Dorneich, M.C. & Jones, P.M. (1998). "The Apprenticeship Learning Object Toolkit: A Generalized Architecture for a Family of
Computer Tutoring Systems”, 1998 IEEE International Conference on Systems, Man, and Cybernetics. San Diego CA, October 11-14.

The Apprenticeship Learning Object Toolkit: A Generalized
Architecture for a Family of Computer Tutoring Systems

Michael C. Dorneich
Patricia M. Jones

Department of Mechanical and Industrial Engineering
University of Illinois at Urbana — Champaign
1206 W. Green St.; Urbana, IL 61801

ABSTRACT

The emergence of computer technology has had profound
implications for instruction. Recent.efforts in the field have
shifted the focus from knowledge~as—a~product to learning—
as—a-process. Computer-supported collaborative learning
(CSCL) focuses on learning as a collaborative activity that
is situated in its environment. This paper describes the Ap-
prenticeship Learning Object Toolkit (ALOT), 4 generalized
architecture, that forms the basis of a family of computer tu-
toring systems. The system, based on previous work[2]-{6],
utilizes the apprenticeship model of learning to create a
learning environment for the study of operational procedures
of experiments in the physical sciences. Examples include
nuclear magnetic resonance (NMR) spectroscopy or x-ray
diffractometry (XRD). The development of a learning envi-
ronment is driven by the goal of linking theoretical knowl-
edge with practical operational experience. Active, explor-
atory, apprentice-style learning is supported via modes of
operation within the system. The student can flexibly choose
to "observe the expert” perform and explain operational s-
teps, or "act as an apprentice” and carry out the steps autono-
mously. The student can switch between these modes at their
discretion, giving the student control of the level of interven-
tion by the system. In addition, the student can explore and
reflect on an "information space” of object designations, pro-
cedures, and related concepts. Additionally, the BAUEN
(Basic AUthoring ENvironment) is introduced. BAUEN is a
graphical user interface system that is intended to help the
designer author a computer tutorial system with maximum
efficiency, focusing the developer’s efforts on domain con-
tent, and not on system implementation. The tutoring sys-
tems created via this architecture are part of on-going work
in the development of a design framework for a learning
collaboratory (LUCIDIFY: Learning Collaboratory Design
Framework) and the instantiation of that framework in a
testbed system (CLEOS: Collaboratory Learning Environ-
ment for Operational Systems){3].

L. INTRODUCTION

In an educational setting, there are several reasons to support
distributed instruction. First and foremost, the issue of al-
lowing easier and more widely distributed access to instruc-
tional facilities is seen as a desirable way to increase the
learning opportunities of a wide range of students. As finan-

0-7803-4778-1/98 $10.00 © 1998 IEEE

cial resources become scarce, providing access to education-
al resources in a cheaper and more direct way becomes im-
portant to maintaining a high level of education. In the case
of a learning community that has as its members not only stu-
dents and teachers, but practitioners and researchers, in-
creases in the interaction possibilities of all parties is poten-
tially of mutual benefit.

In the physical and engineering sciences, students experi-
ence both classroom and laboratory instruction. Typically,
classroom instruction focuses on theoretical principles,
while laboratory instruction focuses on practical tasks such
as ranning experiments using equipment. It is important that
the links between theory and practice are strong and clearly
articulated.

‘There are two parts to any instructional intervention: what is
meant to be learned, and how it is taught, In this work, we are
focused on teaching the theory and practice of a physical sci-
ence experiment, We wish to create a distributed, Web-based
tutorial system as a means to accomplishing this goal, and
employ the teaching pedagogy of apprenticeship learning.
Arelated family of experimental procedures can be taught in
this way. Instead of starting from scratch for every tutorial
system of this type, it is instructive to see if there are any
common elements to such a family of systems. This notion
of re-using the structural (pedagogical) aspects of an appren-
ticeship-learning based tutorial system forms the motivation
of the creation of the Apprenticeship Learning Object Tool-
kit (ALOT). The ALOT system is a a library of Java objects
from which one can build Java-based tutoring systems,
where this library forms the basis of a generalized architec-

“tare for a family of computer tutoring systems,

The ALOT architecture’s learning methodology is based on
the theories of cognitive apprenticeship[1][7] and legitimate
Peripheral participation{8]. These theories emphasize learn-
ing-by-doing in the context of the activity (i.e. locating cog-
nitive activity in context{11]) where the novice learner inter-
acts with an expert.

