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ABSTRACT 

 

Job Shop Scheduling with Material Handling has attracted increasing attention in both industry and 

academia, especially with the inception of Industry 4.0 and smart manufacturing. A smart manufacturing 

system calls for efficient and effective production planning. On a typical modern shop floor, jobs of 

various types follow certain processing routes through machines or work centers, and automated guided 

vehicles (AGVs) are utilized to handle the jobs. In this research, the optimization of a shop floor with 

AGV is carried out, and we also consider the planning scenario under variable processing time of jobs. 

The goal is to minimize the shop floor production makespan or other specific criteria correlated with 

makespan, by scheduling the operations of job processing and routing the AGVs. This dissertation 

includes three research studies that will constitute my doctoral work. 

In the first study, we discuss a simplified case in which the scheduling problem is reformulated into a 

vehicle dispatching (assignment) problem. A few AGV dispatching strategies are proposed based on the 

deterministic optimization of network assignment problems. The AGV dispatching strategies take future 

transportation requests into consideration and optimally configure transportation resources such that 

material handling can be more efficient than those adopting classic AGV assignment rules in which only 

the current request is considered. The strategies are demonstrated and validated with a case study based 

on a shop floor in literature and compared to classic AGV assignment rules. The results show that AGV 

dispatching with adoption of the proposed strategy has better performance on some specific criterions like 

minimizing job waiting time. 

In the second study, an efficient heuristic algorithm for classic Job Shop Scheduling with Material 

Handling is proposed. Typically, the job shop scheduling problem and material handling problem are 

studied separately due to the complexity of both problems. However, considering these two types of 

decisions in the same model offers benefits since the decisions are related to each other. In this research, 

we aim to study the scheduling of job operations together with the AGV routing/scheduling, and a 

formulation as well as solution techniques are proposed. The proposed heuristic algorithm starts from an 
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optimal job shop scheduling solution without limiting the size of AGV fleet, and iteratively reduces the 

number of available vehicles until the fleet size is equal to the original requirements. The computational 

experiments suggest that compared to existing solution techniques in literature, the proposed algorithm 

can achieve comparable solution quality on makespan with much higher computational efficiency. 

In the third study, we take the variability of processing time into consideration in optimizing job shop 

scheduling with material handling. Variability caused by random effects and deterioration is discussed, 

and a series of models are developed to accommodate random and deteriorating processing time 

respectively. With random processing time, the model is formulated as a Stochastic Programming Job 

Shop Scheduling with Material Handling model, and with deteriorating processing time the model can be 

nonlinear under specific deteriorating functions. Based on a widely adopted dataset in existing literature, 

the stochastic programming model were solved with Pyomo, and models with deterioration were 

linearized and solved with CPLEX. By considering variable processing time, the JSSMH models can 

better adapt to real production scenarios.  
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CHAPTER 1. GENERAL INTRODUCTION 

 

1.1 Research Background 

Production scheduling is essential in achieving optimal performance on a manufacturing shop floor, and it 

is well known that job shop scheduling problems are computationally challenging. When material 

handling is not considered in the planning process, the problem is reduced to the classic Job Shop 

Scheduling (JSS) problem, which is difficult to solve even for small-sized problems (Pinedo, 2009). 

Additionally, it is important to consider transportation of materials and jobs between multiple machines or 

work centers. Job Shop Scheduling with Material Handling (JSSMH) problems aims to consider job shop 

scheduling and material handling decisions in the same framework and this brings additional modeling 

and computational challenges.  

Using automated guided vehicles (AGVs) on shop floors has become an important trend in the 

manufacturing industry due to easier control as well as the elimination of human error (Carlo, Vis, & 

Roodbergen, 2014). AGVs are also playing significant roles in many other areas such as container 

terminals and warehouses, and they prove to be effective in increasing the efficiency of logistics and 

warehousing systems. This serves as one of the major motivations for this dissertation work. It is our 

intention that this dissertation would shed lights on the efficiency of adopting AGV systems, especially in 

scheduling of modern smart manufacturing shop floors. 

On a manufacturing shop floor, each job is processed on a set of machines in certain sequence according 

to the job type. Nowadays job shopsô control and planning are mainly done electronically, and the 

material handling process relies on robots or AGVs. In the body of literatures such a system is also 

defined as a Flexible Manufacturing System (FMS) (Browne, Dubois, Rathmill, Sethi, & Stecke, 1984; El 

Maraghy, 2006). The goal of planning and decision making for FMS typically focuses on minimizing the 

makespan (Han, Xing, Chen, Lei, & Wang, 2014; Kumar, Haleem, Garg, & Singh, 2015), and JSSMH is 

a representative planning scenario in the FMS.  The JSSMH problem can be viewed as a combination of 
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JSS and a vehicle scheduling/vehicle routing (VS/VR) problem, both acknowledged as complicated 

optimization problems and proved to be NP-hard (Baños, Ortega, Gil, Márquez, & De Toro, 2013; Doh, 

Yu, & Kim, 2013). Research interests on JSSMH has been increasing and a variety of optimization 

methods have been proposed, since AGVsô introduction to the manufacturing shop floors in the 1990ôs. 

Limited attention has been paid to the production scheduling problems that job processing time is 

variable, which has been reflected many production scenarios. When human activity is involved in job 

processing, the job processing time can be affected by variability of human manipulation, and jobs 

themselves can have inherent variability in processing time too. Variable processing time has not been 

considered in job shop scheduling when material handling is part of decision making. With material 

handling system as an integral part of production, it is essential to take this into consideration when 

making production decisions 

The three research studies in this dissertation fit into three scenarios of JSSMH. In the first study, we 

focus on the AGV planning problem, in which the JSSMH problem is simplified to be a vehicle 

dispatching/assignment problem. The second study considers the job shop scheduling and AGV routing 

simultaneously, with a comprehensive JSSMH optimization model. In the third study, we consider the 

JSSMH under variable processing time, which brings additional difficulty to solving the scheduling 

problem, hence a stochastic programming model and models involving deteriorating processing time are 

developed based on classic JSSMH.  

1.2 Introduction and Literature Review  

For the AGV dispatching problem in the first study, we propose a series of AGV dispatching strategies 

that are based on network optimization and shorten job-waiting times. In the second study, a 

comprehensive JSSMH model is formulated and a heuristic algorithm is proposed to efficiently find a 

solution close to optimality. The model is extended to deal with variability of job processing in the third 

study. 
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The three studies are distinct according to the scenarios, but also associated with each other inherently. 

The literature review is also presented separately in each of the subsections. 

1.2.1. AGV Dispatching 

Given a predetermined job shop schedule, a set of classic AGV assignment rules were developed by 

Egbelu and Tanchoco (1984) that guide the response and movement of AGVs on shop floors when 

transportation requests arrive. Classic AGV assignment rules are executed when a vehicle becomes idle 

(vehicle initiated) or a job is ready to be transported (work center initiated). The AGV assignment rules 

decide which AGV should respond to the current transportation request when there are several idle 

AGVs, or which request an idle AGV should respond when there are several awaiting requests. Table 1.1 

summarizes the classic AGV assignment rules. A combined strategy of RV/RW and NV/STT is most 

commonly adopted in practice and serves as the benchmark of comparison to the proposed strategies in 

our research. 

Table 1.1: Classic AGV assignment rules 

Work Center Initiated Assignment Rule Vehicle Initiated Assignment Rule 

Random Vehicle (RV) Random Work Center (RW) 

Nearest Vehicle (NV) Shortest Travel Time (STT) 

Farthest Vehicle (FV) Longest Travel Time (LTT) 

Longest Idle Vehicle (LIV) Maximum Outgoing Queue Size (MOQS) 

Least Utilized Vehicle (LUV) Minimum Remaining Outgoing Queue Space (MROQS) 

 First Come-First Serve (FCFS) 

 Unit Load Shop Arrival Time (ULSAT) 

When an AGV becomes idle or when one job is ready at the output port of a work center, decisions on 

AGV assignment are made based on classic rules in Table 1.1. In each assignment decision, there is a 

matching between one AGV and one request. In other words, the classic AGV assignment rules respond 

to one request at a time. Such a short decision horizon brings convenience to AGV programmers, and 

applying classic AGV assignment rules is effective considering the frequent and complicated material 
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flows on the shop floor. This strategy is probably not the most efficient, however, since programmable 

AGV systems enable shop floor operators to accomplish material handling in a more efficient way by 

storing and processing more information in AGVs (Abbas, Mohamed, & Hafez, 2014).  

Vehicle assignment problem has its application in more areas other than shop floors such as container 

terminals or smart warehouses (Confessore, Fabiano, & Liotta, 2013; J. Kim, Choe, & Ryu, 2013; L. H. 

Lee, Chew, Tan, & Wang, 2010; Luo & Wu, 2015; Luo, Wu, & Mendes, 2016; Vis, 2006). Furthermore, 

besides heuristic assignment rules, optimizations methods have also been developed to accomplish AGV 

movement optimization in a limited or rolling time horizon (Fauadi, Yahaya, & Murata, 2013; 

Fazlollahtabar, 2016). However, unlike AGV planning problems in container terminals, AGV dispatching 

on shop floors has a vital characteristic that makes the problem more complicated. In container terminals, 

containers are transported by AGVs only once, from one storage area (can be a ship) to another. For shop 

floors on the other hand, jobs are loaded and unloaded, usually by different vehicles, between different 

work centers multiple times due to sequential processing characteristic. Consequently, there are more 

decision variables in AGV dispatching problems on shop floors than in container terminals. Moreover, 

the decision variables and decision making conditions are correlated, i.e., for the same current request, 

different AGV dispatching decisions might lead to a different timing and sequence of future requests, 

which makes the problem even more complicated. 

Besides the traditional heuristic-based approach, Mathematical programming-based approaches have been 

proposed. Multi-objective optimization was adopted by many researchers to meet multiple criteria on 

shop floor and container terminals (J. Kim et al., 2013; U A Umar, Ariffin, Ismail, & Tang, 2013). AGV 

optimization models usually include integer variables; hence, the problem could usually be described with 

integer programming models such as set partitioning (K. S. Kim, Chung, & Jae, 2003) and minimum cost 

flow networks (Confessore et al., 2013; Joe, Gan, & Lewis, 2014). Different models have resulted in 

different solution techniques, including arithmetic calculation (Egbelu, 1987), simulation (Wang, Guan, 

Shao, & Ullah, 2014), exact solution algorithms (Tanaka, Nishi, & Inuiguchi, 2010), and heuristic 
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algorithms (Nageswararao, Rao, & Rangajanardhana, 2012). Almost all dispatching models minimize 

makespan or waiting time (Confessore et al., 2013; Joe et al., 2014; J. Kim et al., 2013; Pisuchpen, 2012). 

In this study, we developed two AGV dispatching strategies based on assignment problems in network 

optimization for a shop floor where the status of vehicles as well as jobs (products) in work centers are 

predictable. Firstly, we consider two requests in a row when the first one has been realized and second 

one is predicted, hence it is expected to be more efficient than only considering current request. Secondly, 

we observe the status of products at all work centers, and optimize the comprehensive AGV assignment.  

The case study is based on Egbelu (1987). The product batches are large enough to observe the validity of 

proposed AGV assignment rules, and it is appropriate to implement on simulation platforms. Results in 

Egbelu (1987) also acts as a reference to validate the simulation model developed in this study. The 

package CPLEX is utilized in JAVA-based simulation platform AnyLogic when solving the optimization 

models in proposed AGV dispatching strategies. In the dynamic production process, corresponding 

parameters keep updating, and are passed to models to be solved repeatedly. The performance of our 

AGV dispatching strategies are compared with classic rules in scenarios with different AGV fleet sizes, 

and it proved that our optimization is valid, resulting in shorter material (product) waiting time. 

1.2.2. Deterministic Job Shop Scheduling with Material Handling  

The JSSMH problem can be viewed as a combination of a job shop scheduling (JSS) and a vehicle 

scheduling (VS) or vehicle routing (VR) problems, which have both been recognized as complicated 

decision making problems (Baños et al., 2013; Doh et al., 2013). These two problems have been 

extensively studied in the existing body of literature. For JSS problems, a variety of techniques, ranging 

from exact methods to hybrid techniques, have been proposed since 1950ôs, and summarized by Albert 

Jones and C.Rabelo (1999) by the end of last century, and Chaudhry and Khan (2016) more recently. 

Typical solution techniques of JSS include classic exact algorithms like branch-and-bound (Ashour & 

Hiremath, 1973) and  genetic algorithms (Pezzella, Morganti, and Ciaschetti 2008). VS/VR problems is 
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also known to be NP-hard (Lenstra & Kan, 1981), and recent solution technique studies for VS/VR focus 

on efficient heuristics such as evolutionary algorithm (Chiang & Lin, 2013) and simulation-based 

approach (Villarreal, Garza-Reyes, & Kumar, 2016). 

Optimization of JSSMH has mainly been studied for small size manufacturing shop floors, while recent 

advancement of computational resources has reinvigorated the research in the JSSMH problem. Bilge and 

Ulusoy (1995) formulated a nonlinear programming optimization model and proposed a heuristic time 

window-based algorithm to solve the problem, and following this work, various models have been 

proposed (Xie & Allen, 2015). Typically, JSSMH models aim to minimize production makespan, either 

as a sole objective function or as a vital optimization criterion in the multi-objective settings. The essence 

of JSSMH models consists of a set of job scheduling constraints that determines operations sequences on 

machines, and a set of constraints that determines the routing of AGVs. Additional constraints may be 

adopted considering shop floor conditions such as path constraints (Bürgy & Gröflin, 2016; Wang et al., 

2014) and task preemption (Dang & Nguyen, 2017; Izabela Nielsen, Dang, Nielsen, & Pawlewski, 2014). 

Variations of JSSMH models include different presentation of vehicle movement (Ahmadi-Javid & 

Hooshangi-Tabrizi, 2017), or adoption of different modeling methodologies such as constraint 

programming (Novas & Henning, 2014) and Petri nets (Baruwa & Piera, 2016). The classic JSSMH 

problem has been proved to be NP-hard (Na, Woo, & Lee, 2016).     

The solution techniques to JSSMH in the body of literature are mainly heuristic based and specifically 

genetic algorithms. When the JSSMH problem was firstly formulated, Bilge and Ulusoy (1995) derived a 

time window of job pick-up at machines, which was used to regulate the movement of vehicles. Deroussi, 

Gourgand, and Tchernev (2008) implemented three different metaheuristics algorithm including iterated 

local search, simulated annealing, and a hybrid of these two to the JSSMH problem. Reddy and Rao 

(2006) formulated the problem into a multi-objective model for scheduling both the vehicles and 

machines, and the problem was solved with evolutionary algorithms. Abdelmaguid et al. (2004) proposed 

a hybrid approach of heuristic and genetic algorithms that greedily search the vehicle starting operation to 
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solve the simultaneous vehicle and machine scheduling modules. Ahmadi-Javid and Hooshangi-Tabrizi 

(2015) developed an algorithm with analogy to anarchic society, and the authors applied this algorithm to 

JSSMH considering employee timetabling in a follow up study (Ahmadi-Javid & Hooshangi-Tabrizi, 

2017). Zheng, Xiao, and Seo (2016) applied Tabu Search to the JSSMH problem. Baruwa and Piera 

(2016) proposed a Petri-nets based model formulation for JSSMH and reported good performance. They 

also reported detailed CPU time of the solution, which was lacking in the body of literature.  

