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ABSTRACT 

Uncertainty in the manufacturing industry has been a research interest for many 

years. Deterministic and stochastic optimization methods have been proposed in the past. 

The objective of this thesis is to study the interaction of these models in a supply chain 

with a varying error in demand forecast. All the possible combinations of the 

optimization strategies in a two-echelon supply chain have been considered. Results 

indicate that the performance of the supply chain is driven by the choice of strategy of the 

supplier. Stochastic optimization is very efficient in lowering the operational costs and 

bull-whip effect in most cases. However, in cases where the trend in demand variation is 

smooth, use of deterministic strategy by both stakeholders is beneficial and it helps in 

lowering operational cost. Information sharing results in cost saving in most of the cases. 

It increases with increase in root mean squared error in demand forecast when the 

supplier uses deterministic strategy. 

.  
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CHAPTER 1.    INTRODUCTION 

Uncertainty is found in many real-life situations. In the context of manufacturing, 

demand is a major source of uncertainty. Transportation lead time, machine break down lead 

time are some other factors that affect manufacturing decision making as they have 

uncertainty. Decisions related to production and inventory can be made using deterministic 

and stochastic optimization models as discussed by (Behncke, Ehrhardt, & Lindemann, 

2013). 

Stochastic programming is a useful tool to mitigate uncertainty (Cunha, Raupp, & 

Oliveira, 2017). However, when stochastic and deterministic optimization approach are used 

in supply chain scheduling, their performance is similar (Sawik, 2017). Hence, it would be 

worth investigating the interaction of these models when they are used by the stake holders in 

a supply chain for production planning and inventory management. Uncertainty in a supply 

chain leads to bull-whip effect. Research on bull-whip effect in a supply chain under various 

information sharing setting has been done in the past (Ma, Wang, Che, Huang, & Xu, 2013) 

and it suggests that it is helpful to use the past demand / order data to forecast future demand. 

There are several ways of forecasting demand as discussed by (Syntetos, Babai, Boylan, 

Kolassa, & Nikolopoulos, 2016). However, this research studies the supply chain 

performance with respect to varying error magnitude in demand forecast of the downstream 

supplier. The upstream supplier relies on the past data to forecast the demand.  

This research considers a two-echelon supply chain with demand uncertainty and 

looks at the effect of optimization models on manufacturing decision making. Like (Rahdar, 

Wang, & Hu, 2018; Váncza, Egri, & Monostori, 2008), in this thesis, a rolling horizon is 

considered to build the optimization model and two possible optimization strategies are used. 
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As this is a two-echelon supply chain, all the combinations of strategies that are possible are 

studied with and without information sharing. In our study we consider that the only 

information shared is the possible future orders as determined by the decision-making model. 

We also try to understand how demand uncertainty propagates along the supply chain when 

the stake holders use various optimization models. 

In section 2 looks at the research that has been done and in section 3, the problem 

statement is defined. Section 4 describes the model formulation and the assumptions made 

in it. Then, a case study is presented in section 5 that was considered to understand the 

interaction of the optimization models in a two-echelon supply chain. The remainder of the 

thesis discusses the results and conclusion. 
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CHAPTER 2.    LITERATURE REVIEW 

Increasing competition and challenging market situations has led to research on the 

use of optimization techniques in manufacturing decision making as described by (Beamon, 

1998; Behncke et al., 2013). Apart from optimization methods, there are various other 

models such as economic (Christy & Grout, 1994)  and simulation models (Petrovic, 2001) 

which look at qualitative methods and the study of existing process characteristics to 

optimize the supply chain. (Mittal, 2016; Mittal & Krejci, 2018) use agent-based discrete-

event simulation modelling to study warehousing operations and improve its operational 

planning decisions. Furthermore, Monte Carlo simulation and stochastic algorithms (Jellouli 

& Chatelet, 2001) have also been used in research to optimize supply chain performance. 

(Lee, Kim, & Moon, 2002) describes a hybrid simulation-based approach that can be used in 

production distribution planning. Algorithms involving hybrid computational frame work to 

solve network design problem and inventory control problem using simulation have been 

proposed by (Ye & You, 2015). (Cunico & Vecchietti, 2015; Fu & Chen, 2017; Khalili-

Damghani & Ghasemi, 2016) use fuzzy programming models to deal with supply chain 

optimization. Some of the research is focused on specific industry like the lumber supply 

chain (Bajgiran, Zanjani, & Nourelfath, 2016). Similarly, (Mittal & Krejci, 2015) improve 

the logistics and operational efficiency of a regional food hub by proposing a hybrid 

simulation model of its inbound logistics. 

