper layers of task selection, or 

to impose constraints or stipulations on the re-

sources to be used, way-points to be flown, etc.   

For example, after the user chooses „Airfield 

Denial‟ the system knows, via the Shared Task 

Model, that this task must include an Ingress sub-

task (as illustrated in Figure 4).  To provide de-

tailed instructions about how to perform the Ingress 

task, the user must choose it, producing a “generic” 

Ingress task template from the GTM.  This is not a 

default method of doing “Ingress” but a generic, 

uninstantiated template—corresponding to what a 

human expert knows about what constitutes an In-

gress task and how it can or should be performed.  

A trained pilot knows that Ingress can be done ei-

ther in formation or in dispersed mode and, in ei-

ther case, must involve a “Take Off” subtask fol-

lowed by one or more “Fly to Location” subtasks.  

Similarly, the playbook user can select from availa-

ble options (e.g., formation vs. dispersed Ingress, 

altitude constraints on takeoff, etc.) on context-

sensitive, MAC-generated menus appropriate to 

each level of decomposition of the task model.  

The user can continue to specify and instan-

tiate tasks down to the HPT level.  In practice, in 

order to preserve control stability, it may frequently 

be the case that the HPT level is not synonymous 

with the APT level where the sub-tasks are beha-

viors the control algorithms (see Figure 1) in our 

simulator can be relied upon to execute in flight. 

The MAC and the Event Handling component are, 

collectively, responsible for driving the plan to the 

APT level and creating an Executable STIM.   

In practice, however, users will frequently be 

willing to stop planning before reaching even the 

HPT level.  This may be because the user trusts the 

system to be able to develop an acceptable plan, or 

because the current situation doesn‟t require a par-

ticularly sophisticated or sensitive plan, or because 

s/he does not have time to develop a plan to the 

granularity of the HPTs—a case that is of particular 

interest in trying to enable a single commander to 

control and task multiple UCAVs.  Our approach 

supports this capability by allowing, at any point 

after the initial selection of the top level mission 

task and its required parameters, the tasker to hand 

the partly developed plan over to the MAC for 

completion and/or review.   In extreme cases, a via-

ble “Airfield Denial” plan could be created in our 

prototype with as few as five selections and more 

sophisticated planning capabilities could readily 

reduce this number further.  If the MAC is incapa-

ble of developing a viable plan within the con-

straints imposed, (e.g., if the user has stipulated 

distant targets that exceed aircraft fuel supplies) it 

will inform the user of these problems. 
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Conclusions and Future Work 

We are currently at work developing Playbook 

concepts to support ground-based human mission 

planning and control of multiple UCAVs for the 

DARPA MICA project.  This work is placing em-

phasis on more active monitoring and control of 

UCAVs while they execute a pre-planned mission 

plan than illustrated in the earlier prototype de-

scribed herein.  Similarly, we are exploring appro-

priate levels of depth for both APTs and HPTs, and 

for defining useful collections of tasks which can 

be called via simple labels as plays.   

We are also engaged in research on the use of 

delegation approaches to in-flight control of 

UCAVs and of one‟s own aircraft.  This work de-

mands not only consideration of novel user inter-

face concepts but, equally importantly, of control 

stability issues in delegating tasks at various levels 

from human to automation or vice versa.   

In future work, we are interested in validating 

improvements provided by delegation systems ei-

ther in terms of overall system performance, or in 

terms of human situation awareness, engagement, 

etc., or both.  The literature gives us every reason to 

believe that such benefits should accrue [5], but we 

have yet to develop a sufficiently rich human-in-

the-loop simulation in order to be able to test them. 
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