In this study, the model formulation for JSSMH problem is based on the model proposed by Bilge and 

Ulusoy (1995). We applied a linearization to the formulation with conditional constraints to replace the 

original nonlinear constraints so that the model can be solved with commercial solvers such as CPLEX, 

and we added a constraint to start timing as soon as the first job is taken out of the Loading/Unloading 

station (L/U). The results were used as a case study validation and for comparison. Optimization results 

based on the proposed algorithm is compared to existing solution techniques in literature, and the 

performance of the proposed model is justified by its high efficiency and good solution accuracy.  

Besides, to explain the mechanism of the proposed algorithm, a new visualization method is adopted 

based on traditional Gantt charts to present the job schedule and AGV movement simultaneously, and we 

use it to explain how the proposed algorithm works with examples. The new visualization contains all the 

information in traditional vehicle-implemented Gantt charts in which vehicles are treated as additional 

machines; however, the routes and schedules of AGV fleet on the shop floor are explicitly presented. 

Optimization results based on the proposed algorithm is compared to existing solution techniques in 

literature, and the performance of the proposed model is justified by its high efficiency and good solution 

accuracy. 

1.2.3. JSSMH with Variable Processing Time 

Limited attention has been paid to the production scheduling problems that job processing time is 

variable, which has been reflected many production scenarios. As mentioned in some previous studies in 
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JSSMH, when human activity is involved in job processing, the job processing time can be affected by 

variability of human manipulation, such as random redundant motion or slowing down due to tiredness 

(Fink et al., 2014; Liu, Fan, Zhao, & Wang, 2017). Jobs themselves can have inherent variability in 

processing time too. For example, metal productsô operation time can be influenced by a series of factors 

(Yang, Chen, Wei, & Chen, 2018), as well as industrial chemical processes (Bonfill, Espuna, & 

Puigjaner, 2005). There are two common types of variation reported in the body of literature, processing 

time in random distribution and deteriorating processing time. However, variable processing time has not 

been considered in job shop scheduling when material handling is part of decision making. With material 

handling system as an integral part of production, it is essential to take this into consideration when 

making production decisions.  

Random processing time in production scheduling problems usually results from inaccurate data 

collection or uncontrollable operations. Sakawa and Kubota (2000) applied genetic algorithms to fuzzy 

programming for multi-objective job shop scheduling problems in which uncertain processing time and 

due date were introduced, and in the case study each operation had three possible realized processing 

times in triangular distribution. Bonfill, Espuna, & Puigjaner (2005) formulated a two-stage stochastic 

programming model based on job shop scheduling for chemical processes where reaction time is 

uniformed distributed. Such models were also described as Stochastic Job Shop Scheduling (SJSS) 

problems, while the material handling was not included and it was often assumed that operations could 

start immediately after completion of the previous operation. In reality, introducing material handling to 

the optimized solution of SJSS will make the problem more realistic; however, also much more 

complicated. Hence  simulation has been commonly utilized when randomness exists in JSSMH (Xie & 

Allen, 2015). With a large number of experiments, simulation could help in developing heuristic shop 

floor management strategy (Wang et al., 2014). The strategy can also be flexible to implement operation 

mechanisms, such as behavior rules (Ng, Eheart, Cai, & Braden, 2011; Y. Zhang, Huang, Sun, & Yang, 

2014) and optimization-based decision making (Almeder, Preusser, & Hartl, 2009; Sacone & Siri, 2009). 
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Deterioration reflects the phenomenon that job processing becomes longer as the production process goes. 

Deterioration was studied first by Gupta and Gupta (1988) in steel rolling mills. Following that, a variety 

of researchers studied deterioration in job shop scheduling problems in various production scenarios, such 

as single machine (Gawiejnowicz, Lee, Lin, & Wu, 2011), two-machine (W. C. Lee, Shiau, Chen, & Wu, 

2010) and parallel machine based job shop scheduling (X. Huang, Wang, & Ji, 2014). Deterioration 

brought additional difficulty to optimally scheduling the jobs hence some heuristic solution techniques 

were also proposed (Kuo, Hsu, & Yang, 2012; Rustogi & Strusevich, 2012). In deteriorating job 

processing scenario, the processing time is, to a large degree, dependent on starting time of the operation, 

and researchers have reported multiple dependency relationships. The simplest case is that the processing 

time is linear to the operation start time (W. C. Lee et al., 2010), but it also common that processing time 

can be exponential to the processing sequence of jobs (X. Zhang, Wu, Lin, & Wu, 2018). In this study, 

both dependency relationships are discussed with corresponding model formulation of JSSMH. 

The major contribution of this research can be summarized as follows. Firstly, we introduce variable 

processing time to the formulation of JSSMH. The model formulation has been derived to reflect real 

production practice, including the production scenario with random and deteriorating processing time. 

Secondly, we proposed the Stochastic Programming based JSSMH (SP-JSSMH) solution techniques to 

find the expected shortest makespan when job processing times are random, and solved the SP-JSSMH 

models with Pyomo. Thirdly, we propose a series of models for different dependency functions when 

deterioration exists, and the models are solvable with CPLEX including the formulation with linear 

dependency function and that with exponential dependency function but can be linearized by 

reformulating the model. 

1.3 Dissertation Structure 

The remainder of the dissertation is organized as follows.  

Chapter 2 presents a few proposed AGV dispatching strategies in which the shop floor can be planned 

with a large number of jobs and potential uncertainties. The strategies are based on deterministic 
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optimization of assignment problems in network optimization, and with these strategies, AGVs are 

assigned to work centers based on mathematical programming models minimizing the total waiting time 

of jobs in a decision horizon in which the status of vehicles as well as jobs in work centers can be 

predicted. The strategies are demonstrated in a case study based on a shop floor in literature and are 

compared with classic AGV assignment rules including random assignment and nearest vehicle/shortest 

travel time rule. The results show that hybrid strategies based on the proposed dispatching strategies and 

classic assignment rules outperform pure classic strategy in minimizing jobsô waiting time on the shop 

floor. 

Chapter 3 presents an efficient algorithm to solve deterministic JSSMH. The proposed algorithm starts 

from an optimal solution under a large vehicle fleet, and iteratively reduces the number of available 

vehicles until the fleet size is equal to the original requirements. In each iteration, one vehicle is removed 

from the incumbent schedule, and remaining vehicles are reassigned to the transportation of operations 

according to a set of specially designed heuristic rules, all while the schedule is simultaneously adjusted 

due to vehicle reassignment. The algorithm stops when all operations are served and the AGV fleet size 

meets the job shop requirements. A quadratic optimization model is formulated to initialize the vehicle 

assignment. The algorithm is compared to existing solving methods in literature on optimized production 

makespan and solution efficiency based on the same data sets, and the results suggest that the proposed 

algorithm can achieve comparable solution quality on makespan with much higher efficiency. 

Chapter 4 demonstrates the validity of considering variable processing time in optimization of JSSMH. A 

two-stage stochastic programming model is formulated to account for randomly distributed processing 

time, and two additional models are formulated for different deterioration scenarios. The models are 

validated with small job set examples, and the optimized shop floor makespans with solutions of 

proposed models are compared to the makespans with solutions of classic JSSMH excluding randomness 

or deterioration of processing time in modeling. The proposed models prove to be superior in 

performance with the realization of variable processing time. 
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The structure and relationship between the studies in this dissertation can be represented with Figure 1.1. 

 

Job Shop Scheduling 

with Material Handling

(JSSMH)

Stochastic and 

Deteriorating JSSMH 

Variable Processing Time

Vehicle Dispatching

Larger Problem

Paper 1

(Chapter 2)

Paper 2

(Chapter 3)

Paper 3

(Chapter 4)

Paper 0

Idea: AGVs can move without request

New AGV Dispatching Rule

Idea: Large AGV Fleet

 
Figure 1.1: Research Structure 

(S. Huang, Brown, & Hu, 2017; S. Huang & Hu, 2017a, 2017b, 2018) 

 

Paper 0: 

Huang, S., Brown, C., & Hu, G. (2017). Shop Floor AGV Assignment Optimization with Uncertain 

Request Arrival. In K. Coperich, E. Cudney, & H. Nembhard (Eds.), Proceedings of the 2017 IIE Annual 

Conference. Pittsburgh. 

Paper 1: 

Huang, S., & Hu, G. (2017b). Automated Guided Vehicle Dispatching Based on Network Optimization in 

Shop Floors. International Journal of Planning and Scheduling, Under Review. 

Paper 2: 

Huang, S., & Hu, G. (2017a). A Degressive Vehicle Fleet based Heuristic Algorithm for Job Shop 

Scheduling with Material Handling. International Journal of Production Research, 2nd Round Review. 

Paper 3: 
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Huang, S., & Hu, G. (2018). Job Shop Scheduling with AGVs under Variable Processing Time, In 

Progress. 

CHAPTER 2. AUTOMATED GUIDED VEHICLE DISPATCHING BASED ON NETWORK 

OPTIMIZATION ON SHOP FLOORS 

 

The contents in this chapter is organized as follows: two optimization-based strategies are formulated and 

their application scenarios are discussed in Section 2.1 with two subsections separately. In Section 2.2, all 

AGV dispatching strategies are implemented in the simulation platform, and compared to each other in a 

case study summarized in Section 2.3. This chapter concludes with a summary of research findings and 

future works.  

2.1 AGV Dispatching Based on Network Optimization 

The complexity of AGV dispatching problems is mainly because of sequential decision making and the 

dependence of future decision making conditions and current decisions. The complexity increases when 

more shop floor components (work centers, vehicles, products etc.) are included, and classic request-by-

request assignment rules are highly likely to be biased from global optimality. Assuming the i th request Ri 

is described by Ri=(w, p), meaning product p has finished processing in Work Center w, and travel time of 

AGV j for transporting request Ri is Tij, the tree in Figure 2.1 of two sequential requests demonstrates the 

non-optimality of classic rule NV/STT, in which Solid arrows are real AGV assignment under NV/STT, 

while dash arrows are alternative assignments.  

 

Figure 2.1 Two sequential requests and AGV assignment.  
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When request R1 is generated, there are two AGVs that can be assigned, and different dispatching can 

lead to different time and place of the next request R2 because of different product processing time, shop 

floor layout, AGV speed, etc. Assume that at the beginning, both AGVs 1 and 2 are in the same depot, 

and AGV 1 is known to be quicker than AGV 2 for the transportation of R1 (T11 < T12).  Then AGV 1 is 

assigned under NV/STT and results in a new request R2. AGV 1 also takes R2 since it is the nearest 

vehicle and the associated travel time is T21. Consequently, the total travel time of vehicles is (T11+T21). 

However, there is another combination of sequential AGV assignments which is marked with dash lines 

in Figure 1, and it leads to shorter total vehicle travel time, but such a strategy is not adopted by NV/STT 

since AGV 2 takes a longer time to transport R1 than AGV 1. Classical AGV assignment rules excluding 

random assignment, like NV/STT adopted in this example, are not optimal because they take only one 

step searching the decision tree like Figure 2.1. 

Thus, to search a dispatching solution consisting of sequential AGV assignments that is closer to global 

optimality, we should look further beyond a single current request, such that the problem can be 

formulated into mathematical programming models. However, the correlation between decision variables 

(dispatched AGVs) and parameters (dispatching decision making conditions) means that the model is 

highly likely to be nonlinear and difficult to solve. This is probably the reason why the adoption of classic 

AGV heuristic assignment rules have been the focus of shop floor AGV dispatching. 

Although we cannot take too many future requests into consideration, considering more than one is still 

applicable because in automated shop floors, future statuses of work centers, products, and vehicles are 

predictable based on current status and operating parameters (Pinedo, 2009). Two strategies are proposed, 

and both of them consider more than one future request to shorten the material or product waiting time for 

transportation. The difference between decision horizons makes two formulations distinct; thus, solution 

techniques are different. The objective of both models is to minimize total waiting time for being loaded 

by a vehicle of all products. All notations for model formulation are included in Table 2.1. 
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Table 2.1 Notations of AGV dispatching models. 

Sets 

N Set of AGVs. 

M Set of requests in the AGV dispatching decision horizon. 

W Set of work centers. 

Indices 

ὲ Index of an AGV, ὲᶰρȟςȟȣȟȿὔȿ. 

w Index of a work center, ύᶰρȟςȟȣȟȿὡȿ. 

i i th request in the optimized time horizon. 

ὲȟὭ An assignment of AGV n to request i. 

j Index of arc assignment ὲȟὭ. 

Parameters  

Ὠ  Travel distance of AGV n to work center w. 

Ὀ  Fixed distance between work center wô and w. 

ὧ  Travel time of AGV n for request i. 

Ὡ  Waiting time of product at Work Center w for AGV n. 

ὸ The r th time point that AGVsô status is checked in the optimized time horizon. 

ὺ AGV speed. 

Decision variables 

ὼ  
Binary variable. If the assignment ñAGV n is assigned to request iò is adopted, ὼ

ρ, otherwise ὼ π.  

 

The whole production period can be divided into two periods with the time point that all products enter 

the shop floor and start waiting for the processing procedure. At the beginning of production period, 

initial products arrive on the shop floor randomly and stay in the initialization zone with unlimited 

capacity, hence requests for AGVs are uncertain before the arrivals finish. When all products enter the 

system, the randomness is eliminated, such that the succeeding transportation requests are predictable. In 

the first period, randomness is considered and requests are responded with classic AGV assignment rules. 
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In the second period, product status is predictable since processing time, vehicle speed, and vehicle routes 

are assumed to be fixed, therefore AGVs can be dispatched according to corresponding prediction. 

2.1.1 2-request Optimization Assignment Strategy (OA2) 

First, we consider one step further, i.e., we optimally dispatch AGVs for the current transportation request 

as well as the following request that is predictable. In the example of Figure 2.1, when request R1 is 

generated, we can predict where and when the next request R2 will be, by enumeration of AGV 

assignments to R1. After that we can evaluate the outcome of assigning each AGV to corresponding 

request R2 based on the assignment of AGV to R1, and make the decision that is optimal to these two 

sequential requests. In real operations, such a process repeats every time a new request is generated. 

We focus on two requests in a row rather than considering more sequential requests because of the 

complexity of enumeration brought by correlation between variables and parameters. The dependency can 

be demonstrated by a simple example in Figure 2.2.  