Uncertainty in demand and lead times have been addressed in the literature by using 

optimization methods. (Heydari, Mahmoodi, & Taleizadeh, 2016) considers stochastic lead 

times in the supply chain and propose an incentive scheme to reduce shortage in the supply 

chain. Similarly, demand uncertainty has been modelled (Nishi & Yoshida, 2016) in a 
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decentralized supply chain as a stochastic multi-period bi-level supply chain problem. This 

research considers demand uncertainty in a decentralized supply chain where the stake 

holders make decisions for themselves. However, both deterministic and stochastic 

optimization models are considered to study their interaction in this research. Demand and 

order quantity uncertainty is considered in production planning by constructing MILP 

problems and solving them by heuristics (Aouam, Geryl, Kumar, & Brahimi, 2018). In the 

current study, a constant batch size is considered so that the orders can be placed in multiples 

of the batch size. Multi-objective stochastic models studied by (Felfel, Ayadi, & Masmoudi, 

2016; Ma et al., 2013; Pasandideh, Niaki, & Asadi, 2015) considering demand uncertainty is 

also seen in the research. However, the existing literature does not consider the interactions 

of optimization models in a supply chain. Hence, the main objective of this research is to 

consider stochastic and deterministic optimization models in a two-echelon supply chain and 

study their interaction when they are used by the stake holders under demand uncertainty 

with and without information sharing. 

Bull-whip effect is caused by uncertainty in demand. Hence, forecasting is an 

important aspect and a focused research has been done in the past (Syntetos et al., 2016). 

(Sun & Ren, 2005) studied the impact of forecasting methods such as moving average, 

exponential smoothing, and minimum mean square error on the bull-whip effect in a two-

echelon supply chain. In the current research, three demand data sets are used to study the 

interaction of optimization models. Good sales strategy needs to be used to control bull-whip 

effect (Cao, Xiao, & Sun, 2017) and information sharing with regards to the placing of future 

order helps improve the supply chain performance (Thonemann, 2002). However, according 

to (Li, 2013), information sharing in a supply chain might always not be possible and studies 
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the optimization of supply chain under constrained information sharing. (Chenglin & Xinxin, 

2009) study a news vendor model characterized by short life cycle, stochastic demand and 

endogenous price. They conclude that information sharing might not be feasible when 

demand volatility is underestimated by the retailer and not by the manufacturer. Hence, we 

consider limited information sharing and vary the forecasting error magnitude in demand 

data. This is going to help in studying the behaviour of the models without focusing on the 

actual forecasting method. 

(Danloup, Allaoui, & Goncalves, 2013; Kumar & Pugazhendhi, 2012)  have studied 

coordination and information sharing in a supply chain. (Chan & Chan, 2005) use economic 

order quantity which is a deterministic model and a coordination method to mitigate demand 

uncertainty through contract mechanism. Demand uncertainty leads to shortage which 

implies low service level and hence, to improve the service level and lower the costs, the 

intentions and interactions of partners in a supply chain must be managed (Váncza et al., 

2008). To deal with stochastic demand, (AlDurgam, Adegbola, & Glock, 2017)  proposes the 

use of manufacturer's production rate as a decision variable and points out that coordination 

between the vendor and the manufacturer is necessary for this model to sustain. By 

considering seasonal demand in a multi-buyer single supplier situation, (Chang & Chou, 

2013) indicates that coordinated replenishment policy is beneficial when compared to 

independent ordering policy. Some of the authors discuss centralized optimization strategy 

which involves more information sharing than just demand forecast. In a three-layer supply 

chain joint economic lot sizing problem, (Abdelsalam & Elassal, 2014) suggests that 

centralized safety stock is better than decentralized policy. Flexibility delaying the 

production start is sometime beneficial (Shen, Lu, & Wu, 2009), however, it could be 
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difficult to manage and sustain. In a real-world scenario, it might not always be possible to 

achieve this level of coordination in a supply chain. Hence, considering minimal 

collaboration in this research, possible future orders is the only information that the stake 

holders in the supply chain share. 
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CHAPTER 3.    METHODOLOGY 

Problem statement, optimization model and a case study that will be considered to 

evaluate the performance of the models have been described in this section. As the 

manufacturer and the supplier can choose to use deterministic or stochastic optimization 

strategy, there are four possible combinations of strategies that will be looked at in this 

research. With regards to the demand data, three data sets with different trend lines will be 

considered to know which combination of strategy is better in all the three situations. Later, 

the effect of information sharing on the performance of the strategy combinations is also 

studied and the only information that is shared is the future orders. 