A guiding principle in the design of a virtual environment to
educate learners is to provide resources for the learners to en-
gage in meaningful activity in a domain of authentic prac-
tice. Tutoring systems of virtual instrumentation provide a
meaningful context in which to learn operational procedures.

938

dorneich
Typewritten Text
Dorneich, M.C. & Jones, P.M. (1998). "The Apprenticeship Learning Object Toolkit: A Generalized Architecture for a Family of Computer Tutoring Systems", 1998 IEEE International Conference on Systems, Man, and Cybernetics. San Diego CA, October 11-14.

dorneich
Typewritten Text

dorneich
Typewritten Text

dorneich
Typewritten Text

dorneich
Typewritten Text

dorneich
Typewritten Text

dorneich
Typewritten Text

dorneich
Typewritten Text

Theory and practice are linked by situating the practice of
procedures within a system that demonstrates the theory un-
derlying the procedures. Multiple resources for exploratory
learning and interaction with experts (be it a “virtual expert”
embodied in the system, or a human expert on-line) are a cor-
nerstone of a system that attempis to support all levels of ex-
pertise in the user.

II. SITUATED COMPUTER-SUPPORTED COL-
LABORATIVE LEARNING

Simated action theory emphasizes the local management of
activity as mediated by relevant environmental cues[13}{9].
The implications for learning are that appropriate actions are
generated from a recognition of appropriate opportunities
given the context. Apprenticeship leaming is a means
through which situated learning can occur, where apprentic-
es are active participants in an activity, usually with an ex-
pert. Apprentices’ process of learning moves from peripheral
to full participation in the activities of a community of prac-
tice, as the expert “'fades” from engagement of the activity.
The support for active contextualized leamning[10] lends it-
self well for the teaching of procedural knowledge and opera-
tional skills. Vygotskian theories of learning stress that indi-
viduals gain skills by engaging in tasks with an “adult or
more capable peer”[14). In general, four overlapping stages
of pedagogy can be identified{1]: (1) Modeling, through the
observation of expert performances, (2) Coaching, with ex-
pert guidance and help, (3) Fading, where expert assistance
is gradvally withdrawn, and (4) Reflecting, student seif-
monitoring and reflecting upon past performances.

Computer—Supported Collaborative Learning (CSCL) ar-
gues that learning is generally seen as a collaborative activity
that is situated in its environment. Collaboration promotes
convergence of a shared relational meaning[12]. Knowledge
is constructed incrementally through a process of mutual
contributions via interaction. For a more in-depth review of
simated learning and the use of computer technology in-
education, the reader is referred to the Technical Report asso-
ciated with this project{5].

II. ALOT: THE APPRENTICESHIP LEARNING OB-
JECT TOOLKIT

“This paper describes a generalized architecture, derived
from work done on the UIUC Virtual Spectrometer
(UTUCO-VS){4], that forms the basis of a family of computer
tutoring systems. That family includes systems based on an
apprenticeship learning pedagogy and is well suited for the
teaching of the theory and practice behind physical science
experiments. The Apprenticeship Learning Object Toolkit
(ALOT) is a a set of libraries of Java objects from which one
can build Java-based tutoring systems. The system utilizes
the apprenticeship model of learning to create a learning en-
vironment for the study of operational procedures of experi-

ments in the physical sciences. Exampies include nuclear .
magnetic resonance (NMR) spectroscopy or x—~ray diffracto-
metry (XRD),

liL1 Design Goals of ALOT

The design goals of the ALOT object library is two-fold.
First, we wish to capture the conceptual “objects” that com-
prise the pedagogical structure of a apprenticeship learning
based tutorial system. Secondly, we wish 1o create a set of
Java objects that can be re~used in creating multiple tutorial
systems. This will require that the ALOT library provide
Java classes that can be readily picked up and used by a sys-
tem designer. The ALOT library is written in Java, as our pur-
pose is 1o write systems that can be deployed onto the Web,
and may form the basis of a shared simulation environment,

Using the experience of the design and construction of
UTUC-VS as a guide, the first order of business is to identify
the pedagogical structure of the ALOT libraries.