 

Figure 2.2 Assignment network of two sequential requests with three AGVs 

There are three AGVs for two requests from two work centers. Arcs connecting requests and AGVs 

represent assignment of AGV. The arc weights cin is the travel distance of AGV n for loading request i. 

The assignment is expected to minimize the total travel distance, and hence, the corresponding productsô 

total waiting time is also minimized. 
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The difference between such an assignment problem and a common assignment problem is the unfixed 

arc weight c, and this difference is a reflection of correlation between decision variables and decision 

making conditions (parameters) in AGV dispatching problems. For instance, let binary x denote the 

assignments; then in assignment x11=1 and x21=1, AGV 1 is assigned first to request 1 then to request 2; 

and in assignment x12=1 and x21=1, AGV 2 is assigned to request 1 and AGV 1 is assigned to request 2 

simultaneously. In these two assignments, AGV 1 travels different distances to request 2, which means c21 

has two different values.  

Such a dependency of parameters on variables for the AGV assignment optimization is quite difficult to 

describe by an explicit function due to nonlinear shop floor layout and timing. At any moment, we can 

capture the statuses (positions) of AGVs, but their distances to all other places at a certain time point after 

an assignment can only be described by an If-Then correspondence. For example, at time point t1, AGV 1 

is somewhere between Work Center 1 (WC1) and Work Center 2 (WC2), and its distance to WC1 is Ὠ . 

If AGV 1 is assigned to a work center at t1, at time point t2  ὸ ὸ , AGV 1ôs distance to WC1 is 

formulated as Equation (2.1), which is correlated with the assignment at t1. 

ὧ
Ὠ ὸ ὸὺ     ὭὪ ὃὋὠρ Ὥί ὥίίὭὫὲὩὨ ὸέ ὡὅρ

Ὠ ὸ ὸὺ     ὭὪ ὃὋὠρ Ὥί ὥίίὭὫὲὩὨ ὸέ ὡὅς
 (2.1) 

As a result, the model formulation would become very complicated if we model the problem into a pure 

linear programming model, in which extensive linearization is necessary for the conditional distance 

between AGVs and work centers. Enumeration should be the most efficient solution method if we only 

consider two requests in a row; however, if we consider more sequential requests, enumeration would 

take more time to reach the optimal solution. Consequently, we only consider two requests in a row in our 

optimization practice in this paper. For any AGV fleet size, we can model the situation into an assignment 

problem in network optimization (Bertsekas, 1998), like the generalized network in Figure 2.3. 
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Figure 2.3 Assignment network 2 sequential requests and N AGVs 

Equations (2.2) to (2.5) consist of a standard formulation of the assignment problem in Figure 2.3. We 

consider two requests in a row; therefore i equals to 1 or 2 in our case. 

ÍÉÎ ὧὼ

ȟ

 (2.2) 

                                             s.t. ὼ ρ   ᶅὮ (2.3) 

ὼ ρ   ᶅὭ (2.4) 

ὧ Ὢὼ  
(2.5) 

Equation (2.2) is the objective function minimizing the total waiting time of the two products. Constraint 

(2.3) and (2.4) ensure that at the decision making time point each AGV can be assigned to multiple work 

centers but each work center can only take one AGV. Equation (2.5) means the arc weights are dependent 

on decision variables with an implicit relationship. 

Model represented by Equation (2.2) to (2.5) can be easily solved on simulation platforms by enumeration 

due to a limited number of variables and simple model formulation, and can be programmed in 
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centralized AGV controlling systems or in each AGV by simple searching loops. Unlike classic AGV 

assignment rules, OA2 also enables assigning requests to AGVs that have not arrived at any work center, 

and new tasks are saved in an AGVôs memory, such that once an AGV completes its current job, it can 

immediately start the next trip. Culler and Long (2016) developed similar systems with customized AGV. 

The operation mechanism of the AGV system proposed in this paper is further introduced in Section 2.4. 

2.1.2 All -work-center Optimization Assignment Strategy (OAW) 

Besides assigning AGVs for current requests generated by products ready for transportation, for products 

in processing, AGVs can be assigned for future requests. If AGVs can be assigned without requests 

generated by ready products, some ready products might fail to request an AGV with immediate response 

since all AGVs are on the way to other work centers. We still define request Ri=(w, p) which is from 

Work Center w by Product p, and example in Table 2.2 explains how such an ñignoranceò happens. There 

are three AGVs and three work centers on the shop floor. At time t1=0, request (1,1) is observed, while 

Product 2 is in Work Center 2, and Product 3 is in Work Center 3. Since processing times are fixed, it can 

be predicted that request (2,2) will be ready at time t3=2, and request (3,3) will be ready at time t4=3. 

AGVs are assigned for all these three requests, with different travel times according to each productôs 

processing route. It can be observed in Table 3 that before any of the AGVs arrive at their next 

destination, a new request (1,4) is generated at t2=1.5; however, since all AGVs are busy, this is ñignoredò 

until an AGV becomes idle.    

Table 2.2 Considered certain requests with unconsidered requests in between 

Time  Request Planned AGV assignment AGV travel time to next destination 

0 (1,1) AGV 1 2 

1.5 (1,4) No AGV is assigned - 

2 (2,2) AGV 2 2.5 

3 (3,3) AGV 3 2.5 
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As a result, when we observe that all work centers are busy, we can optimize the AGV assignment for 

these certain requests, and temporarily ñignoreò the requests generated by products entering work centers 

after current assignments. The ignored requests will  be responded to after optimized transportations are 

completed. Compared to responding with assignment of one AGV until single requests are generated, 

assigning AGVs to a group of potential requests is expected to reduce the total waiting time of most 

products, although some products might experience longer waiting time. Different processing and 

transportation time on the shop floor lead to different consequence of adopting such an AGV assignment 

strategy. Intuitively, quicker transportation and slower processing can take more advantage of this 

strategy, while slower transportation and quicker processing would lead to more ñignoranceò and finally 

enlarge the total product waiting time.  

In this strategy, the dispatching is determined by an optimization model, and the optimization-based 

assignment initiates when all work centers are detected to be busy for the first time. If work centers can 

process multiple products simultaneously, the optimization is for products that are getting ready as the 

earliest at each work center. The dispatching and transportation order is executed strictly according to the 

optimization result until the last optimized transportation starts. Before that, if a new transportation 

request is generated, AGVs are assigned according to classic assignment rules when the vehicles become 

idle. When all optimized transportation is completed, the optimization process repeats.  

The optimization model in the OAW strategy actually solves the assignment problem in Figure 2.4, in 

which arc weight enw equals the waiting time of the product at Work Center w if the corresponding vehicle 

n is assigned to it. It should be noted that since in AGVs are can be assigned without existing requests, the 

nodes no longer represent requests and AGVs like in Figure 2.3 but AGVs and Work Centers. 
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Figure 2.4 Network of assignment of OAW 

Definition of link weights in Figure 2.4 relies on accurate record of agentsô real-time status. Therefore, to 

implement this strategy in an AGV system, the remaining time of a work center w having one job ready 

for pickup ὸ, and remaining time of AGV n becoming idle ὸ should be monitored and recorded. In 

modern shop floors, this information can be easily collected, hence link weights cnw in Figure 2.4 can be 

calculated by Equation (2.6). 

ὧ
ὸ ὸ

Ὠ

ὺ
                                      ὭὪ ὸ ὸ

άὥὼπȟ
Ὠ

ὺ
ὸ ὸ                        ὭὪ ὸ ὸ    

 (2.6) 

For any possible assignment of AGV n to Work Center w, a vehicle and a job always become ready 

earlier than another; hence, Equation (2.6) differentiates the two cases. If the processing of job in Work 

Center w finishes after AGV n becoming idle (ὸ ὸ), the waiting time of this job is the summation of 

the time difference and AGVôs travel time. If AGV n becoming idle happens earlier (ὸ ὸ), the 

waiting time is the travel time of AGVôs remaining trip to the work center, or 0 if the AGV has arrived 

and waited at the work center. 

With link weights calculated with Equation (2.6), Equations (2.7) to (2.9) can be formulated as a typical 

linear integer programing model of assignment problem in network optimization.  
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ÍÉÎ ὧ ὼ

ȟ

 (2.7) 

                                            s.t. ὼ ρ   ᶅύ (2.8) 

ὼ ρ   ᶅὲ (2.9) 

Equation (2.7) is the objective function minimizing the total waiting time of jobs in the decision horizon. 

Equation (2.8) and (2.9) are the constraints that ensure in one optimization only one AGV can be assigned 

to each work center and each AGV can only have one destination. 

Models (2.7) to (2.9) on shop floor scale can be quickly solved by commercial solvers like CPLEX. The 

operation mechanism of the AGV system in practice and simulation is further introduced in Section 2.4. 

2.2 Architecture of Shop Floor Simulation for AGV Dispatching 

A simulation model for a shop floor is constructed based on data from Egbelu (1987) in AnyLogic, shown 

in Figure 2.5. The shop floor operates one 8-hour shift per day with eight work centers on the shop floor, 

and five types of jobs are produced. Each type of job has unique processing routes and processing times at 

each work center. Table 6 includes the job types and processing routes. 
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Figure 2.5 Simulation model of shop floor in AnyLogic 

All products must go through Work Center 1 at the beginning and never come back, and this means 

unloading does not happen at this work center. Moreover, products finish all processing at Work Center 8, 

but the processing time at this work center is always 0. Besides the core processing machine, Work 

Centers 2 to 7 consist of AGV loading and unloading ports with corresponding queues, and a queue for 

AGVs that arrive earlier than product ready for transportation. There is no product transported by AGVs 

out of Work Center 8; therefore, there is no AGV queuing area at Work Center 8, either. 

At the beginning, all AGVs are kept at Work Center 1, which serves as the depot of vehicles. When 

products are ready at the loading port of work centers, transportation requests are generated. Destination 

of an AGV with loaded product is determined by the product type, and once the product is unloaded, the 

AGV decide whether to stop and stay idle at the current work center, or go to another work center to load 

additional products. If there is a transportation task assigned to it by optimization during its last trip and 
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saved in its memory, it will go to the corresponding work center for product loading. If multiple tasks are 

saved in the memory, the AGV will follow a first-come-first-serve rule to decide the next destination.  

Table 2.3 Attributes of jobs on shop floor 

Job type Processing route Processing time per unit load (T/minutes) 

1 1,3,2,5,8 1.0, 5.0, 10.0, 7.0, 0.0 

2 1,6,5,4,7,8 1.0, 8.0, 5.0, 10.0, 7.0, 0.0 

3 1,4,6,8 1.0, 9.0, 9.0, 0.0 

4 1,7,2,3,8 1.0, 10.0, 5.0, 10.0, 7.0, 0.0 

5 1,2,6,3,5,7,4,8 1.0, 8.0, 7.0, 9.0, 10.0, 8.0, 5.0, 0.0 

The processing time for all products at each work center are assumed to be fixed values, and we make this 

the basis of our AGV dispatching optimization, since only with fixed processing time, the statuses of 

products and vehicles are predictable.  

In reality, the processing time is not always a fixed value, but it is quite likely to be a random distribution. 

We take the fixed processing time as an assumption to formulate the models; however, in the case study 

we relaxed this assumption by replacing the fixed processing time T in Table 2.3 with a uniform 

distribution U[T-1,T+1] to make the scenario closer to reality. Good performance of the proposed models 

on uncertain processing time is a proof of robustness to production uncertainty. 

Figure 2.6 and Figure 2.7 demonstrate how OA2 and OAW strategies work on the shop floor. At the 

beginning, AGVs are dispatched by RV/STT, and the optimization based dispatching strategies are not 

activated until all jobs enter the shop floor and randomness from job arrivals are eliminated. When OA2 

and OAW are activated, models are called repeatedly and solved with solution enumeration or 

commercial solvers, and solutions are transformed into transportation tasks distributed to corresponding 

AGVs.  
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Figure 2.6 OA2 mechanism on shop floor 
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Figure 2.7 OAW mechanism on shop floor 

In Egbelu (1987), the optimal AGV fleet sizes are calculated with different AGV assignment rules, and all 

of the combinations of fleet size and assignment rules should complete all jobs in 8 hours. Thirteen AGVs 

can complete all jobs on time with the RV/RW rule and nine AGVs complete all jobs on time with 

NV/STT. Simulation experiments are carried out in our model, and resulting makespans show that with 

thirteen AGVs and the RV/RW strategy adopted, all jobs are completed in approximately 8 hours, as well 

as with nine AGVs and the NV/STT strategy. There is only limited data for validation, but the 

consistency of makespans proves that the simulation model of the shop floor is a good replication of the 

reality, and with this model, AGV strategies can be compared in the case study. 
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2.3 Case Study Result 

A case study is carried out for the simulation model described in Section 2.4 to evaluate the optimization 

models described in Section 2.3. All AGV dispatching strategies, including OA2, OAW, and classic AGV 

assignment rules RV/RW and NV/STT, are implemented and compared. For each given AGV fleet size, 

all strategies are tested with 20 replication simulation experiments, and the makespan in each experiment 

and waiting time of each job are recorded. Figure 2.8 and Figure 2.9 show how average makespans and 

jobsô waiting times fluctuate with AGV fleet size changing, and the fluctuations reflect characteristics of 

different AGV dispatching strategies, which can be used to evaluate their performances on the shop floor.  

 

Figure 2.8 Shop floor makespan of all AGV dispatching strategies 

Except for rare cases, the NV/STT strategy always leads to shortest makespan, but when the AGV fleet 

size grows, the makespan under other AGV assignment strategies get close to makespan under NV/STT. 

This can be partly explained by the definition of makespan, which is finish time of the last product. When 

there are only limited number of products on the shop floor, more AGVs are likely to be idle compared to 

busy production period, hence NV/STT rule can maximally reduce the waiting time of these products 
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since there are more choices. On the other hand, in the entire production horizon, impact of long waiting 

time of products in busy production period is not reflected in the makespan because long waiting time can 

be made up by following transportation.  

For most realistic shop floors, where minimizing makespan is usually the management objective, other 

AGV dispatching strategies may not be attractive; however, if some other criteria are valued on shop 

floors, the situation becomes different.   

 

Figure 2.9 Jobsô average waiting time of all AGV dispatching strategies 

From Figure 2.9, it can be observed that AGV dispatching strategies OA2 and OAW based on network 

optimization shorten the productsô waiting time in different scenarios, respectively. Relatively speaking, 

with a large number of transportation requests on the shop floor, the waiting times that proposed 

strategies can save is quite significant. Figure 2.9 leads to an empirical conclusion that the threshold of an 

AGV fleet size differentiating the validity of OA2 and OAW lies approximately at the number of work 

centers with both loading and unloading port.  
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When an AGV fleet is small, OA2 leads to shortest average waiting time of products, but its performance 

becomes worse when the AGV fleet size grows. This is foreseeable since OA2 only focus on two 

transportation requests that are the closest to the current time point of decision making, and all possible 

dispatching are enumerated. The growing fleet size means more complicated future scenario and larger 

bias from global optimality by OA2.  