Problem Statement 

This research deals with a two-echelon supply chain as shown in Figure 1. The 

demand that the manufacturer has for his products is not known perfectly to him. In real life 

scenario there is always uncertainty in demand. When he forecasts his demand there could be 

variation in the actual demand and his forecast. This variation affects his inventory, 

transportation, production and ordering costs for the current period. 

 

Figure 1 Supply Chain 
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If he produces more than the actual demand, he will have to carry extra inventory, 

and this leads to an increase in the costs mentioned earlier. On the other hand, if he produces 

less than the actual demand, he will have to bear the shortage cost. Both the situations are 

unfavourable, specially shortage. The ideal and the best scenario would be when he knows 

the future demand perfectly i.e., he has perfect information. This does not happen in real life 

situation and when there are many upstream suppliers, there is going to be an increase in the 

amplitude of the variation of the demand at every level. Hence, we need to find a way to 

make good decisions so that we incur least cost possible in each situation. This is possible by 

using optimization techniques such as deterministic and stochastic optimization. 

As there are two stake holders in this research, we need to know the combination of 

optimization strategies that would work well for the supply chain and understand how the 

combinations affect the decision variables. To analyse the effect of information sharing, we 

consider that the manufacturer shares the possible future orders. 

 

 

Figure 2 Information sharing in supply chain 

 

The research questions that are addressed are as follows: 

 Is stochastic optimization always beneficial? 

 Should the choice of strategy depend on the trend of variation in demand data? 
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 Effect of error in demand data forecast on operational cost and bull-whip effect 

 Effect of information sharing on the supply chain 

 

Model formulation 

In this section, we present an optimization model where we consider several scenarios 

of demand for the Manufacturer/Supplier using Deterministic/Stochastic programming. The 

parameters and variables of the model are described in detail after this. 

Models for decision making 

As discussed earlier, the models of decision making under uncertainty considered in 

this research are two. There is a difference in the way demand is forecast in these models. 

 Deterministic (D) - Only one scenario of demand data is assumed to be true 

 Stochastic (S) - Forecast of several scenarios of future demand weighted by assumed 

probabilities are considered 

However, the way these optimization strategies are used by the manufacturer and the 

supplier is different. For the manufacturer, random error of known magnitude is added to 

known demand and is used as the forecast. The supplier relies on the past data to forecast the 

future demand. When using the deterministic strategy, the supplier assumes that a past 

pattern of demand would repeat and when he uses stochastic strategy, scenarios are picked 

from the historical data and the most recent choice of scenario from the past gets the highest 

weight. The farther the scenario in the past, less is the weight assigned to it. 

Assumptions 

 Transportation Lead time is fixed, and it is assumed that there is no uncertainty in it 

 Supplier is dedicated to the manufacturer i.e. he only supplies to one manufacturer 
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 The manufacturers will produce a minimum number of units even if the demand is zero 

 Information sharing in the context of this research means sharing the predicted future 

orders with the upstream suppliers 

Notation 

Input 

 𝑑௧: (in unit) known demand in time 𝑡 ∈ {0, . . . , 𝑇} where T is the modelling horizon 

  𝛼: magnitude of error in demand forecast 

 𝑅௦,௧
ఈ : random number picked from a standard normal distribution in time 𝑡 ∈ {0, . . . , 𝑇}  

under scenario  𝑠 ∈ {1, . . . , 𝑆} considering magnitude of error 𝛼 ∈ {0, 1000, . . ,10000} 

 𝐷௦,௧
ఈ : (in units) demand forecast in time 𝑡 ∈ {0, . . . , 𝑇}  under scenario  𝑠 ∈ {1, . . . , 𝑆} 

considering magnitude of error 𝛼 ∈ {0, 1000, . . ,10000} 

 𝑝௦:  the probability of scenario s occurring 

 ∆𝐼௧: (in number of units) incoming materials in time 𝑡 ∈ {0, . . . , 𝑇}   

Parameters 

 𝐿ோ: (in unit per period) regular production limits 

 𝐿ை: (in unit per period) overtime production limits 

 𝑀ோ௉: (in units per period) minimum regular production 

 𝐼 ଵ
ெ : (in unit) inventory of materials at the end of time -1 

 𝐼 ଵ
௉ : (in unit) inventory of products at the end of time -1 

 𝐻ெ: (in unit) inventory capacity for materials 

 𝐻௉: (in unit) inventory capacity for products 

 𝐶ோ: (in dollar per unit) regular production cost 

 𝐶ை: (in dollar per unit) overtime production cost 
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 𝐶ௌ: (in dollar per unit) shortage cost 