The ALOT Java library is a collection of Java objects. These
objects can be used (re-used) to build a tutoring software pro-
gram that encapsulate the apprenticeship learning pedagogy
in its structure and approach to teaching operational proce-
dures. The structure and pedagogy of such a tutoring system
is exemplified in the LEMRS and UTUC-VS systems. The
purpose of the ALOT library is to create a “generic” set of
Java objects to allow a developer to quickly reuse the struc-
ture of the system to implement a different tutoring system.
The goal then is to “abstract ont” the components that pro-
vide the structure of UIUC-VS, and encapsulate it in Java li-
braries that can be re-used by a designer in constructing a
new tutoring system. The ALOT Java Library allow a design-
er 1o quickly add the content and particular domain informa-
tion to build a tutoring system,

The challenge in developing such a “generic” library is to
provide enough structure to allow for the rapid development
of a new wtoring system, without providing too much struc-
ture that constrains the designer’s creativity and flexibility.
If the object definitions are too inflexible, or poorly de-
signed, then they will not be used. Towards achieving the
right balance between structure and flexibility, we have at-
tempted to create a set of objects that can be used in more
than one way. More will be said on this later. '

.2 ALOT Library Structure

The ALOT library is comprised of several packages, where
each package contains a set of Java objects. The packages
that make up the ALOT system are: 1) alot.lang, containing
objects that represent the pedagogical concepts of an appren-
ticeship learning style ttorial system, 2) alot.gui, containing
definitions and standard graphical user interface (GUD com-
ponents to construct the tutorial system, and 3) alot, util, con-
taining classes that support the functioning of the other two
libraries.

939

The alot.lang package contains classes pertaining to peda-
gogical concepts and data organization. The alot.gui pack-
age is subdivided into three sub-packages. The alot.gui.bas-
ic contains some basic graphical widgets. The
alot.gui.definition package contains interfaces! that define
the methods the standard graphical panels should have to
work with the rest of the classes. The alot.gui.standard
package contains default graphical components that imple-
ment the definitions from the alot.gui.definition interfaces,
which together comprise a partially completed graphical in-
terface. The designer can use the standard component
classes, or use their own custom classes. The alot.util pack-
age contains utility classes used by the other alot packages.
Included in this listing are an examples of the packages writ-
ten for a specific ttorial application (e.g.. The Virual
X~Ray Diffractometer).

1.3 The Pedagogical Objects of an Apprentices
Learning Tutorial System

The structure of the semantic content of the tutorial system
is expressed in the classes found in the alot.lang package.
The key concepts and their relation to one another is dis-
cussed.

* Lesson. An experiment can usually be broken down into sev-
eral general steps, each of which form one lesson. A lesson
itself may have several specific procedural steps for it’s suc-
cessful completion. Also, in the context of a tutorial system,
each lesson usually has a graphlcal component associated
with it.

Lesson Plan. A series of lessons can be grouped into a lesson
plan. One lesson plan describes all the lessons that comprise
a teaching scenario. It is possible to have multiple lesson
plans in the same tutorial system. One lesson plan, for
instance, may contain all the lessons for an experiment,
where another lesson plan may contain only a subset of the
defined lessons. Thus lessons can be used in multiple lesson
plans in'an attempt o provide a varied simulation environ-
ment to teach the concepts and procedures behind an experi-

© ment.

Procedural Step. Within a lesson, there may be various steps
required for its successful completion. Each step has require-
ments for its completion. Successfully completing all the
procedural steps within a lesson means that you have suc-
cessfully completed that lesson.

Demonstration Step. In the “Show Me” or “Observe Ex-
pert” mode, the system takes control of the Lesson Window
‘and guides the user through a series of pre-planned demon-
stration steps. These steps are designed to teach not only the

1. Aninterface is a Java class that declares abstract
methods, Any Java class “implementing” this interface is
thus required to implement the methods defined in the
interface. '

actions necessary to successfully complete the lesson, but to
explicate the theory behind those actions,

Domain Concept. In the course of interacting with the sys-
tem, the user has the opportunity to explore relevant con-
cepts. These domain concepts, and their elaborations, are
presented to the user in a context-relevant information hier-
archy.

“What If” Question. In addition to teaching the user how to
successfully perform the procedural steps within a lesson, the
system also provides some answers to “what if” questions.
These questions are meant to capture the most common er-
rors or misconceptions, and to allow the user to discover the
ramifications of certain (not always correct) actions.

Learning Goals. Each lesson pian has associated with it a se-
ries of learning goals. It is often-helpful to the student to be

. able to view these learning goals at the outset of a tutorial.