For large AGV fleet sizes, OAW is the best among all strategies on controlling product waiting time and 

the trend is quite stable. The theoretic evidence is that although the optimization in OAW still cannot 

guarantee global optimality, it reaches the local optimality in a moderate-length period. It better utilizes 

the growing feasible solution set when AGV fleet size increase compared to other AGV dispatching 

strategies. We can also observe that OAW is never the worst among all strategies under all AGV fleet 

sizes.  

By observing the productsô waiting time distribution under different AGV dispatching strategies in Figure 

2.10, we can summarize more positive characteristics of the proposed strategies, and they are extremely 

important when some special management objectives are pursued on the shop floor, such as keeping all 

productsô waiting times under a tolerable threshold, etc.  
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(a)                                                                                   (b) 

   

(c)                                                                                   (d) 

 
Figure 2.10 Waiting time distribution under all AGV dispatching strategies 

In Figure 2.10 (a), OA2 under small AGV fleet size is superior to other strategies according to its shortest 

longest waiting time of products and high probability of short waiting time. Such a superiority of OA2 is 

less significant when AGV fleet size increases but OAW shows its advantage. In Figure 2.10 (b), (c), and 

(d), OAW has the shortest longest waiting time and aggregating short waiting time in all AGV fleet size 
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scenarios, and the more AGVs there are, the more superior OAW is for the given shop floor. 

Theoretically speaking, classic AGV assignment rules including RV/RW and NV/STT can never 

eliminate the possibility that certain products beyond their one-step decision making horizon wait 

extremely long, especially for shop floors with large number of products and work centers; however, the 

proposed strategies avoid this scenario to a large degree.  

Consequently, we can conclude that if the primary objective of the shop floor in this case study is 

controlling the productsô waiting time, OAW and OA2 strategies can be considered instead of the 

commonly adopted RV/RW and NV/STT strategies. This is especially true for shop floors like what is in 

this case study, where processing times in work centers are fixed or quite stable, and minimizing 

productsô waiting time for transportation also means minimizing productsô total time spent in the 

production system.  

2.4 Conclusion  

In this paper, two AGV dispatching strategies based on network optimization of assignment problems are 

developed for shop floors. Classic AGV assignment rules make decisions for each single request, while 

the basic idea of our optimization based AGV dispatching strategies considers one more step further than 

classic intuitive AGV assignment rules, such that the system can be more efficient. The two strategies 

have different dispatching decision horizons, and the case study results show that the two strategies also 

have different performance in minimizing a productôs waiting time for transportation with various AGV 

fleet sizes. In practice, if a shop floor has a small sized AGV fleet (empirically this means the number of 

AGVs is fewer than number of work centers), adopting an OA2 strategy will shorten the productsô 

waiting time, while for shop floors with a large AGV fleet (empirically this means number of AGVs is 

larger than the number of work centers), OAW can save more waiting time of products. Minimizing 

waiting time of products for transportation is significant for products such as heated steel and frozen food 

that cannot be exposed to room temperature or natural environments for too long.  
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If OA2 and OAW are implemented on shop floors, one technique characteristic must be paid enough 

attention for useful application. There cannot be too many sources of randomness in the system, 

especially in vehicle traveling, product processing, and job arrivals. If vehicle traveling time or product 

processing time are not fixed values, they should be limited in a narrow interval. This is one of the major 

assumptions of this paper, and without this, the optimization models can lead to significant bias on 

dispatching solution efficiency, which might be even worse than random assignments. For job arrivals, 

there are two conditions that must be met to successfully implement OA2 and OAW strategies. First, all 

jobs enter the system and get started shortly after production begins. If the first condition is not met, there 

must be a long delay between pairs of entering jobs such that in this time interval, statuses of agents in the 

shop floor are predictable. With these two conditions, the AGV dispatching strategies based on 

deterministic optimization in this paper are valid, therefore they can be regarded as the limitation of the 

work so far, but still adoptable in applications if the conditions are met and the production scenario asks 

for short job waiting time. 
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CHAPTER 3. A VEHICLE REDUCING ALGORITHM FOR JOB SHOP SCHEDULING WITH 

MATERIAL HANDLING  

 

This chapter is organized as follows: the mathematical formulation for the JSSMH problem and an 

example of visualization of simultaneous job and vehicle schedule are described in Section 3.1. In Section 

3.2, the proposed algorithm of this study is introduced and presented with an example. In Section 3.3, 

computational experiments are carried out to validate the proposed algorithm, and the optimization results 

are compared to existing solution techniques in the body of literature. The chapter concludes with a 

summary of research findings. 

3.1 Model Formulation for Job Shop Scheduling with Material Handling 

The JSSMH problem addressed in this study can be described as following: on a shop floor, a set of jobs J 

is processed on a set of machines, and each machine can only process one job at a time. Each job j has a 

unique processing route consisting of a set of operations Ὅ to complete the manufacturing process, and for 

each operation i, a fixed time pi is required. A fleet of AGVs is available on the shop floor to handle jobs 

at the L/U or after the completion of each operation at the machine. A fixed loaded travel time ti is 

incurred for each job before the start of next operation i. If one AGV takes operation h and i successively, 

the deadheading trip takes another fixed period † . The objective is to achieve the shortest makespan 

which is defined by completion time of the last operation on the shop floor. 

The JSSMH problem can be formulated as a linear programming model based on Bilge and Ulusoy 

(1995). In the formulation there is not any specific subscript representing jobs for variables and 

parameters because all operations are sequentially indexed. There are no subscripts representing AGVs 

either because the routes of AGVs are represented by distinct visiting sequences. 

Table 3.1 and 3.2 include all necessary notations in modeling of JSSMH, and a linearized model of 

JSSMH is formulated with Equation (3.1) to (3.16).  
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Table 3.1: Notations of sets and parameters 

ὐ Set of jobs. 

ὲ Number of operations of job j. 

ὔ Total number of operations of the jobs indexed before j.  

ὲ Total number of operations of all jobs. ὲ В ὲ Ὦɴὐ . 

Ὅ Index set of all operations. Ὅ ρȟςȟȣȟὲ. 

Ὅ Set of operations associated with job j. 

ὍӶ Index set of operations excluding operation i and succeeding operations of the same job. 

Ὅ Index set of operations excluding operation h and preceding operations of the same job. 

ὑ AGV fleet size. 

ὴ Processing time of operation i. 

ὸ Travel time to loaded trip heading for operation i. 

†  Travel time of deadheading trip from machine of operation h to machine of operation i. 

 

Table 3.2: Notations of variables 

Z Job shop makespan. 

ὧ Completion time of operation i. 

Ὕ Completion time of loaded trip for operation i. 

ή  Binary variable. ή ρ, if  ὧ ὧȟὶ ί 

ὼ  
Binary variable. ὼ ρ, if a vehicle is assigned for deadheading trip from operation 

h to i. 

ὼ  Binary variable. ὼ ρ, if a vehicle starts from L/U to operation i as its first trip. 

ὼ  Binary variable. ὼ ρ, if a vehicle returns to L/U from operation h as its last trip. 

Ὀ  
Auxiliary variable for time between AGV handling of operation i and h that both belong to 

job j.  

Ὓ  
Auxiliary variable for time between AGV handling of operation h and the first operation of 

job j. 

ίὸ Auxiliary variable for start time of operation i. 
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A mixed integer programming (MILP) model is formulated for the JSSMH with Equations (3.1) to (3.16) 

as the following. The optimal solution will include the routes of AGVs, the job processing sequences, and 

operations completion time. 

ÍÉÎὤ  (3.1) 

subject to:   

ὤ ὧ   ᶅὮɴ ὐ (3.2) 

ὧ ὧ ὴ ὸ  ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (3.3) 

ὧ ὴ ὸ   ᶅὮɴ ὐ (3.4) 

ρ Ὄ† ὧ ὧ ὴ Ὄή            

ρ Ὄ† ὧ ὧ ὴ Ὄρ ή
  ᶅὶɴ Ὅȟίɴ ὍȟὮȟὯᶰὐȟὮ Ὧ (3.5) 

ὼ ὼ

ᶰӶ

ρ  ᶅὭɴ Ὅ (3.6) 

ὼ ὼ

ᶰ

ρ  ᶅὬɴ Ὅ (3.7) 

ὼ

ᶰ

ὑ  (3.8) 

ὼ

ᶰ

ὼ

ᶰ

π  (3.9) 

Ὕ ὧ ὴ  ᶅὭɴ Ὅ (3.10) 

Ὕ ὸ ὧ   ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (3.11) 

Ὀ  Ὕ †ȟ  ὭὪ ὼȟ ρ  ᶅὭȟὭ ρɴ ὍȟὬɴ ὍӶ Ὦɴ ὐ (3.12a) 

Ὀ  π ὭὪ ὼȟ π  ᶅὭȟὭ ρɴ ὍȟὬɴ ὍӶ Ὦɴ ὐ (3.12b) 

Ὕ ὸ ὼ†ȟ Ὀ

ᶰӶ

  ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (3.12c) 

Ὓ  Ὕ †  ὭὪ ὼȟ ρ  ᶅὬɴ ὍӶ ȟὮɴ ὐ (3.13a) 

Ὓ  π ὭὪ ὼȟ π  ᶅὬɴ ὍӶ ȟὮɴ ὐ (3.13b) 

Ὕ ὸ Ὓ

ᶰӶ

 
 ᶅὮɴ ὐ (3.13c) 

ὼὝ ὼ†   ᶅὭɴ Ὅ (3.14) 

ὼȟήɴ πȟρ  (3.15) 
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Ὕȟὧȟὤ π  (3.16) 

Equations (3.1) to (3.5) are based on a typical Job Shop Scheduling (JSP) model (Pinedo, 2009), while an 

additional parameter ὸ is used to consider necessary transportation time of a job from one machine to 

another for a pair of consecutive operations. When jobs finish their last operation, they are immediately 

removed from the machine, and AGVs do not handle them back to L/U, hence the makespan is defined as 

the finish time of the last operation on the shop floor in Equation (3.2). Binary variable x represents the 

routes of AGVs, which indicates the sequential relationship of each operation. Equations (3.6) and (3.7) 

regulate the strict one-by-one following relationship between each pair of operations. Equation (3.8) 

defines that the number of AGV routes is limited by AGV fleet size. Equation (3.9) ensures that for each 

AGV, there must be a starting trip as well as an ending trip. Equation (3.10) means the operation must 

begin after the job arrival to the machine. Note that Equation (3.10) is not an equation because it is 

possible that in an optimal schedule, an early-arriving job waits at the machine until another job whose 

operation arrives later to start first. The operation sequence of one job is ensured in Equation (3.11). 

Equations (3.12) and (3.13) are linearized conditional constraints to replace the nonlinear constraints by 

Bilge and Ulusoy (1995), which indicate the impact of previous trips on the next trip of each AGV. 

Equation (3.14) is used to start timing when a vehicle leaves the L/U with the first job it conveys, and 

such a constraint means a default initial condition that AGVs are at the L/U until they leave for the first 

job handling task. Sometimes the trip of vehicles between L/U and machines is not considered (Khayat, 

Langevin, & Riopel, 2006); however, we decide to include these trips in the optimization thus reflecting 

the production reality  (Y. J. Xiao, Zheng, & Jia, 2014). 

The scheduling model defined in Equations (3.1) to (3.16) can be solved by commercial solvers to get the 

optimal schedule for small sized problem. However, it either takes a long time or becomes 

computationally intractable when the problem size increases, which is why an efficient solution technique 

is necessary. 



36 
 

3.2 A Heuristic Algorithm Based on Degressive Vehicle Fleet for JSSMH 

The job shop planning configuration is based on the case study in Bilge and Ulusoy (1995), which were 

also used by Abdelmaguid et al. (2004) Khayat, Langevin, and Riopel (2006), Umar et al. (2015), Zheng, 

Xiao, and Seo (2016) and Ahmadi-Javid and Hooshangi-Tabrizi (2017) for model formulation and 

algorithm validation. Table 3.3 and 3.4 include Layout 1 and Job Set 1 as an example. 

Table 3.3 Layout 1 

 L/U M1 M2 M3 M4 

L/U 0 6 8 10 12 

M1 12 0 6 8 10 

M2 10 6 0 6 8 

M3 8 8 6 0 6 

M4 6 10 8 6 0 

 

Table 3.4 Job Set 1 

 1 2 3 

Job 1 (J1): 1.M1(8) 2.M2(16) 3.M4(12) 

Job 2 (J2): 4.M1(20) 5.M3(10) 6.M2(18) 

Job 3 (J3): 7.M3(12) 8.M4(8) 9.M1(15) 

Job 4 (J4): 10.M4(14) 11.M2(18) - 

Job 5 (J5): 12.M3(10) 13.M1(15) - 

 

In Layout 1, there are 4 machines and 1 Loading/Unloading station on the shop floor. Each job is initially 

at L/U, and each job must follow the production sequence defined in Table 3.4 with corresponding 

processing times in the parenthesis. For example, M1(8) means the job is processed by M1, and the 

processing time is 8 minutes including loading, processing and unloading. The items in Table 3.4 are 

indexed to keep consistent with modeling notation in the formulation defined in Section 3.1. 
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3.2.1 Proposed Visualization of Job and Vehicle Scheduling 

In this section, we begin with a new visualization method for job and vehicle scheduling to explain the 

mechanism of the proposed algorithm. In the existing body of literature, the activity of vehicles for 

material handling on shop floors is presented by treating them as machines. Additional timelines are 

added for vehicles and time blocks are marked with job names and travel types (Abdelmaguid et al., 

2004; Baruwa & Piera, 2016), which is good to present the vehicle schedules but the presentation of 

vehicle routes relies on text markers. The impact of vehicle movement on the job scheduling cannot be 

easily read from the schedule, hence modifying the vehicle routing and observing the outcome is 

inconvenient. The proposed method improves the visualization of vehicle scheduling and routing, with 

Gantt chart implemented with arrows representing vehicle routes. 

The scheduling of the job set in Table 3.4 on shop floor represented by Table 3.3 with 2 AGVs is solved 

on NEOS server by CPLEX, and we present the result in Figure 3.1. 

 

Figure 3.1: An example of schedule of Job Set 1 and AGV route in Layout 1 (2 AGVs) 

In Figure 3.1, each operation is marked with its index and job name, and unlike existing literatures, we 

add arrows on the Gantt chart of jobs to represent the movement of vehicles so that the interaction of jobs, 

machines, and vehicles can be observed simultaneously. In this example, arrows in different colors 

represent different AGVs. Solid arrows are for loaded trips and dashed arrows are for deadheading trips. 

AGVs do not stop in the middle of a path, hence all arrows in Figure1 start and end at machines. Note that 

initially AGVs are all standby at the L/U. 
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The length of an arrow does not reflect the travel time of AGVs, but its projection on the time axis does. 