 𝐶ூெ: (in dollar per unit) inventory carrying cost of materials 

 𝐶ூ௉: (in dollar per unit) inventory carrying cost of products 

 𝐶ிை: (in dollar per order) fixed portion of the ordering cost for each order if an order is 

placed 

 𝐶௏ை: (in dollar per unit) variable portion of the ordering cost 

 𝐵: (in unit) batch size 

 𝑇௅: (in time period) transportation lead time 

 𝑂ത: (in batches) upper bound of orders 

First stage decision variables (for time zero) 

 𝑥଴
ோ: (in unit) regular production in time zero 

 𝑥଴
ை: (in unit) overtime production in time zero 

 𝑂଴: (in batch) material order placed in time zero 

 𝐼଴
ெ: (in unit) inventory of material at the end of time zero 

 𝐼଴
௉: (in unit) inventory of product at the end of time zero 

 𝑆଴: (in unit) shortage of product in time zero 

 𝑦଴: whether (𝑦଴ = 1) or not (𝑦଴ = 0) an order is placed in time zero 

Second stage decision variables (for times 1 to T) 

 𝑥௦,௧
ோ : (in unit) regular production for time 𝑡 ∈ {1, . . . , 𝑇}  under scenario  𝑠 ∈ {1, . . . , 𝑆}  

 𝑥௦,௧
ை : (in unit) overtime production for time 𝑡 ∈ {1, . . . , 𝑇}  under scenario  𝑠 ∈ {1, . . . , 𝑆}  

 𝑂௦,௧: (in batch) order of materials to be placed for time 𝑡 ∈ {1, . . . , 𝑇}  under scenario  𝑠 ∈

{1, . . . , 𝑆}   
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 𝐼௦,௧
ெ : (in unit) inventory of material at the end of time 𝑡 ∈ {1, . . . , 𝑇}  under scenario  𝑠 ∈

{1, . . . , 𝑆} 

 𝐼௦,௧
௉ : (in unit) inventory of product at the end of time 𝑡 ∈ {1, . . . , 𝑇}  under scenario  𝑠 ∈

{1, . . . , 𝑆} 

 𝑆௦,௧: (in unit) shortage of product for time 𝑡 ∈ {1, . . . , 𝑇}  under scenario  𝑠 ∈ {1, . . . , 𝑆} 

 𝑦௦,௧: whether (𝑦௦,௧ = 1) or not (𝑦௦,௧ = 0) an order is placed for time 𝑡 ∈ {1, . . . , 𝑇}  under 

scenario  𝑠 ∈ {1, . . . , 𝑆} 

Optimization Model 

min 𝐶ோ𝑥଴
ோ + 𝐶ை𝑥଴

ை + 𝐶௏ை . 𝐵. 𝑂଴ + 𝐶ூெ𝐼଴
ெ + 𝐶ூ௉𝐼଴

௉ + 𝐶ௌ𝑆଴ + 𝐶ிை𝑦଴

+ ෍ ෍ 𝑝௦(𝐶ோ𝑥௦,௧
ோ + 𝐶ை𝑥௦.௧

ை + 𝐶௏ை . 𝐵. 𝑂௦.௧ + 𝐶ூெ𝐼௦.௧
ெ

்

௧ୀଵ

ௌ

௦ୀଵ

+ 𝐶ூ௉𝐼௦.௧
௉ + 𝐶ௌ𝑆௦.௧ + 𝐶ிை𝑦௦.௧) 

(1) 

s.t 𝐼଴
ெ = 𝐼 ଵ

ெ + ∆𝐼଴ − (𝑥଴
ோ + 𝑥଴

ை) (2) 

 𝐼௦,ଵ
ெ = 𝐼଴

ெ + ∆𝐼ଵ − ൫𝑥௦,ଵ
ோ + 𝑥௦,ଵ

ை ൯   ∀𝑠 ∈ {1, . . . , 𝑆} (3) 