1.4 The Functional Objects of an Apprentlces
Learning Tutorial System

Having decided to create a Web-based system utilizing Java,
the next decision is the conceptual layout of the program.
The domain of the system is split into three primary pieces:
(1) main lessons, (2) context-dependent information index
and (3) expert knowledge. Each piece is encapsulated by a
window (the Lesson Window, the Information Window, and
the Expert Window, respectively). Additionally, the Menu
Window serves to inform the student of where in the lesson
plan they reside (inside the Lesson Window) currently. The
Information Window is the area that responds to student re-
quests for more information and feedback to their progress
within a specific portion of a lesson. The information in-
cludes context-dependent checklists of procedures and also
a hierarchy of information and concepts that the student can
explore. Finally, the Expert Window, located at the bottom
of the screen, displays the expert knowledge of the system in
the form of answers to queries, what-if scenarios, and dem-
onstration tatorials. This information is conveyed in text and
voice form. Figure 1 illustrates a candidate structure of our
system.

Menu
Window Lesson Window

Info .
Window ‘
| Show Me I ! More Info | [LetMe Tg] L_Done |

Expert Window

Figure 1. A candidate layout structure of an apprentice-
ship learning based tutorial system.

940

There are two modes in our architecture: 1) “Observe Ex-
pert” and 2) “Act as an Apprentice”.

Observe Expert. Upon selecting this mode, the focus of
control shifts to the Expert Window. Using both voice and
text, the student is taken on a step—by-step tour of the entire
experimental procedure. The student is able to disable the
audio portion of the tutorial. The tutorial starts with a state-
ment of the goals of the experiment, and takes the student
through the operational procedures. The student simply
keeps pressing the “Next Step” button to continue to the next
step of the tutorial after reading (or listening to) the descrip-
tion of the present step. The Lesson Window is automatically
updated throughout the demonstration. In fact, all the con-
trols on the Lesson Window are disabled as the student pro-
ceeds through the demonstration. In this mode, the student
is there to observe as the Expert (i.e. system) manipulates the
experiment. The student may stop the demonstration at any
time, and attempt to work though the experiment him— or
her—self, via the Act as an Apprentice mode.

Actas an Apprentice. Selection of the Act as an Apprentice
mode means that the stiudent is ready to attempt to try to do
the experiment him or herself. The student is presented with
the menu of lessons from the current lesson plan. As the stu-
dent enters a specific lesson page, the name of that page in
the Menu Window is highlighted. As the student completes
a portion of the lesson, the corresponding box in the Menu
Window is checked. Since the Menu Window and its con-
tents are always visible, the student always knows where in
the lesson they are (via the highlighted label) and the status
of their progress through the lesson (via the checked boxes).

Learning Goals. This non-required portion of the lesson ex-
plicitly states the learning goals of the lessons to follow.

Show Me. If the student presses an available “Show Me”
button they will start the demonstration mode for the present
lesson of the experiment. The Expert Window takes over
control of the interface again, and the student is lead through
a step-by-step tutorial of the procedures necessary to suc-
cessfully complete this lesson of the experiment. The student
can stop the demonstration at any time, and control of the
Lesson Window passes back to the student, with the settings
prior to the invocation of the Show Me demonstration mode
restored.

Let Me Try. Upon pressing this button, the student is pre-
sented, in the Information Window, with a step-by-step
checklist of the procedure for completing this portion of the
lesson. As each step is successfully completed, the corre-
sponding box is checked. The student can press Reset Lesson
which will reset this portion of the lesson to its starting val-
ues.

More Info. The student can request more information on the
present portion of the lesson by pressing the “More Info” but-
ton. A selection list of topics appears in the Information Win-
dow. After selecting a subject, the student presses the “What

is it and Why is it Important?” button, and a textual answer
appears in the Expert Window. Additionally, the student can
explore what if scenarios by pressing the “What If...7” button
in the Information Window. A selection list of “what if” sce-
narios appears in the Expert Windows, and after selecting a
scenario the answer appears in the same window,

Throughout each portion of the lesson, the student always has
the ability to return to the Lesson Plan Menu, and so can in~
vestigate previous portions of the lesson that they have al-
ready successfully completed, as well as quitting the system
altogether.

li.5 Development Strategies and Issues

The development of the ALOT library is being driven from
two directions. In essence, the first task is to look at The
Virtual Spectrometer (UTUC-V8) and try to conceptualize
how the code would have been if there was to be a decoupling
of the basic pedagogical structure (as realized in the code)
from the domain-specific lessons that comprise the tutorial.
Conversely, the development of a second, new tutorial sys-
tem, the Virtual X-Ray Diffractometer (VXRD) provides a
design experience from the bottom up. The VXRD design
will be based on the ALOT Library. So as that design takes
shape, it will helpfully be clear what parts of the system code
belong in the ALOT library, and what parts of the code are
domain-specific to VXRD. By attempting to develop ALOT
from both the perspective of the re-design of UTUC-VS and
the perspective of the design of VXRD, we hope to create a
robust set of generic Java objects that will aid in the design
of any apprenticeship-style tutoring system.