If arrows for a single AGV are always connected, it means the next trip starts immediately when last one 

finishes. If interruptions happen between arrows, the vehicle waits at the current machine until the next 

trip starts. Less and shorter interruptions in the schedule usually indicate a higher vehicle utilization. 

Vehicle utilization can be  measured by many criteria (Beamon, 1998), and in this research, the utilization 

Ua of a single AGV a is evaluated by Equation (3.17) with makespan Z and traveling time TT. 

Ὗ
ὝὝ ὝὝ

ὤ
  ᶅὥᶰὃ (3.17) 

In Equation (3.17), A is the set of available AGVs. ὝὝ and ὝὝ stand for the traveling time of a loaded 

and a deadheading trip respectively for AGV a. With a given makespan Z, the relative utilization of 

AGVs can be directly compared with total traveling time. 

In Figure 3.1, heads and tails of solid arrows are always connected with the starting and finishing point of 

an operation of the same job, because a loaded AGV cannot change the transported job in the middle of 

its trip. If an arrow adheres with operations, it means the corresponding AGV does not wait for either 

loading or unloading at a machine. For example, for the Blue AGV handling Operation 7 and 8 for Job J3 

between M3 and M4, it picks up or drops off the job as soon as it arrives M3 and M4, respectively. For an 

example of AGV or job waiting, the solid arrow of the second to the last trip of Red AGV is for handling 

of Job J2, while it does not adhere to either Operation 5 or 6. This means when Operation 5 finishes, the 

assigned Red AGV has not arrived. When the corresponding Job J2 is conveyed to M2 from M3, the 

machine is occupied by Job J1, and does not finish until 2 minutes after J2ôs arrival, hence Operation 6 

does not start until Operation 2 finishes. 

With the AGV route embedded job schedule visualization, we can discuss the proposed algorithm to solve 

JSSMH. 
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3.2.2 Degressive Vehicle Fleet Algorithm (DVFA)  

For two AGV fleets in similar fleet sizes, with the scheduling of one AGV fleet, the scheduling of the 

other can be found quickly by adjusting the assignments of operations to AGVs. This heuristic is adopted 

in the proposed DVFA. 

Usually the target fleet size is much less than the number of jobs. In DVFA, we start from a feasible 

solution with an AGV fleet in a size same as the number of jobs, in which the feasible solution can be 

derived by assigning one AGV to the operations of one job. AGV fleet size is iteratively reduced until the 

targeted size is reached. In each iteration, the operations need efficient reassignment to vehicles, and the 

makespan increasing due to degressive AGV fleet and consequent operation reassignment should be 

controlled. In initialization, the AGV fleet size is equal to job set size, such that a ñtheoretic optimal 

scheduleò (TOS) can be acquired by letting each AGV uniquely follows a job in its entire production 

horizon on the shop floor. In TOS, makespan is equal to the solution from just solving Equations (3.1) to 

(3.5) as a job shop scheduling problem with the additional parameter of considering necessary 

transportation time. Figure 3.2 shows such a TOS solution of Job Set 1 on Shop Floor Layout 1, in which 

Red AGV follows J1, Blue AGV follows J2, Green AGV follows J3, Purple AGV follows J4, and Golden 

AGV follows J5. 

 

Figure 3.2 Example of schedule of Job Set 1 and AGV route in Layout 1 (5 AGVs) 
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Beginning with TOS, we can reduce the AGV number and reassign operations. Figure 3.3 introduces a 

general framework of the heuristic algorithm designed for JSSMH based on reducing the AGV number 

iteratively.  

Start

Initialize job schedule with TOS.

AGV fleet size meets 

Requirement?

Remove the vehicle with least utilization defined by 

Equation (3.17), mark the operations that transportation 

is completed by this vehicle as unserved operations.

End

Yes

No

Choose the unserved operation with highest priority, 

determine the AGV going to serve this operation and the 

start time of corresponding AGV traveling , update 

makespan, remove the  operation from unserved 

operations.

No more unserved 

opeartion?

No

Yes

 

Figure 3.3 General framework of Degressive Vehicle Fleet Algorithm 

Generally speaking, the proposed DVFA tries to adjust the schedule for unserved operations, while 

keeping served operations on time. In other words, the algorithm approaches to an optimal scheduling 

solution, and ensure the feasibility of incumbent scheduling solutions. 

The detailed steps of the proposed DVFA are presented below: 



41 
 

Step 0: Initialize the scheduling priority of each operation i as Prioi., Prioi = +Ð, Ὥᶅɴ Ὅ. Get targeted 

AGV fleet size as A0, solve TOS and get the minimum AGV fleet size |A| that satisfies TOS. A is the set 

of available AGV. Go to Step 1.  

(Solve the pure job scheduling problem in Equation (3.1) to (3.5) as a relaxation of JSSMH. This is the 

optimal solution with K = |J|, that the AGV fleet size equals to job set size.) 

Step 1: For current AGV fleet, calculate vehicle utilization Ὗ  with Equation (3.17). Define set Unserv 

with operations taken by AGV ar, where ὥ argÍÉÎὟ . Set Prioi = 0, ᶅ Ὥɴ ὟὲίὩὶὺ. Get current shop 

floor makespan Z, remove ar from A. Go to Step 2.  

(Reset parameter K and make constraints in Equation (3.6) unsatisfied. For operation i in Unserv, ὼ

В ὼᶰӶ π) 

Step 2: For each operation Ὥɴ ὟὲίὩὶὺ, if Ὥɴ Ὅ, Ὥ ρɴ Ὅ, and Ὥ ρɵ ὟὲίὩὶὺ, set Prioi = 1. Sort 

operations in Unserv according to operation start time. Get rank of sorted operation i as Ranki, set Prioi = 

Prioi + Ranki. Go to Step 3.  

(Operation i in Unserv are assigned priorities to satisfy the constraint in Equation (3.6). Due to the 

constraint in Equation (3.11), to minimize the impact of completion time of previous unserved operation i 

on following served operation (i+1) of the same job, operation i has higher priority. Unserved operations 

with earlier start time also deserve higher priority to minimize the impact on following operations.) 

Step 3: Find the Operation i0 that Ὥ ÁÒÇÍÉÎ
ᶰ

ὖὶὭέ. Get the operation start time ίὸ. For each vehicle 

ὥᶰὃ, get the completion time Ὕ  of a travel for operation i taken by vehicle a that is closest to ίὸ as 

well as the time Ὕ  that AGV a completes transporting i0 if starting from Ὕ   (i.e. ὼ ρ in the 

optimization model), and thus  Ὕ Ὕ †ȟ ὸ. Notate completion time of the travel for previous 

scheduled operation Ὥ that is right after operation Ὥ as Ὕ . If it was now after transportation of  Ὥ by 

vehicle a, the expected transportation completion time would be  Ὕ Ὕ †ȟ ὸ . Go to Step 4. 
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(Following constraints in Equation (3.12) and (3.13), calculate the arrival time of operation i with highest 

priority if AGV a is assigned.) 

Step 4 (operation delaying): Notate the operation right after Ὥ on the same machine as Ὥ 

¶ If ὥɱᶰὃ that Ὕ Ὕ  and Ὕ ὴ ίὸ, assign a to  Ὥ at Ὕ , followed by original 

schedule, remove Ὥ from ὟὲίὩὶὺ and go to Step 6.  

¶ If ὥɱᶰὃ that Ὕ Ὕ  and ίὸ Ὕ ὴ ίὸ ὴ , assign a to  Ὥ at Ὕ , update start 

time of operation Ὥ: ίὸᴺὝ ὴ ; remove Ὥ from ὟὲίὩὶὺ and go to Step 6. 

¶ If ὥɱᶰὃ that Ὕ Ὕ  but Ὕ ὴ ίὸ ὴ , or ɰ ὥɴ ὃ that Ὕ Ὕ , assign a to  Ὥ at 

Ὕ  and go to Step 5. 

¶ If ὥɰɴ ὃ that Ὕ Ὕ , assign a to  Ὥ at Ὕ , go to Step 5. 

(An AGV is assigned to the operation i with highest priority to satisfy the constraint in Equation (3.6), 

which has the least impact of following operations. The delaying of starting operations caused by this 

AGV reassignment is calculated based on constraints in Equation (3.10) and (3.11).) 

Step 5 (operation swapping): Notate the operation right after Ὥ on the same machine as Ὥ 

¶ Ὕ ᴺίὸ ὴ , and ίὸᴺὝ ; add Ὥ into ὟὲίὩὶὺ and set ὖὶὭέπ. Let the vehicle 

serving Ὥ skip this mission including the loaded and deadheading trip. Go to Step 6. 

(An AGV is assigned to the operation i with highest priority to satisfy the constraint in Equation (3.6), 

which has the least impact of following operations by swapping operations on the same machine, keeping 

the constraint in Equation (3.5) satisfied. The delaying of starting operations is calculated based on 

constraints in Equation (3.10) and (3.11).) 
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Step 6: If ὟὲίὩὶὺ is empty, return current job schedule and vehicle assignments and go to Step 7; 

otherwise go to Step 2. 

(One of the unsatisfied constraints for operations in Equation (3.6) is now satisfied, with corresponding 

constraints for AGVs in Equation (3.12) and (3.13) satisfied.) 

Step 7: If |A|> A0, go to Step 1; otherwise stop. 

(Check if parameter K is reset to meet the requirement of AGV fleet size.) 

A few principles should be emphasized to ensure the algorithm validity and efficiency. First, each 

operation can be marked as unserved only once at the most. This allows the algorithm to speed up and 

prevents it from entering an endless loop. Second, if multiple operations have the same priority in Step 3, 

or if multiple vehicles meet the condition, the break-even rules are adopted with the rank in Table 3.5 and 

3.6. If one rule cannot break even, then move down to next rule. 

Table 3.5 Break-even rules for selecting operations with same priority 

Rank Rule 

1 Select the operation closer to first operation of a job. 

2 Select the operation of a job with less operations. 

3 Select the operation with smaller index. 

 

Table 3.6 Break-even rules for selecting vehicles meeting same condition 

Rank Rule 

1 Select the vehicle that can arrive early for the newly assigned operation. 

2 Select the vehicle with less utilization. 

3 Select the vehicle serving less operations 

4 Select the vehicle with smaller index. 
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3.2.3 Example of Solving JSSMH with DVFA  

In this section we present an example of applying DVFA to the JSSMH problem with a schedule in 

Figure 3.1, in which the targeted AGV fleet size is 2. Figure 3.4 (a) to (e) has shown how the AGV fleet 

size is reduced to 4 from 5 step by step with DVFA, and Figure 3.5 (a) and (b) include the optimized job 

schedule with 3 and 2 AGVs. The algorithm is expected to result in a schedule similar to Figure 3.1 in 

Figure 3.5 (b) in terms of minimized makespan 

 

(a) TOS with 5 AGVs following jobs. 

 

(b) Golden AGV removed. 

 

(c) Purple AGV serves Operation 12 instead of Golden AGV. 
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(d) Operation 9 and 13 are swapped, Blue AGV takes Operation 13, Operation 6 becomes unserved. 

 

(e) Red AGV serves Operation 6 and complete scheduling. 

 
Figure 3.4 DVFA illustration for Job Set 1 and Shop Floor Layout 1 

(reducing AGV fleet size from 5 to 4). 

In Figure 3.4 (a), 5 AGVs are assigned to operations and each AGV follows a job. The TOS is achieved 

and the makespan is equal to 76. With Equation (3.17) the utilization of AGVs can be calculated, and 

Golden AGV has the lowest utilization, hence it is removed from the schedule, and Operation 12 and 13 

are marked as unserved in Figure 3.4 (b). Then Purple AGV is assigned to start Operation 12 as shown in 

Figure 3.4 (c) after it finishes handling Job 4 to start Operation 10. After that Purple AGV continuing 

handling Job 3 to start Operation 11 is found to be the most efficient, although is delayed due to previous 

reassignment. Notice that Operation 6 is also delayed, hence the makespan is increased to 78. In Figure 

3.4 (d), the Blue AGV is assigned to Operation 13. Since keeping current sequence of Operation 9 and 13 

would cause a long delaying, Operation 9 and 13 are swapped. Now unlike previous reassignment of 

Purple AGV, Blue AGV going back to continue handling Job 2 is not efficient, hence Operation 6 is 
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marked as unserved. Red AGV is found to be the best to take Operation 6 and keep current makespan, as 

shown in Figure 3.4 (e). 

 

(a) Job schedule with 3 AGVs based on DVFA. 

 

(b) Job schedule with 2 AGVs (target) based on DVFA. 

 
Figure 3.5 DVFA result for Job Set 1 in Layout 1 (3 and 2 AGVs). 

3.2.4 Optimization-based Algorithm Initialization  

Currently based on TOS, the initial vehicle assignment scheme is that each vehicle uniquely follows a 

job; however, we expect that when a vehicle is removed, the reassignments affect the vehicleôs assigned 

transportation tasks to the least degree. Therefore, with the TOS, we formulate an optimization model to 

maximize the total idle time of vehicles. During idle time, if additional transportation mission presents, it 

is more likely that a vehicle is able to take over the transportation without affecting its original succeeding 

missions. Such an idle time maximization model is formulated in Equations (3.18) to (3.21). In the 

formulation, additional binary variable yku is used to indicate whether vehicle k is assigned to operation u 

in the TOS or not. 
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ÍÁØ Ὕ ὸ Ὕ † ώ ώ
ᶰᶰᶰ ȟȟȣȟ

 

(3.18) 

Subject to   

ώ

ᶰ ȟȟȣȟ

ρ  ᶅόᶰὍ 
(3.19) 

Ὕ Ὕ ὸ † ώ  ὭὪ ώ ρ  ᶅὯɴ ρȟςȟȣȟὑȟόᶰὍȟὺɴ Ὅȟίὸ ίὸ 
(3.20) 

ώɴ πȟρ 
 (3.21) 

Equation (3.18) is the objective function maximizing the total idle time of vehicle assignment, and the 

idle time is calculated by the difference on start time of two operations assigned to the same vehicle. 

Equation (3.19) regulates that each operation can only be assigned to one vehicle. Equation (3.20) ensures 

the feasibility of vehicle assignment. If operation u and v are both assigned to vehicle k, i.e. ώ ώ

ρ, the time between arrival of the two operations must be long enough for vehicle k to travel.  

It should be noted that Model (3.18) to (3.21) must be feasible, since one intuitive feasible solution is the 

schedule that each vehicle follows a job along all its operations, like the case in Figure 3.4(a). With this 

initialization boosting method implemented, the DVFA takes longer computation time to solve the 

quadratic model (3.18) to (3.21), but the performance on minimizing makespan is expected to be 

improved.   