 𝐼௦,௧
ெ = 𝐼௦,௧ିଵ

ெ + ∆𝐼௧ − ൫𝑥௦,௧
ோ + 𝑥௦,௧

ை ൯   ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {2, . . . , 𝑇௅ − 1} (4) 

 𝐼
௦,்ಽ
ெ = 𝐼

௦,்ಽିଵ
ெ + 𝐵. 𝑂଴ − ቀ𝑥

௦,்ಽ
ோ + 𝑥

௦,்ಽ
ை ቁ   ∀𝑠 ∈ {1, . . . , 𝑆} (5) 

 𝐼௦,௧
ெ = 𝐼௦,௧ିଵ

ெ + 𝐵. 𝑂௦,(௧ି்ಽ) − ൫𝑥௦,௧
ோ + 𝑥௦,௧

ை ൯   ∀𝑠 ∈ {1, . . . , 𝑆},

𝑡 ∈ {𝑇௅ + 1, . . . , 𝑇} 
(6) 

 𝐼଴
௉ = 𝐼 ଵ

௉ + (𝑥଴
ோ + 𝑥଴

ை) + 𝑆଴ − 𝑑଴ (7) 

 𝐼௦,ଵ
௉ = 𝐼଴

௉ + ൫𝑥௦,ଵ
ோ + 𝑥௦,ଵ

ை ൯ + 𝑆௦,ଵ − 𝐷௦,ଵ
ఈ    ∀𝑠 ∈ {1, . . . , 𝑆}  (8) 

 𝐼௦,௧
௉ = 𝐼௦,௧ିଵ

௉ + ൫𝑥௦,௧
ோ + 𝑥௦,௧

ை ൯ + 𝑆௦,௧ − 𝐷௦,௧
ఈ    ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {2, . . . , T}  (9) 

 𝐷௦,௧
ఈ = 𝑑௧ + 𝛼. 𝑅௦,௧

ఈ    ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T} (10) 
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 𝑂଴ ≤ 𝑂ത𝑦଴ (11) 

 𝑂௦,௧ ≤ 𝑂ത𝑦௦,௧  ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T − 𝑇௅}  (12) 

 𝑀ோ௉ ≤ 𝑥଴
ோ , 𝑥௦,௧

ோ ≤ 𝐿ோ 𝒊𝒏𝒕𝒆𝒈𝒆𝒓   ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T} (13) 

 0 ≤ 𝑥଴
ை , 𝑥௦,௧

ை ≤ 𝐿ை  𝒊𝒏𝒕𝒆𝒈𝒆𝒓   ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T} (14) 

 0 ≤ 𝐼଴
ெ , 𝐼௦,௧

ெ ≤ 𝐻ெ 𝒊𝒏𝒕𝒆𝒈𝒆𝒓   ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T} (15) 

 0 ≤ 𝐼଴
௉ , 𝐼௦,௧

௉ ≤ 𝐻௉ 𝒊𝒏𝒕𝒆𝒈𝒆𝒓   ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T} (16) 

 𝑆଴, 𝑆௦,௧, 𝑂଴, 𝑂௦,௧ ≥ 0 𝒊𝒏𝒕𝒆𝒈𝒆𝒓   ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T}  (17) 

 𝑦଴, 𝑦௦,௧ ≥ 0 𝒃𝒊𝒏𝒂𝒓𝒚   ∀𝑠 ∈ {1, . . . , 𝑆}, 𝑡 ∈ {1, . . . , T}  (18) 

 

The objective function in equation (1) has two parts. The first part is the total cost of 

production for the current period which has a subscript of zero. The second part which is a 

summation of costs in various scenarios weighted by their probabilities. Equations (2) - (6) 

are related to the raw material inventory. The basic idea of these equations is that the raw 

material inventory at the end of a period is equal to the sum of inventory at the end of the 

previous period and the incoming inventory in the present period minus the total production 

in the present period. The equations (7) - (9) are related to the finished product inventory. 

Similar to the raw material inventory equations, the idea for these equations is that the 

finished product inventory at the end of the present period is equal to the sum of the finished 

product at the end of the previous period, the total production in the present period and the 

shortage in the present period minus the demand that is satisfied in the present period. 

In equation (10) 𝛼 varies from 0 to 10000 in increments of 1000 thus allowing us to 

study the behaviour of the model with varying error magnitude in the forecast of the demand 

by the manufacturer. Equations (11) and (12) establish a link between the binary variable (y) 
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and the order (O). This ensures that the binary variable is one only when an order is placed 

otherwise it is zero. The remaining equations from (13) to (18) are limits on the variables and 

non-negativity constraints. 