The alot.gui package is of particular note because here is
where decisions must be made as to how much structure the
ALOT library will provide (or impose?). The final decision
is twofold. One one hand, a partially completed graphical in-
terface is provided, one that has as much structure as could
be generated withont knowledge of the actual lessons to be
used in the system. This “standard interface” is intended to
be as easy to pick up and use as possible. Easy-to-use meth-
ods to add “content” to the system are provided. On the other
hand, however, the “standard interface” is written in such a
way that if a system designer wanted to start from scratch and
write their own interface from the bottom up, then they
would still find objects that they counld use within the alot.gui
library. In addition, a designer using these libraries will be
able to “swap out” and the standard component for a custom
one of their own design. Each default class implements an
interface, which requires certain methods to be associated
with that class. A designer writing their own custom graphi-
cal component must also implement this interface, and so
they will know specifically which methods their custom
class must have in order to work with the other default clagses
within the system. In this way, the designer has the freedom
to pick up an use only those standard GUI components as
they so choose.

The default interface already has the structure to support two
modes of operation (Observe Expert and Act as an Appren-

941

tice), access to context-dependent declarative and theoreti-
cal knowledge (More Info), and access to procedural knowl-
edge (Let Me Try).

Information to “fill in” the domain content are encapsulated
in alot.lang objects and the tutorial GUI object representing
the lessons and instrumentation, which reside in the lesson
panel, would be part of the specific application package. So
in effect, an application is built that makes use of a library of
objects that, at its maximum re-use, would provide the con-
ceptual and GUI underpinnings of a tutorial system.

The designer creates two classes of the type SemanticSpe-
cification and GUISpecification, where they instantiate the
semantic and GUI classes, respectively, necessary to popu-
late the system. The semantic information consists of
alot.lang objects like LessonPlan(s), Lesson(s), Domain-
Concepts(s), etc. The GUISpecification class creates all the
GUI components that constitute the tutorial interface. These
GUI components can be those found in alot.gui.standard, or
can be created by the designer.

The design of the ALOT library is based on the new window-
ing toolkit offered by Sun, Swing. Swing will become part of
the core Java language upon release of JDK 1.2, expected
Fall, 1998. The Swing toolkit is a powerful graphics package
that is written in 100% Java (no native peers) and so the de-
veloper had much more control over the look and feel of the
application. In addition, Swing is fully Beans-compliant,
This will enable all the Java objects in the alot.gui directory
to be cast all as Java Beans. A Java Bean can be directly
plugged into a graphical GUI-builder and this again will sup-
port rapid development of tutoring systems, a goal men-
tioned above.

IV.BAUEN: A BASIC AUTHORING ENVIRON-
MENT

The ALOT Java library is intended to facilitate the design
and development of a family of tutorial systems. The difficult
part of the design of the tutorial system remains to the design-
er however. Studying the domain, understanding and decid-
ing on the methods of instruction, devising lesson plans and
demonstrations are all work that falls outside the scope of this
paper, but are vital to the success of a tutorial intervention.
However, once the semantic domain knowledge has been ac-
quired, demonstrations designed, relevant domain concepts
identified, etc. this information must be coded into the soft-
ware. In an attempt to facilitate this process, a “helper” ap-
plication has been designed. The BAUEN (Basic AUthoring
ENvironment) system is a graphical user interface system
that is intended to help the designer author a computer ttori-
al system with maximum efficiency.

The inputs to the BAUEN system are the semantic data and
a specification of which GUT components will be used (cus-
tom or standard). The output of the BAUEN system zre three

ready-to-compile class files, Using the BAUEN system, the
user inputs the information to define the contents of alot.lang
objects like LessonPlan(s), Lesson(s), DomainCon-
cepts(s), etc. BAUEN will output a [MyApp]Semantic-
Specification.java file that builds these objects. Likewise,
BAUEN allows the designer to select standard GUI compo-
nents, or input the class name of their own custom compo-
nents. The system then outputs a file of type [MyApp]GUIS-
pecification.java. These two files define the bulk of the
semantic domain and GUI component information for the
system. Once finished with BAUEN, the user can simply
compile its resulting output files to create a complete work-
ing tutorial system,