3.3 Computational Experiments and Analysis  

Computational experiments and comparisons have been conducted on makespan under 2 AGVs with 

other algorithms, based on shop floor layouts and job sets data of Bilge and Ulusoy (1995). There are 4 

shop floor layouts and 10 job sets, and their combinations result in 40 experimental data sets.  

The proposed DVFA is implemented in 3 steps. First ly, the pure job scheduling problem with minimum 

necessary transportation time (Equation1 (3.1) to (3.5)) is solved with CPLEX on NEOS, as the basis of 

initialization. Secondly, model (3.18) to (3.21) is solved with CPLEX as well to initialize the AGV 

assignment to operations. Finally , the vehicle-reducing iterations are executed in R version 3.1.3 (R Core 
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Team, 2015) on a personal computer with Intel Xeon 2.40 GHz CPU and 16 GB RAM. Therefore, the 

computation time of DVFA is the summation of time used by the 3 steps.  

The solution methods referred to from the literature did not report the corresponding computation time 

except for Baruwa and Piera (2016), hence the comparison on algorithm efficiency only takes place 

between their work, CPLEX and proposed DVFA. The integrated comparison is presented in Table 3.7, 

and the cases are named with EXmn representing the shop floor case of Job Set m and Lay out n. As 

references, B is the makespan of the same job set by Bilge and Ulusoy (1995), and similarly U is for 

Ulusoy, Sivrikaya-ķerifoỲlu, and Bilge (1997), A is for Abdelmaguid et al. (2004), R is for Reddy and 

Rao (2006), D is for Deroussi, Gourgand, and Tchernev (2008), Z is for Zheng, Xiao, and Seo (2016), and 

Ba is for Baruwa and Piera (2016). The integrated JSSMH problems are solved as a whole with CPLEX 

on NEOS (Czyzyk, Mesnier, & Moré, 1998; Dolan, 2001; Gropp & Moré, 1997), notated with CPLEX in 

Table 3.7. 

Table 3.7 Comparison results for the 40 test shop floor cases. 

 Makespan Computation Time (s) 

Case B U A R D Z Ba CPLEX DVFA Ba CPLEX DVFA 

EX11 96 96 96 96 96 96 96 96 96 138.5 30.58 4.85 

EX21 105 104 102 100 102 100 100 100 100 282.4 730.77 3.72 

EX31 105 105 99 99 99 99 99 99 100 27.7 176.83 7.94 

EX41 118 116 112 112 112 112 112 112 118 255.4 50803.3 4.4 

EX51 89 87 87 87 87 87 87 87 87 18.4 136.43 3.34 

EX61 120 121 118 118 118 118 118 118 134 74.7 7927.26 4.04 

EX71 119 118 115 111 111 111 111 Fail 117 549.3 - 5.81 

EX81 161 152 161 161 161 161 161 161 161 1300 27.79 7.55 

EX91 120 117 118 116 116 116 116 116 123 57 22.09 7.61 

EX101 153 150 147 147 147 146 146 146 157 115.5 7138.1 4.97 

EX12 82 82 82 82 82 82 82 82 82 39.2 4.34 3.22 

EX22 80 76 76 76 76 76 76 76 76 100.5 5.44 5.46 

EX32 88 85 85 85 85 85 85 85 91 44.9 8.3 4.18 

EX42 93 88 88 87 87 87 87 87 89 268.7 3118.96 4.19 
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EX52 69 69 69 69 69 69 69 69 69 98.7 17.82 4.55 

EX62 100 98 98 98 98 98 98 98 98 66.6 10.18 7.89 

EX72 90 85 79 79 79 79 79 79 85 2303 11915 5.17 

EX82 151 142 151 151 151 151 151 151 151 2.7 14.77 6.87 

EX92 104 102 104 102 102 102 102 102 109 284 9.69 7.77 

EX102 139 137 136 135 135 135 135 135 145 3252 161.63 6.63 

EX13 84 84 84 84 84 84 84 84 84 145.1 8.14 5.04 

EX23 86 86 86 86 86 86 86 86 86 96.6 95.98 7.03 

EX33 86 86 86 86 86 86 86 86 86 617.3 6.68 7.27 

EX43 95 91 89 89 89 89 89 89 99 216.5 3997.25 6.52 

EX53 76 75 74 74 74 74 74 74 74 139.4 83.23 3.9 

EX63 104 104 104 103 103 103 103 103 104 902.6 23.33 7.17 

EX73 91 88 86 83 83 83 83 83 90 2403 33725.1 7.14 

EX83 153 143 153 153 153 153 153 153 153 9.3 14.45 7.8 

EX93 110 105 106 105 105 105 105 105 109 54.1 10.17 4.87 

EX103 143 143 141 139 138 137 139 137 147 66.6 290.78 6.5 

EX14 108 103 103 103 103 103 103 103 103 510.2 27.67 3.89 

EX24 116 113 108 108 108 108 108 108 108 475.9 3698.61 5.93 

EX34 116 113 111 111 111 111 111 111 115 414.9 832.66 6.67 

EX44 126 126 126 126 121 121 121 121 121 452 22554.1 3.68 

EX54 99 97 96 96 96 96 96 96 96 223.2 176.06 3.16 

EX64 120 123 120 120 120 120 120 120 127 370.2 1760.19 7.7 

EX74 136 128 127 126 126 126 126 Fail 139 3598 - 7.82 

EX84 163 163 163 163 163 163 163 163 163 295.8 4681.18 6.45 

EX94 125 123 122 122 120 120 120 120 120 1266 61.69 5.66 

EX104 171 164 159 158 159 157 157 157 171 822.2 79885 5.2 

 

The makespan of B, U, A, R, D, and Z are based on Zheng, Xiao, and Seo (2016). Note that CPLEX 

failed on EX71 and EX74, which means CPLEX cannot find the optimal solution. 

Summarized from Table 3.7, the performance of DVFA on solving JSSMH is comparable to other 

techniques in terms of solution accuracy and efficiency. Generally speaking, DVFA is capable of 
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achieving optimal and near-optimal solutions with an overall optimality gap of 3.9%. DVFA solves 16 of 

the 40 cases to global optimality, and for those cases that DVFA cannot solve to global optimality, the 

average optimality gap is 6.5%. The worst case is 13.6%, when solving EX61. However, DVFA is able to 

result in a solution in significantly shorter time compared to CPLEX and Ba, and this could serve a reason 

to adopt DVFA in practice. By any solution methods, a job set has a makespan of at most 177 minutes, 

and the average makespan of all job sets solved with all methods is about 109 minutes; however, the 

solving time of Ba and CPLEX can reach as long as 60 and 1331 minutes, respectively. Such a high ratio 

of solving time and makespan is not reasonable in practice, unless job shops know the information of job 

sets in advance and there is enough time for them to complete scheduling before they start working. 

Considering the fact that shop floors are likely to be responsible for multiple job sets in a given 

production horizon, the long solving time of JSSMH might furthermore limit the application of Ba and 

CPLEX. The DVFA proposed in this paper has advantage in this sense, that a schedule close to optimality 

can be acquired in short time, hence the production can be executed quickly even if there is not much 

allowed time for scheduling, such as online and real time scheduling scenarios. 

The main reason of DVFA efficiency should be attribute to the logic defined in the algorithm, and in the 

program, it is likely to be a set of simple conditional judgement statements. Like all other solution 

techniques, the performance of DVFA is influenced by problem size, and for JSSMH, the number of 

operations can be used as an indicator of problem size. Figure 3.6 (a) and (b) record the solving time and 

optimality gap of DVFA on different numbers of operations of job sets. Essentially, both the solving time 

and the optimality gap increase when there are more operations in the optimized job set (as shown by the 

trend lines). Specifically, for small job sets with less operations, DVFA is able to reach the global 

optimality in short time.  
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                                             (a)                                                                                       (b) 

 
Figure 3.6 DVFA performance against operation number 

3.4 Conclusion 

In this study, the JSSMH problem that jobs and vehicles are scheduled and routed simultaneously is 

studied, and a heuristic algorithm is proposed to solve the problem instead of exact commercial solvers to 

achieve a good quality solution in short time.  

The algorithm starts with the scenario that the vehicle fleet size is large enough that the job schedule 

solved by the pure JSP model can be achieved. A quadratic optimization model is formulated to initialize 

the job and vehicle schedule, then vehicle fleet size is iteratively reduced. In each iteration, whenever one 

vehicle is removed from the system, the operations served by the removed vehicle are reassigned to 

remaining vehicles according a series of heuristic rules. The algorithm ends when all of the operations are 

served by vehicles and the number of remaining vehicles is equal to the original requirement. 

The major contribution of this research can be summarized as follows. Firstly, we linearized the JSSMH 

model of Bilge and Ulusoy (1995) with conditional constraints to replace the original nonlinear 

constraints, and added on a constraint to start timing as soon as the first job is taken out of the 
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Loading/Unloading station (L/U). We can solve the reasonable sized problem to optimality with CPLEX, 

which is used as a reference in a case study. Secondly, a new visualization method is proposed based on 

traditional Gantt charts to present the job schedule and AGV movement simultaneously, with which we 

explain how the proposed algorithm works. Different with treating vehicles as additional machines in 

Gantt charts in the existing body of literature, the proposed method explicitly presents the interaction 

between vehicles and jobs. Thirdly, a heuristic algorithm is proposed to solve JSSMH more efficiently. 

The algorithm includes an initialization with a vehicle fleet size same as the number of jobs. During each 

iteration, one vehicle is removed from the system, and a set of heuristic rules guide the operation 

reassignment to vehicles (or vehicle reassignment to operations). Finally, we designed an algorithm 

initialization boosting mechanism with an optimization model that can significantly improve the solution 

quality. The initialization counter-intuitively maximizes the idle time of vehicles, such that it is more 

likely to accommodate additional operations during the vehicle reduction step without affecting original 

transportation schedule. 
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CHAPTER 4. AGV-BASED JOB SHOP SCHEDULING WITH MATERIAL HANDLING UNDER 

VARIABLE PROCESSING TIME 

 

This chapter is organized as follows: The SP-JSSMH model considering random processing time is 

introduced in Section 4.1. In Section 4.2, the JSSMH model is modified to incorporate deteriorating 

processing time. All proposed models are validated with small datasets in Section 4.3 and a systematic 

case study based on data in the body of literature is included in Section 4.4. 

4.1 A Two-Stage Stochastic Programming for JSSMH with Random Processing Time  

The JSSMH problem we focus on in this chapter can be stated as follows: on a shop floor, a job set J is 

processed on a set of machines, where each machine can only process one job at a time. Each job j has a 

unique processing route consisting of a set Ὅ of operations to complete its manufacturing procedure, and 

for each operation i, a random processing time ὴ‚  is required where ὴ‚  follows a specific 

distribution. A fleet of AGVs is configured on the shop floor to handle each job after completion of an 

operation. A fixed loaded travel time ti is incurred for each job before the start of the next operation i, and 

deadheading trips of vehicles take another fixed period †  depending on the vehiclesô previous trip to 

operation h. The scheduling objective is to achieve the minimum expectation of makespan that is defined 

as the completion time of the last operation on the shop floor. 

A two-stage stochastic programming model is formulated to minimize the expected makespan over a 

number of scenarios, and we notate it as SP-JSSMH. The job sequences on each machine and AGV routes 

are defined as first-stage variables, and both of them do not change under uncertainty. The job arrival 

time at machines, processing completion time, and makespan of each scenario are regarded as second-

stage variables that are dependent on scenario realization. Notice that the processing start time is a hidden 

second-stage variable that is executable. Correspondingly, compared to the model in Chapter 3, both 

notation and model formulation are modified in this chapter to form into a SP model. The notations are 

included in Tables 4.1 and 4.2. Compared to Tables 3.1 and 3.2, additional and modified notations are 

bolded. The formulation of SP-JSSMH is presented with Equation (4.1) to (4.16). 
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Table 4.1 Notations of Sets and Parameters for SP-JSSMH 

ὐ Set of jobs. 

╢ Set of scenarios 

ὲ Number of operations of job j. 

ὲ Number of operations, ὲ В ὲ Ὦɴὐ . 

ὐ Index set of operations. Ὅ ρȟςȟȣȟὲ 

Ὅ Set of indices associated with job j. 

ὔ Total number of operations of the jobs indexed before j. ὔ π 

ὍӶ Index set of operations excluding operation i and succeeding operations of the same job. 

Ὅ Index set of operations excluding operation h and preceding operations of the same job. 

ὑ Number of vehicles. 

ὸ Travel time to loaded trip heading for operation i. 

†  Travel time of deadheading trip from machine of operation h to machine of operation i. 

ⱷ▼ Probability of scenarios s 

▬░
▼ Processing time of operation i in scenarios s. 

Ὄ A large number 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

Table 4.2 Notations of Variables for SP-JSSMH 

╩▼ The makespan of scenarios s. 

╬░
▼ Completion time of operation i in scenarios s. 

╣░
▼ Completion time of loaded trip for operation i in scenarios s. 

ή  
Binary variable. ή ρ if  operation r and s belong to different jobs and are on the 

same machine and r is processed earlier than s.  

ὼ  
Binary variable. ὼ ρ if a vehicle is assigned for deadheading trip from operation h 

to i. 

ὼ  Binary variable. ὼ ρ if a vehicle starts from L/U to operation i as its first trip. 

ὼ  Binary variable. ὼ ρ if a vehicle returns to L/U from operation h as its last trip. 

╓▒░▐
▼  

Auxiliary variable for time between AGV handling of operation i and h that both belong to 

job j in scenarios s. 

╒▒▐
▼ 

Auxiliary variable for time between AGV handling of operation h and the first operation of 

job j in scenarios s. 