Case study 

To understand the behaviour of our model on actual monthly demand data we have 

considered three demand data sets. They are vehicle sales (1967-2017), books and sporting 

goods (2006-2018) and bulk sales of milk (1999-2018) which was taken from 

https://fred.stlouisfed.org. This is taken as an input for the case study and we try to make 

decisions related to production and inventory control for manufacturer and the supplier using 

various optimization strategies. The trend line which is a six-degree polynomial curve fit on 

the figures below show the extent of variation in demand. If the lines have more amplitude, it 

indicates more swings in the trend. If there is a smooth transition in demand data, it means he 

extent of variation is less. 

 

Figure 3 Trend in monthly vehicle sales (Federal Reserve Bank of St. Louis, 2018c) 

 



15 

 

Figure 4 Trend in monthly book sales (Federal Reserve Bank of St. Louis, 2018b) 

 

Figure 5 Trend in monthly milk sales (Federal Reserve Bank of St. Louis, 2018a) 

 

As discussed earlier, there are two optimization strategies that can be used by the 

manufacturer or the supplier. We are going to denote deterministic strategy as D and 

stochastic strategy as S. There can be different combinations of the strategies depending on 

number of participants in a supply chain. In our study, as we are considering two participants, 
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there can be four possible combinations. We look at these possible combinations of 

optimization strategies for making production and inventory management decisions between 

a manufacturer and a supplier and try to understand which is better for them. To identify and 

analyse the results, for our convenience, we have coded the strategies and their combinations 

as shown in the table below. 

 

Table 1 Combination of strategies 

Scenario Manufacturer Supplier 

DD Deterministic Deterministic 

DS Deterministic Stochastic 

SD Stochastic Deterministic 

SS Stochastic Stochastic 

 

The manufacturer's demand forecast varies with the magnitude of error 𝛼. However, 

the supplier uses their own data from the past to make the forecast and use it as the demand 

data in the optimization models as described earlier. Figure 6 shows the rolling horizon 

concept (Rahdar et al., 2018). In this figure P(t) is the solution of the decision-making model 

for time t which includes the red and the blue portion. The red portion is the decision 

variables for the current period and the blue portion is for the future. Though the number of 

demand data points available in each data set is different in each period, the planning horizon 

remains the same. This simulation is for each strategy combination and is repeated with 

different demand data forecasting accuracy from zero to ten thousand. Hence, for each data 

set, there are forty-four simulations. Furthermore, as we also consider information sharing, 
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this number would be eighty-eight total simulations. The parameters for the simulation are 

shown in Table 2. 

 

 

Figure 6 Rolling horizon approach  (Rahdar et al., 2018) 

 

For the case study the input parameters are as given in Table 2. The code was written 

in MATLAB using CPLEX solver interface on an HP laptop with Intel-i5-5200U processor 

@2.20 GHz and 8.00 GB RAM. The operating system was 64-bit Windows 10. 
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Table 2 Simulation parameters 

Parameters Manufacturer Supplier 

Regular Production Limit (𝐿ோ) 120,000 140,000 

Overtime Production Limit (𝐿ை) 80,000 80,000 

Minimum Regular Production (𝑀ோ௉) 20,000 20,000 

Material Inventory (𝐼 ଵ
ெ ) 60,000 50,000 

Product Inventory (𝐼 ଵ
௉ ) 50,000 40,000 

Material Inventory Capacity (𝐻ெ) 300,000 300,000 

Product Inventory Capacity (𝐻௉) 300,000 300,000 

Regular Production Cost (𝐶ோ) 20 5 

Overtime Production Cost (𝐶ை) 30 10 

Shortage Cost (𝐶ௌ) 100 50 

Material Inventory Carrying Cost (𝐶ூெ) 0.5 0.4 

Product Inventory Carrying Cost (𝐶ூ௉) 0.5 0.4 

Fixed Ordering Cost (𝐶ிை) 100 60 

Variable Ordering Cost (𝐶௏ை) 30 10 

Order Batch Size (B) 100 100 

Transportation Lead Time (𝑇௅) 2 2 

Upper Bound on Orders (𝑂ത) 10,000 10,000 
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CHAPTER 4.    RESULTS  

In this section, effect of optimization strategies on bull-whip effect and total mean 

operational cost will be discussed. Effect of Information sharing is also studied to know if it 

is always beneficial in saving costs and reducing the bull-whip effect. In the following 

Figures, scenario code has been used to indicate the strategy used by the manufacturer and 

the supplier as shown in Table 1. 