V. ON~GOING AND FUTURE WORK

The ALOT system will be expanded to incorporate mecha-
nisms to handle synchronous communications between
instances of the tutorial running simultaneously on different
machines. Initial trials using Java Remote Method invoca-
tion (RMI) have been successful. The ALOT architecture ef-
fort is part of a larger project whose goal is to develop a
framework and demonstration testbed for the design of a
learning collaboratory. The focus is on supporting effective
collaborative learning via system design. The Learning
Collaboratory Design Framework (LUCIDIFY) is a frame-
work for design that combines methods to structure domain
knowledge, represent navigational strategies, characterize
expertise, and support collaborative learning and work. The
Collaboratory Learning Environment for Operational Sys-
tems (CLEOS) will serve as a testbed for LUCIDIFY.,

"CLEOS is envisioned as a virtual learning environment

where students can collaboratively learn the theory and prac-
tice of operational systems in the context of doing projects
and experiments using simulated instrumentation. Project-
based learning will be supported via a project management
tool that helps instructors create and manage multiple su-
dent projects,

VL References

{11 A.Collins, J. S. Brown, and S. E. Newman, "Cogni-
tive Apprenticeship: Teaching the craft of reading,
writing, and arithmetic”, Cognition and Instruction:
Issues and Agendas, Resnik (ed.), Hillsdale, NJ: Erl-
baum, 1987. .

[2] Michael Dorneich and Patricia Jones, “Supporting
Apprenticeship Learning of NMR Spectroscopy
in a Collaborative Web—~Based Learning Environ-
ment”, Technical Report HCCPS ~97~01, The Hu-

- man Computer Cooperative Problem Solving Lab-
oratory, Department of Mechanical and Industrial
Engineering, University of Ilinois at Urbana—
Champaign, 1997.

[3] Michael Dorneich, “Towards a System Design
Framework for a Collaborative Learning Environ-

942

(6]

ul

ment of Operational Procedures”, Technical Re-
port HCCPS—97-03, The Human Computer Co-
operative Problem Solving Laboratory,
Department of Mechanical and Industrial Engi-
neering, University of Illinois at Urbana~Cham-
paign, 1997.

Michael C. Dorneich and Patricia M. Jones, ”The
Virtual Spectrometer: A Java~based Imple-
mentation of a Learning Environment”, 1997
IEEE International Conference on Systems, Man,
and Cybernetics, Orlando, Florida, October
1215, 1997.

Michael Dorneich, “The Apprenticeship Learning
Object Toolkit: A Generalized Architecture for a
Family of Computer Tutoring Systems”, Technical
Report HCCPS—97-04, The Human Computer
Cooperative Problem Solving Laboratory, De-
partment of Mechanical and Industrial Engineer-
ing, University of Illinois at Urbana-—Champaign,
December 1997.

Patricia M. Jones and Kenneth J. Schneider,
"Learning environment for Magnetic Resonance
Spectroscopy (LEMRS): Supporting Apprentice-
ship Learning in Operational Environments”,
Journal of Educational Multimedia and Hyperme-
dia, Vol 5, no. 2, pp. 151-177, 1996.

S. Lajoie and A. Lesgold, “Apprenticeship training
in the workplace: Computer—coached practice envi-

943

]

[10]

1]

[12]

[13]

[14]

ronment as a new form of apprenticeship”. In M. J.
Farr and J. Psotka (Eds.), Intelligent instruction by
computer: Theory and practice (15--36). New York:
Taylor and Francis, 1992,

Jean Lave and Etienne Wenger, Situated Learning:
Legitimate Peripheral Participation, Cambridge Uni-
versity Press, 1991,

Agre, P. E. and Chapman, D., "Pengi: An imple-
mentation of a theory of activity”, Proceedings of
AAAI-87, Los Altos, CA, 1987, pp. 196—201.

Hoppe, H. U., "Cognitive apprenticeship: The
emperor's new method? A polemical reaction to
the debate on situated cognition and cognitive ap-
prenticeship”, Joumal of Antificial Intelligence in
Education, vol.4 no. 1, 1993, pp. 4954,

Edwin Hutchins, Cognition in the Wild, MIT Press,
1995.

Jeremy Roschelle, "Learning by Collaborating; Con-
vergent Conceptual Change”, CSCL: Theory and
Practice of an Emerging Paradigm, Lawrence Erl-
baum Associates, New Jersey, pp. 209-247, 1996.

Suchman, Lucy, Plans and Situated Action: The
problem of Human —Machine Communication,
Cambridge University Press, 1987. :

Vygotsky, L., Mind and Society, Cambridge, MA:
Harvard University Press, 1978.