 

ÍÉÎ ‫ὤ  (4.1) 

subject to: 

ὤ ὧ  ίᶅȟ Ὦɴ ὐ (4.2) 

ὧ ὧ ὴ ὸ ίᶅȟ ὭȟὭ ρɴ ὍȟὮɴ ὐ (4.3) 

ὧ ὴ ὸ  ίᶅȟ Ὦɴ ὐ (4.4) 

ρ Ὄ† ὧ ὧ ὴ Ὄή            

ρ Ὄ† ὧ ὧ ὴ Ὄρ ή
 ίᶅȟ όᶰὍȟὺɴ ὍȟὮȟὯᶰὐȟὮ Ὧ (4.5) 

ὼ ὼ

ᶰӶ

ρ  ᶅὭɴ Ὅ (4.6) 

ὼ ὼ

ᶰ

ρ  ᶅὬɴ Ὅ (4.7) 

ὼ

ᶰ

ὑ  (4.8) 

ὼ

ᶰ

ὼ

ᶰ

π  (4.9) 

Ὕ ὧ ὴ ίᶅȟ Ὥɴ Ὅ (4.10) 
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Ὕ ὸ ὧ  ίᶅȟ ὭȟὭ ρɴ ὍȟὮɴ ὐ (4.11) 

ừ
Ử
Ừ

Ử
ứ
Ὀ Ὕ †ȟ ὼȟ Ὄρ ὼȟ  

Ὀ Ὕ †ȟ ὼȟ Ὄρ ὼȟ

Ὀ †ȟ ὼȟ Ὄὼȟ  

Ὀ †ȟ ὼȟ Ὄὼȟ
                        

 ίᶅȟ         ὭȟὭ ρɴ ὍȟὬɴ ὍӶ Ὦɴ ὐ (4.12) 

Ὕ ὸ ὼ†ȟ Ὀ

ᶰӶ

 ίᶅȟ         ὭȟὭ ρɴ ὍȟὮɴ ὐ (4.13) 

ừ
Ử
Ừ

Ử
ứὅ Ὕ † ὼȟ Ὄ ρ ὼȟ    

ὅ Ὕ † ὼȟ Ὄ ρ ὼȟ

ὅ † ὼȟ Ὄὼȟ     

ὅ † ὼȟ Ὄὼȟ
                       

 ίᶅȟ         Ὤɴ ὍӶ ȟὮɴ ὐ (4.14) 

Ὕ ὸ ὅ

ᶰӶ

 
ίᶅȟ Ὦɴ ὐ (4.15) 

ὼὝ ὼ†  ίᶅȟ Ὥɴ Ὅ (4.16) 

ὼȟήɴ πȟρ  (4.17) 

Ὕȟὧȟὤ π  (4.18) 

Similar to the model in Chapter 3, the structure of SP-JSSMH is not significantly changed. Equations 

(4.1) to (4.5) represent a typical Job Shop Scheduling (JSP) model (Pinedo, 2009), but the variables and 

parameters are specified for different processing time scenarios. The additional parameter ὸ is to consider 

necessary transportation time of a job from one machine to another for a pair of consecutive operations. 

Unlike variable job processing time, such a travel time accomplished by AGVs are relatively constant and 

usually not influenced significantly by environmental factors. 

When jobs finish their last operation, they are immediately removed from the machine. AGVs do not 

handle the completed jobs back to L/U, hence the makespan is defined as the finish time of the last 

operation on the shop floor in all scenarios. Binary variable x represents the routes of AGVs, which 

indicates the sequential relationship of each operation. Equations (4.6) and (4.7) regulate that each 

operation can only follow one another operation. Equation (4.8) limits the number of AGV routes by 



57 
 

AGV fleet size. Equation (4.9) ensures that for each AGV, there must be a starting trip as well as an 

ending trip. 

Equation (4.10) means an operation can begin only after the job arrival to the machine. The operation 

sequence of one job is ensured in Equation (4.11). Equations (4.12) to (4.15) are linearized constraints to 

replace the nonlinear constraints by Bilge and Ulusoy (1995) containing variable product, which indicate 

the impact of previous trips on the next trip of each AGV. 

Equation (4.16) is used to start timing when a vehicle leaves the L/U with the first job it conveys. Such a 

constraint means a default initial condition that AGVs are at the L/U until they leave for the first job 

handling task. 

4.2 Job Shop Scheduling with Material Handling with Deterioration  

Deterioration is the effect that processing becoming difficult with the production proceeding, usually 

reflected by elongating processing time. When deterioration exists, the optimization of JSSMH could 

become more complicated with processing time dependency function implemented. In this section with 

discuss two types of dependency separately and propose different formulations for corresponding 

Deteriorating Job Shop Scheduling with Material Handling (D-JSSMH). 

4.2.1 Linear Deterioration of Processing Time 

Lee et al. (2010) described a deteriorating job processing time that was linearly dependent on the 

operation start time. Based on the notations in Table 4.1 and 4.2, remove the scenario subscripts and let 

variable ί denote the start time of operation i, ὴ and ὴ denote the basic and realized processing time of 

operation i, and ‗ denote the deterioration rate, the linear deteriorating processing time is described in 

Equation (4.19).  

ὴ ὴ ‗ί (4.19) 

Correspondingly, the completion time of an operation determined by start time and realized processing 

time is calculated in Equation (4.20). 
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ὧ ί ὴ ὴ ρ ‗ί (4.20) 

Therefore, the comprehensive model of D-JSSMH with linear deteriorating processing time can be 

formulated in Equation (4.21) to (4.38) as the following. 

ÍÉÎὤ  (4.21) 

subject to: 

ὤ ρ ‗ί ὴ   ᶅὮɴ ὐ (4.22) 

ί ρ ‗ί ὴ ὸ  ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (4.23) 

ί ὸ   ᶅὮɴ ὐ (4.24) 

ρ Ὄ† ί ὴ ‗ί ρ ‗ί ὴ ὴ ‗ί Ὄή            

ρ Ὄ† ί ὴ ‗ί ρ ‗ί ὴ ὴ ‗ί Ὄρ ή
 

 ᶅόᶰὍȟ

ὺɴ Ὅȟ

ὮȟὯɴ ὐȟὮ Ὧ 

(4.25) 

ὼ ὼ

ᶰӶ

ρ  ᶅὭɴ Ὅ (4.26) 

ὼ ὼ

ᶰ

ρ  ᶅὬɴ Ὅ (4.27) 

ὼ

ᶰ

ὑ  (4.28) 

ὼ

ᶰ

ὼ

ᶰ

π  (4.29) 

Ὕ ί  ᶅὭɴ Ὅ (4.30) 

Ὕ ὸ ί ὴ ‗ί   ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (4.31) 

Ὀ  Ὕ †ȟ  ὭὪ ὼȟ ρ  ᶅὭȟὭ ρɴ ὍȟὬɴ ὍӶ Ὦɴ ὐ (4.32a) 

Ὀ  π ὭὪ ὼȟ π  ᶅὭȟὭ ρɴ ὍȟὬɴ ὍӶ Ὦɴ ὐ (4.32b) 

Ὕ ὸ ὼ†ȟ Ὀ

ᶰӶ

  ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (4.33) 

Ὓ  Ὕ †  ὭὪ ὼȟ ρ  ᶅὬɴ ὍӶ ȟὮɴ ὐ (4.34a) 

Ὓ  π ὭὪ ὼȟ π  ᶅὬɴ ὍӶ ȟὮɴ ὐ (4.34b) 

Ὕ ὸ Ὓ

ᶰӶ

  ᶅὮɴ ὐ (4.35) 
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ὼὝ ὼ†   ᶅὭɴ Ὅ (4.36) 

ὼȟήɴ πȟρ  (4.37) 

Ὕȟὧȟὤ π  (4.38) 

Compared to the model formulation of SP-JSSMH, except for the scenario-based variables and 

constraints, the model of D-JSSMH in Equation (4.21) to (4.38) has two major difference. First the 

variable of operations completion time is replaced with start and realized processing time; second the 

equation groups for linearly calculating the time between consecutive AGV trips are simplified with 

conditional constraints. 

4.2.2 Exponential Deterioration of Processing Time 

In the study of X. Zhang et al. (2018), the processing time of an operation was exponentially dependent 

on the its processing sequence on the machine. Like the linear deterioration, this means the later the job 

being processed on the machine, it took longer time to complete. Additional notations are included in 

Table 4.3. 

Table 4.3 Additional notations for Exponential D-JSSMH 

M Set of machines 

Ὅ  The operations on Machine m. 

ή  
Indicator of sequence of operation u and v on the same machine. ή ρ if u is processed 

before v. 

ὶ Rank of operation i on the machine. 

ὥ Parameter of deteriorating rate. 

Note that variable q is redefined to form the operation sequence on machines. The exponential 

deterioration is described in Equation (4.39). 

ὴ ὴ ρ ὥ  (4.39) 

The optimization model of Exponential D-JSSMH is formulated in Equation (4.40) to (4.61). 

ÍÉÎὤ  (4.40) 

subject to: 
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ὤ ὧ   ᶅὮɴ ὐ (4.41) 

ὶ ȿὍȿ  ᶅάᶰὓ ȟὭɴ Ὅ  (4.42) 

ὶ ὶ ρ ὭὪ ή ρ  ᶅάᶰὓȟόȟὺɴ Ὅ  (4.43) 

ή ή ρ  ᶅάᶰὓȟόȟὺɴ Ὅ  (4.44) 

ὧ ὧ ὴρ ὥ ὸ  ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (4.45) 

ὧ ὴ ρ ὥ ὸ   ᶅὮɴ ὐ (4.46) 

ὧ ὧ ὴ ρ ὥ Ὄή            

ὧ ὧ ὴ ρ ὥ Ὄρ ή
  ᶅάᶰὓȟόȟὺɴ Ὅ  (4.47) 

ὼ ὼ

ᶰӶ

ρ  ᶅὭɴ Ὅ (4.48) 

ὼ ὼ

ᶰ

ρ  ᶅὬɴ Ὅ (4.49) 

ὼ

ᶰ

ὑ  (4.50) 

ὼ

ᶰ

ὼ

ᶰ

π  (4.51) 

Ὕ ὧ ὴρ ὥ   ᶅὭɴ Ὅ (4.52) 

Ὕ ὸ ὧ   ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (4.53) 

Ὀ  Ὕ †ȟ  ὭὪ ὼȟ ρ  ᶅὭȟὭ ρɴ ὍȟὬɴ ὍӶȟὮɴ ὐ (4.54a) 

Ὀ  π ὭὪ ὼȟ π  ᶅὭȟὭ ρɴ ὍȟὬɴ ὍӶȟὮɴ ὐ (4.54b) 

Ὕ ὸ ὼ†ȟ Ὀ

ᶰӶ

  ᶅὭȟὭ ρɴ ὍȟὮɴ ὐ (4.55) 

Ὓ  Ὕ †  ὭὪ ὼȟ ρ  ᶅὬɴ ὍӶ ȟὮɴ ὐ (4.56a) 

Ὓ  π ὭὪ ὼȟ π  ᶅὬɴ ὍӶ ȟὮɴ ὐ (4.56b) 

Ὕ ὸ Ὓ

ᶰӶ

 
 ᶅὮɴ ὐ (4.57) 

ὼὝ ὼ†   ᶅὭɴ Ὅ (4.58) 

ὼȟήɴ πȟρ  (4.59) 
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ὶɴ ὔ   (4.60) 

Ὕȟὧȟὤ π  (4.61) 

Like all previous JSSMH models, Equation (4.40) minimizes the makespan defined by Equation (4.41). 

Equation (4.42) to (4.44) define the sequence of operations on the same machine with binary variable q, 

and regulate the rank of operation r i as a unique positive integer between o and number of operation on 

the machine. Equation (4.45) to (4.47) represent the scheduling of job operations, under the realized 

processing time depending on operations ranking. Equation (4.45) to (4.47) as well as (4.52) are nonlinear 

constraints derived with Equation (4.39); however, for small D-JSSMH problems that number of 

operations on a machine is small, Equation (4.39) can be approximated with linear functions. Figure 4.1 

shows the scatter plot of Equation (4.39) given deteriorating rate a=0.32 and basic processing time p=3 in 

X. Zhang et al. (2018), and Table 4.4 recorded the linear regression function and corresponding R2 value 

with different maximum rank r (number of operations on a machine ȿὍȿ) of operations. 

 

Figure 4.1 Scatter plot of Equation (4.39) 
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Table 4.4 Linear approximation of Exponential deterioration function with p=3 and a=0.32 

ȿὍȿ Linear regression function R2 

3 ὴ πȢσχρὶ πȢφρς 0.9937 

4 ὴ πȢτσςὶ πȢυρπ 0.9851 

5 ὴ πȢυπυὶ πȢσφτ 0.9743 

6 ὴ πȢυωσὶ πȢρφπ 0.9615 

 

In JSSMH application, number of operations on a machine is usually between 3 and 6, hence a linear 

approximation is accurate enough for scheduling. For large job sets, a piecewise regression can also retain 

the linearity in each short interval benefitted by the memorylessness of exponential functions. In other 

words, if the exponential deteriorating function in Equation (4.39) is divided evenly on the axis of r, the 

linear regression on all segments will have the same R2. 

With the linear approximation exponential deteriorating function, Exponential D-JSSMH model in 

Equation (4.40) to (4.61) can be solved with commercial solvers on cases in reasonable size. 

4.3 Scheduling Example of SP-JSSMH and D-JSSMH 

With stochastic job processing time, one option of job shop scheduling is adopting the average processing 

time (Y. Y. Xiao, Zhang, Zhao, & Kaku, 2012). In JSSMH, with average processing time the sequence of 

operations and route of vehicles can be determined, while the realization of variable processing time 

could result in different operation start and end time with the solution with average processing time. With 

deteriorating job processing time, the scheduling decision can be made without considering deterioration 

although the schedule will be influenced by realized deteriorating processing time. The models proposed 

in this study can be validated by better optimal solution of considering variable processing time 

(stochastic and deteriorating) in modeling compared to simply adopting average processing time or 

ignoring the deterioration. The job shop layout is Layout 1 in Bilge and Ulusoy (1995). 

4.3.1 Job Shop Scheduling with SP-JSSMH 

We use a small job set a simple example to demonstrate the validity of SP-JSSMH in solving the problem 

under uncertain job processing time. In this case there are 3 possible scenarios of job processing time for 
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all operations, as shown in Table 4.5, and the probability of realizing each scenario is 1/3. The average 

scenario is calculated in Table 4.6, and this average scenario is used to make deterministic decisions with 

JSSMH model. 

Table 4.5 Job Set Example with processing time in 3 scenarios and 1/3 probability for each scenario 

               Operation 

Job 
1 2 3 

Job 1 

(J1) 

Scenario 1 M1(4) M2(16) M4(10) 

Scenario 2 M1(3) M2(19) M4(13) 

Scenario 3 M1(4) M2(12) M4(16) 

Job 2 

(J2) 

Scenario 1 M1(25) M3(12) M2(17) 

Scenario 2 M1(15) M3(10) M2(16) 

Scenario 3 M1(22) M3(14) M2(18) 

Job 3 

(J3) 

Scenario 1 M4(13) M2(16)  

Scenario 2 M4(16) M2(17) 

Scenario 3 M4(10) M2(15) 

Table 4.6 Average scenario of the job set example 

               Operation 

Job 
1 2 3 

Job 1 (J1) M1(3.67) M2(15.7) M4(13) 

Job 2 (J2) M1(20.7) M3(12) M2(17) 

Job 3 (J3) M4(13) M2(16)  

The performance of SP-JSSMH is compared to the deterministic JSSMH model on average makespan in 

all scenarios with the AGV and job scheduling decision. It is expected that the two models will produce 

different scheduling results in terms of AGV routing and operationsô start and end time. 

Figure 4.2(a) to (c) shows the job schedule and AGV routes solved by deterministic JSSMH based on 

average scenario in Table 4.6, which is known as the ñExpected Value problemò (EV). Note that AGV 
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routes and operations sequences on machines are fixed according to deterministic optimization results, but 

realized processing time in each scenario caused different operation start and end time. All operations are 

indexed to keep consistent with the model notations in Section 2. 