Effect of optimization strategies 

Propagation of demand data, total mean operating cost and bull-whip effect are 

evaluated for each possible combination of strategy. These parameters are plotted against the 

root mean squared error values for various magnitudes of errors in demand data forecast to 

compare the performance of the strategy combinations. 

 

Propagation of demand in a supply chain  

Demand uncertainty is a challenge that a manufacturer needs to tackle in the best 

possible way to reduce the costs. Optimization techniques can help in making better 

decisions under uncertain demand. The variation in the orders placed by the manufacturer is 

the demand for the supplier. This is plotted against the corresponding RMSE values for all 

the possible strategies. 
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Figure 7 Manufacturer orders in book sales 

 

Figure 8 Supplier orders in book sales 

 

Figure 9 Manufacturer orders in vehicle 
sales 

 

Figure 10 Supplier orders in vehicle sales 

 

Figure 11 Manufacturer orders in milk sales 

 

Figure 12 Supplier orders in milk sales 

It can be seen in the figures above that the choice of optimization strategy of the 

supplier does not affect his demand variation. In most cases, the variation in the demand of 

the supplier increased with increase in the RMSE in demand forecast of the manufacturer 

Irrespective of the strategy chosen by the manufacturer, the variation in the order of raw 

material placed by the supplier remains constant when the supplier uses stochastic strategy. 
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On the other hand, when the supplier uses deterministic strategy, the variation in raw material 

orders placed by the supplier increases with increase in RMSE in demand forecast of the 

manufacturer. It can also be seen that the variation in the orders placed by the supplier is 

more when compared to that of the manufacturer. Also, this increase is more when the 

forecast error is more. 

Total mean operational cost 

This section looks at the variation in the total mean cost of operation incurred by the 

manufacturer and the supplier in all the four possible combination of strategies. Again, the 

variation is studied with respect to the RMSE in demand forecast. 

 

 

Figure 13 Total mean operational cost in 
book sales 

 

Figure 14 Total mean operational cost in 
vehicle sales 

 

Figure 15 Total mean operational cost in milk sales 
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The total mean cost of operation remains constant with increasing RMSE in demand 

forecast when the supplier uses stochastic optimization strategy. Furthermore, it increases 

with RMSE when the supplier uses deterministic strategy. Hence, the total mean cost of 

operation mostly depends on the choice of strategy by the supplier. However, the best 

strategy for the supplier would depend on the type of demand data. If the trend in the 

variation of demand data of the manufacturer follows a smooth curve, it is better if both the 

stake holders use deterministic strategy. If the variation in the trend of the manufacturer's 

demand is not smooth, it is beneficial for both the stake holders to use stochastic strategy. 

Bull-whip effect 

The bull-whip effect is the increase in the variation of orders placed along the 

upstream supply chain. This increase or decrease in variation of orders was captured by 

calculating the standard deviation of the orders placed at each stage in the two-echelon 

supply chain. In the following figures, the difference in the standard deviation of the orders 

placed by the supplier and the manufacturer is plotted for all the possible strategy 

combinations against the RMSE in demand forecast of the manufacturer. 
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Figure 16 Bull-whip effect in book sales 

 

Figure 17 Bull-whip effect in vehicle sales 

 

Figure 18 Bull-whip effect in milk sales 

 

When the supplier uses stochastic strategy, irrespective of the strategy used by the 

manufacturer, the bull-whip effect decreases with increase in the RMSE in demand forecast 

of the manufacturer. While the situation is completely opposite when the supplier uses 

deterministic strategy. 

Information sharing 

The information sharing considered in this research is limited to the possible future 

orders predicted by the optimization strategy in each period. The effect of information 

sharing on total mean operational cost and the bull-whip effect is evaluated in this section. 

The effect of information sharing on the cost is measured by calculating the savings and 

plotting it against the RMSE in manufacturer's demand forecast. 
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Operational cost saving 

There is cost saving when information on possible future orders is shared. 