 

 

(a) Schedule in Scenario 1 

 

 

(b) Schedule in Scenario 2 
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(c) Schedule in Scenario 3 

 
Figure 4.2 Schedule based on EV solution in all scenarios 

Since the job sequence on each machine and the AGV path are defined as first-stage variables and do not 

change cross scenarios, it can be observed in Figure 4.2 that the sequences of jobs on each machine keep 

consistent over all scenarios, and the destinations of each AGV also keep the same, while there are only 

variances in time of starting and ending trips which are second-stage variables dependent on scenarios. 

Since each scenario has an equal likelihood of realization, the expectation of makespan with the EV 

solution is 85.67, which is known as ñexpected result of using the EV solutionò (EEV). 

Figure 4.3 (a) to (c) shows the job schedule and AGV paths solved by SP-JSSMH, which is known as the 

ñRecourse Problemò (RP). 

 

 

(a) Schedule in Scenario 1 
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(b) Schedule in Scenario 1 

 

 

(c) Schedule in Scenario 1 

 
Figure 4.3 Schedule based on RP solution in all scenarios 

For this small example, the sequence of jobs on machines does not change when stochastic programming 

is adopted comparing to the deterministic model; however, the AGV routes are different and lead to a 

shorter makespan in Scenario 3. Correspondingly, the makespan expectation becomes 84. Therefore, the 

Value of the Stochastic Solution (VSS) can be calculated as 1.67 according to Equation (4.62).  

ὠὛὛὉὉὠὙὖ (4.62) 

4.3.2 Job Shop Scheduling with D-JSSMH 

Like SP-JSSMH, we validate the D-JSSMH model with an example job set. The basic processing time of 

the operations of the 4 jobs are included in Table 8, which is the input of D-JSSMH. For comparison, the 

processing time in Table 4.7 is directly adopted in deterministic JSSMH models, but the real processing 
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time is deteriorating linearly or exponentially. In linear D-JSSMH, deteriorating rate ɚ=0.25. In 

exponential D-JSSMH, Ŭ=0.432, ɓ=0.51, a=0.32. 

Table 4.7 Basic processing time of the job set example 

               Operation 

Job 1 2 3 

Job 1 (J1) M1(8) M2(16) M4(12) 

Job 2 (J2) M1(20) M3(10) M2(18) 

Job 3 (J3) M4(14) M2(18)  

The performance of D-JSSMH is compared to the deterministic JSSMH model on makespan under two 

types of deterioration with the AGV and job scheduling decision. Figure 4 (a) and (b) present the resulting 

schedule of D-JSSMH and deterministic JSSMH under linear deterioration, and Figure 5 (a) and (b) 

present the schedule of two models under exponential deterioration. 

 

 

(a) Schedule produced by D-JSSMH 

 

 

(b) Schedule produced by deterministic JSSMH 

 
Figure 4.4 Schedule of example job set under linear deterioration 
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(a) Schedule produced by D-JSSMH 

 

 

(b) Schedule produced by deterministic JSSMH 

 
Figure 4.5 Schedule of example job set under exponential deterioration 

It can be observed that ignoring deterioration in JSSMH would cause delay of makespan. The bottleneck 

in this case is always Job 2 consisting of Operation 4, 5 and 6; however, when linear deterioration exists, 

deterministic JSSMH model cannot foresee that delaying operation 3 could make its processing time so 

long that it becomes the last completed operation and enlarges the makespan, On the other hand the D-

JSSMH model can deal with this by balancing the start time of all operations. Like the case of linear 

deterioration, D-JSSMH results in shorter makespan with realized exponential deteriorating processing 

time than adopting the original value of processing times in deterministic JSSMH model. Note that since 

in both cases the deterministic JSSMH model adopt the same original processing time data, the operation 

sequences and AGV routes are identical. Moreover, although there might be multiple optimal scheduling 

solution, like delivering Job 1 to Machine 4 after Operation 2 with AGV 2, the optimal makespan is 

always the same, determined by the bottleneck of processing Job 2.  
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We can conclude from Figure 4.4 and 4.5 that considering deterioration in modeling can achieve shorter 

makespan than simply making scheduling decision with average processing time. This means like the 

positive VSS of SP-JSSMH, we can also define that D-JSSMH has a positive impact on improving the 

optimal solution. 

4.4 Case study 

We tested SP-JSSMH and D-JSSMH formulation on the job shop layouts and job sets in Bilge and 

Ulusoy (1995) which has been widely adopted as a computation reference in the body of literature. There 

are 10 job sets and each includes 5 to 8 jobs. There are 4 different shop floor layouts, hence the case study 

consists of 40 cases. Each case is notated as EXmn, where m represents the index of job set and n is the 

index of shop floor layout. For example, EX41 means the combination of Job set 4 and Shop floor layout 

1. 

4.4.1 SP-JSSMH case study 

To keep consistent with the body of existing literature, the processing time of operation i is assumed to 

follow triangular distribution Triangular(0.75pi, pi , 1.25pi), where pi is the original processing time. For 

each operation, 20 samples are generated following the triangular distribution, then in one scenario the 

processing time of operations is a combination of one sample of each operation. Hence there are 20 

scenarios to reflect the stochasticity in the SP-JSSMH model. Figure 4.6 is the example of Job set 3 with 

16 operations, in which the distributions of discretized processing time approximate the corresponding 

triangular distributions. 
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Figure 4.6 Distribution of discretized processing time of Job set 3 in Bilge and Ulusoy (1995) 

The models are solved with Pyomo and CPLEX on a server with 252 GB memory and 40 CPUs, and 2 

servers with 31 GB memory and 8 CPUs. Both RP and EV solutions are solved for each case, except for 

EX71 and EX74 on which Pyomo and CPLEX fail to solve. With realized stochastic processing time, 

Figure 4.7 presents the makespan resulting from implementing RP and EV solution with a scatter plot.  
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Figure 4.7 Comparison of makespan under stochastic processing time with RP and EV solution 

If a point lies on the dash line in Figure 4.7, it means EV and RP lead to the same makespan with realized 

stochastic processing time of operations of the job set. It can be observed that all points are below the 

dash line, which means the RP solutions always result in shorter makespan than EV solutions. Averagely, 

with the RP solution of SP-JSSMH model, the makespan can be reduced for 5.4%. The most significant 

makespan reductions happen to EX31 and EX53, where 15.5 minutes or 12.3% of makespan was reduced 

compared to the corresponding EV solution. 

4.4.2 D-JSSMH case study 

Same with the validation example of D-JSSMH models, parameters associated with deteriorating rates 

applied to Bilge cases are ɚ=0.25 for linear deterioration and Ŭ=0.432, ɓ=0.51, a=0.32 for exponential 

deterioration. The solution of operation sequences and AGV routes solved by original JSSMH model and 
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D-JSSMH are implemented respectively, and the resulting makespans affected by deterioration are 

compared with each other. Models are formulated in AMPL and solved with CPLEX on NEOS public 

server, on which conditional constraints based on binary variables can be directly input without 

complicated linearization, including Equation (4.32), (4.34), (4.43), (4.54) and (4.56). Figure 4.8(a) and 

(b) present the scatter plot of makespan under different job scheduling and AGV routing solutions facing 

with deteriorating operations. 

 

(a) Makespan comparison with linearly deteriorating processing time 
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(b) Makespan comparison with exponentially deteriorating processing time 

 
Figure 4.8 Comparison of makespan under deterioration with solution of JSSMH and D-JSSMH 

Same with Figure 4.7, points below the dash line indicate solutions resulting in shorter makespan with D-

JSSMH solutions, which happen to most of the cases. In some cases, JSSMH and D-JSSMH produce the 

same job scheduling and AGV routing solutions, thus revealing identical makespan represented by the 

corresponding points lying on the dash line in Figure 8. In some cases, there are significant difference on 

makespan, for example EX82 under linear deterioration, reducing the makespan for approximately 40%. 

It can be observed that under current parameter setting, the influence of deterioration is more significant 

with the linear deteriorating function than that with exponential deteriorating function. Figure 4.9 

provides a clearer comparison for the effectiveness of modeling with deterioration. 
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Figure 4.9 Makespan difference with original JSSMH with D-JSSMH under linear and exponential 

deterioration 

In Figure 4.9, the x-axis is the number of operations in each job set. D-JSSMH with linearly deteriorating 

processing time is more effective on reducing the makespan compared to original JSSMH model. 

Furthermore, for more complicated job sets with relatively large number of operations, solutions of D-

JSSMH have obvious advantage. 
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CHAPTER 5. SUMMARY AND DISCUSSION  

 

In this dissertation, three studies in Job Shop Scheduling with Material Handling (JSSMH) are included, 

and each of the studies focuses on a specific aspect of the JSSMH problem, including AGV assignment in 

the first study, a heuristic algorithm for JSSMH in the second study, and JSSMH with variable processing 

time in the third study. With three independent but correlated chapters beginning from Chapter 2, this 

dissertation aims to provide a systematic approach for JSSMH. The contribution includes innovations in 

mathematical modeling as well as solution techniques. 

In the first study, JSSMH is regarded as the combination of a series of AGV assignment problems. 

Classic AGV assignment rules make decision when transportation requests are generated, while in our 

study AGVs are assigned with optimization models that account for current as well as future requests. 

Two AGV dispatching strategies based on combinatorial optimization of assignment problems were 

developed with different decision making horizons. In the first strategy, AGV assignment decisions are 

iteratively made for two consecutive requests, and in the second strategy the assignment decisions are 

made for all current jobs in each work station. The results of the case study show that the proposed AGV 

assignment strategies result in shorter job waiting time than classic AGV assignment rules, which is 

critical in many production scenarios, such as steel and food industries that jobs cannot be exposed to 

room temperature or natural environments for too long.  

The first study suggests two research extensions. First, besides optimization based on the assignment 

problems in network optimization, additional optimization of AGV dispatching, such as models of vehicle 

routing problems in network optimization, should have better performance in improving the job shop 

efficiency. In fact, classic JSSMH models considering job scheduling and AGV routing can be formulated 

to achieve the global optimal makespan of a job shop. The second extension direction is to focus on 

taking variability in production systems into consideration to make the optimization on the system more 
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robust, and JSSMH models can be modified to account for processing time with multiple kinds of 

variability. Both extensions are realized in the following two studies.  

In the second study, the linearized optimization model of JSSMH is formulated, and a heuristic algorithm 

is proposed to solve the problem instead of exact solution to achieve a good quality solution in a 

reasonable amount of time. Given that available AGV fleet size is smaller than the job set size, the 

proposed algorithm starts with the scenario that AGV fleet size is same as the number of jobs. With this 

assumption, the job schedule solved by the Job Shop Scheduling model without material handling would 

be a feasible solution and can be found relatively easily. In each iteration, AGV fleet size is reduced by 1, 

and whenever an AGV is removed from the system, the operations served by the removed AGV are 

reassigned to remaining AGVs according to a series of heuristic rules, while the incumbent schedule may 

also be adjusted. The algorithm ends when all the operations are handled by AGVs, and the remaining 

AGV fleet size matches with the original AGV availability. Overall the proposed algorithm can provide 

an optimal or near-optimal solution very efficiently, and this would enable real time scheduling and 

reactive scheduling on the shop floor when decisions must be made in a short time. To illustrate the 

algorithm, a new visualization method extending traditional Gantt charts is proposed to reflect the 

interaction between AGV movements and job operations. Same with the first study in this dissertation, in 

this second study, the processing time is assumed to be known with certainty, however, the uncertain 

processing time is very common in real industrial applications. This consideration of variabilities of 

processing time serves as the major motivation for the third study. 

In the third study, three models are formulated to incorporate variable processing time in job shop 

scheduling problems with material handling. Based on literature review and anecdotal information, the 

two common types of variabilities in processing time are uncertainty (randomness) and deterioration. 

Random processing time in production scheduling problems usually results from inaccurate data 

collection or uncontrollable operations, and deterioration describes the phenomenon that processing 

becomes less efficient as production moves on, resulting in longer processing time. When processing 
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times are random and follow specific distributions, a two-stage stochastic programming model is 

formulated to minimize the expectation of makespan across a series of scenarios discretized form the 

distribution of processing time. Deteriorating processing time can be linear to operation start time or 

exponential to operationsô sequence on a machine, hence when deterioration is considered in modeling, 

two models are formulated to incorporate the deterioration functions respectively. Modeling techniques 

are proposed to linearize the nonlinear model and ensure the model solvability. The necessity of this study 

is supported by comparing the makespan based proposed models and solutions of original models without 

considering the variable processing times. Based on the case studies, the proposed models considering 

variable processing time outperform the original models in minimizing the makespan under random or 

deteriorating processing time.  

To summarize, this dissertation focuses on the JSSMH problem, which has been addressed 

comprehensively with AGV assignment, classic modeling and corresponding solution techniques, and 

extensions for variable production parameters. Multiple theories are covered, including classic JSSMH 

modeling, AGV assignment problems as a simplification of JSSMH, an extension beyond JSSMH 

considering randomness and deterioration. Optimization models in different types are formulated, 

including linear programming, mix-integer linear programming and nonlinear programming. Various 

tools are utilized in the series of studies to validate and implement the proposed models and solution 

techniques. Simulation models are constructed to study the AGV movement and shop floor workflow, 

and they are utilized as the platform to test existing AGV assignment rules and proposed strategies based 

on optimization. The simulation platform also contributes to a good reference in validating the models 

and solution techniques in the following studies at early stages. The mathematical models are coded with 

various programming languages including. In the first study, models are coded with JAVA to iteratively 

solve optimization models in simulation platform. In the second study, the proposed algorithm is realized 

with R, while original models are coded with AMPL and solved on NEOS public solvers for the 

algorithm validation. In the third study, the stochastic programming model is coded with Python to call 
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Pyomo with specific algorithms for stochastic programming, while models considering deterioration are 

coded in AMPL.   

This dissertation is subject to a few limitations which suggest future research directions. First, in job shop 

scheduling studies, besides random and deteriorating processing time, shortening processing time is also 

sometimes reported, mainly due to the learning effect of workers, who become increasingly proficient in 

the with production moving on. The learning process could be described with much more complicated 

models than random distributions and deterioration functions, and the scenario can be even more 

complicated if the combinations of them are considered. Therefore, the modeling of JSSMH could be 

expanded to incorporated workersô learning effects and the mixed effects of learning, deterioration and 

randomness. Second, with specific shop floor configuration, JSSMH should meet many additional 

requirements in application, such as avoiding AGV collision, reducing AGV congestion, and instant 

response to jobs with preemption; therefore the JSSMH model ask for further modification and this might 

bring more challenge to computation. Third, there are some JSSMH cases that are extremely difficult for 

commercial solvers and need special attention, hence better solution techniques could be developed in 

future research to ensure solvability of JSSMH models and its extensions.  
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