 

Figure 19 Total mean operational cost in 
book sales – No information sharing 

 

Figure 20 Total mean operational cost in 
book sales – Information sharing 

 

Figure 21 Total mean operational cost in 
vehicle sales – No information sharing 

 

Figure 22 Total mean operational cost in 
vehicle sales – Information sharing 

 

Figure 23 Total mean operational cost in 
milk sales – No information sharing 

 

Figure 24 Total mean operational cost in 
milk sales – Information sharing 
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 In the figures shown above, the graphs of the total mean operational cost with and 

without information sharing for all the three demand data sets is compared. The costs are 

plotted against the RMSE in the demand forecast of the manufacturer. The cost saving in 

situations where supplier uses stochastic strategy, either remains stable or decreases with 

increase in RMSE. On the other hand, when supplier uses deterministic strategy, the cost 

saving either remains stable or increases with increase in RMSE. 

Bull-whip effect reduction 

In this section, the variation in bull-whip effect with respect to RMSE for all the three 

demand data sets, with and without information sharing has been compared. Information 

sharing results in a smooth bull-whip effect curve. However, as seen in the figures below, the 

trend is unaffected by information sharing. There is a decrease in bull-whip effect after 

information sharing only when the manufacturer uses deterministic strategy in most cases. 
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Figure 25 Bull-whip effect in book sales – 
No information sharing 

 

Figure 26 Bull-whip effect in book sales – 
Information sharing 

 

Figure 27 Bull-whip effect in vehicle sales – 
No information sharing 

 

Figure 28 Bull-whip effect in vehicle sales – 
Information sharing 

 

Figure 29 Bull-whip effect in milk sales – 
No information sharing 

 

Figure 30 Bull-whip effect in milk sales – 
Information sharing 
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CHAPTER 5.    CONCLUSIONS 

The aim of this research is to understand how deterministic and stochastic 

optimization models effect the operational costs and the bull-whip effect in a two-echelon 

supply chain. In the deterministic optimization model one scenario of demand is assumed a 

repeat pattern forecasting is used. While in the stochastic strategy, six scenarios are randomly 

chosen from the past and are weighted with assumed probabilities. Highest probability is 

assigned to the latest scenario. The oldest scenario gets the least probability. This is true only 

for the supplier. The manufacturer does not rely on the past demand data for forecast. His 

demand data forecast is controlled by error magnitude. All the four possible combinations of 

strategies were studied with and without information sharing. Bull-whip effect, propagation 

of demand and the total mean operational cost is observed when the manufacturer and the 

supplier used different optimization models with respect to change in the RMSE in demand 

forecast of the manufacturer. 

It is found that the total operational cost is driven by the choice of strategy of the 

supplier. It is the least when the supplier uses stochastic optimization strategy irrespective of 

the strategy used by the manufacturer. However, it is beneficial to use deterministic strategy 

when the trend line of variation in demand is smooth. With regards to the propagation of 

demand along the supply chain, it is observed that the choice of optimization strategy by the 

supplier does not affect his demand. On the other hand, in most cases, when the supplier uses 

deterministic strategy, orders of raw material placed by the supplier increases with increase 

in RMSE of demand forecast of the manufacturer. 

Trend in the bull-whip effect is driven by the choice of strategy of the supplier. Bull-

whip effect decreases in most cases when the supplier uses use stochastic strategy. However, 
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it also remains constant in some cases. When the supplier uses deterministic strategy, the 

bull-whip effect increases with increase in RMSE of demand forecast. 

Information sharing results in operational cost saving in almost all the combination of 

strategies except for few instances where the RMSE in demand data forecast is high. The cost 

savings decreases with increase in RMSE when the supplier uses stochastic strategy. It is the 

opposite when deterministic strategy is used by the supplier. 

This research helps in understanding the interaction of the strategies in a supply 

chain. It also provides an approach to study the supply chain performance in terms of 

operational costs and bull-whip effect with different types of demand data. The result of 

including multiple stakeholders in the supply chain and the use of different set of parameters 

can be considered in the future. 
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APPENDIX    SHORTAGE 

The variation in total shortage of units is shown in the graphs below. It is seen that 

there is a decrease in shortage when information regarding the future orders is shared. 

 

Figure 31 Shortage in book sales – No 
information sharing 

 

Figure 32 Shortage in book sales - 
Information sharing 

 

Figure 33 Shortage in vehicle sales – No 
information sharing 

 

Figure 34 Shortage in vehicle sales – 
Information sharing 

 

Figure 35 Shortage in milk sales – No 
information sharing 

 

Figure 36 Shortage in milk sales – 
Information sharing 

 


