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ABSTRACT

Job Shop Scheduling with Material Handling hetracted increasing attentian both industry and
academiagspecially with the inception dfdustry 4.0 and smart manufacturing. A smart manufacturing
systemcalls for efficient andeffective production panning. On a typical modern shop floor, jobs of
various types follow certain processing rou@®ughmachinesor work centersand automated guided
vehicles (AGVs) are utilized tbandle thgobs. In this research, the optimization of a shop fleith
AGV is carried outand ve also consider the planning scenanmalervariable processing timef jobs

The goal is tominimize the shop flooproductionmakesparor other specific criteria correlated with
makespanby scheduhg the operation®f job processingand routing the AGVs This dissertation

includesthreeresearch studies that will constitute dgctoralwork.

In the first study we discuss a simplified case in which the scheduling problem is reformulated into a
vehicle dispatchingasignmen} problem. A few AGV dispatching strategies are proposed based on the
deterministic optimization ofietworkassignment problems. The AGV dispatching strategies take future
transportation requests into consideration and optimally configure traasportesources such that
material handling can be more efficient than those adopting classic AGV assignment rules in which only
the current request is considered. The strategies are demonatidtedlidatedvith a case study based

on a shop floor in lgrature and compared classic AGVassignmentules. The results shothat AGV
dispatchingwith adoption of the proposed strategy has better performarsenoa specificriterions like
minimizing job wating time

In the ®condstudy, an efficient heuristic algorithm for classic Job Shop Scheduling with Material
Handling is proposedrlypically, the job shop scheduling problem and material handling problem are
studied separately due to the complexity of both problems. Howeweesideing these two types of
decisions in the same model offers benefits since the decisions are related to each other. In this research,
we aim to study the scheduling b operations together with th&GV routing/schedulingand a

formulation as well as sdion techniques are proposékhe proposedheuristicalgorithm starts from an

vii



optimaljob shop schedulingolutionwithout limiting thesize of AGV fleet, and iteratively reduces the
number of available vehicles until the fleet sizequalto the origind requirements. The computational
experiments suggest that compared to existing solution techniques in literature, the proposed algorithm

can achieve comparable solution quality on makespan with much kiyheutationakfficiency.

In the thirdstudy, we take the variability of processing time into consideration in optimizing job shop
scheduling with material handling. Variability caused by random effects and deterioration is discussed,
and a series of models are developed to accommodate random andradetgriprocessing time
respectively. With random processing time, the model is formulated as a Stochastic Programming Job
Shop Scheduling with Material Handling model, and with deteriorating processing time the model can be
nonlinear under specific deterating functions. Based on a widely adopted dataset in existing literature,
the stochastic programming mode&lere solved wh Pyomo, andmodels with deteriorationwere
linearized and solved with CPLEX. By considering variable processing time, the JSSMd#i mad

better adapto real production scenarios
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CHAPTER 1. GENERAL INTRODUCTION

1.1 ResearcltBackground

Production schedulinig essentiain achievingoptimal performance on a manufacturing sHopr, andit

is well known that jobshop scheduling problems are computationally challenging. Wimatterial
handling is not onsidered in theplanning processthe problemis reduced tothe classic Job Shop
Scheduling (JSS) problemvhich is difficult to solve even fosmallsized problems(Pinedo, 2009)
Additionally, it is importantto consider transportation of materials and jobtsveen multiplenachines o
work centersJob Shop Scheduling with Material Handlifgs SMH) problemaims to consider job shop
scheduling and material handling decisions in the same frameworthiaratings additionaimodeling

and computationathallenges.

Using automated guidedrehicles AGVs) on shop floorshas becomean important trend irthe
manufacturing industry due to easier coneslwell as theslimination of human errofCarlo, Vis, &
Roodbergen, 2014)AGVs are also playing significant roles in many other areas such as container
terminals and warehouseand theyprove to be effective in increasingthe efficiency of logistics and
warehousing system3his serves as one of the majoptivationsfor this dissertation work. ltsi our
intention that this dissertation would shed lights on the efficiency of adop@Wysystemsespecially in

scheduling of modern smart manufacturing shop floors.

On a manufacturinghop floor each job is processed on a set of machinesritainseqienceaccording
to the job type Nowadaysjob shop$ control and planningare mainly done electronicallyand the
material handlingprocessrelies on robots or AGY In the body of literaturesush a systenis also
defined as &lexible Manufacturing System (FM$rowne, Dubois, Rathmill, Sethi, & Stecke, 1984; El
Maraghy, 2006)The goal ofplanning andlecision making foFMS typically focuseson minimizing the
makesparfHan, Xing, Chen, Lei, & Wang, 2014; Kumar, Haleem, @& Singh, 2015)and JSSMH is
a representativplanning scenario in theMS. The JSSMH problem can eewedas a combination of

1



JSS and a vehicle scheduling/vehictauting (VS/VR) problem, both acknowledged as complicated
optimization problemand proved to be NRard (Bafos, Ortega, Gil, Marquez, & De Toro, 2013; Doh,

Yu, & Kim, 2013) Research interests on JSSMH has been increasing and a variety of optimization

methods have been propossithceAGVsointroduction to the manufacturirghop floors n t he 19900 s

Limited attention has been paid to the production scheduling problems that job processing time is
variable, which has been reflected many production scen&@ben human activity is involved in job
processing, the job processing time can be affected kighbiday of human manipulation, andlps
themselves can have inherent variability in processing timeMVtabable processing time has not been
considered in job shop scheduling when material handling is part of decision making. With material
handling sygeem as an integral part of production, it is essential to take this into consideration when

making production decisions

The three research studies in tHissertatiorfit into three scenarios aiISSMH In the first studywe

focus on the AGV planning prédm, in which the JSSMH problem is simplifiedo be a vehicle
dispatching/assignment problem. The second stathgiders the job shop scheduling and AGV routing
simultaneously with a comprehensivelSSMH optimizatiormodel In the third studywe considetthe
JSSMH undervariable processing time, whidbrings additional difficulty to solving the scheduling
problem, henca stochastic programming model and models involving deteriorating processing time are

developed based atassic JSSMH.

1.2 IntroductionandLiteratureReview

For the AGV dispatchingroblem in the first study, we propose a serieAGV dispatching strategies
that are based on network optimizati@amd shortenjob-waiting times In the second study, a
comprehensive JSSMH model is formulated anheuristic algorithm is proposed to efficiently find a
solution close to optimality. The model is extended to deal vétiability of job processing in the third

study.



The three studies are distinct according to the scenarios, but also associategictvidgther inherently.
The literature review is algaresentedeparatelyn each of the subsectians

1.2.1. AGV Dispatching

Given a predetermined job shop schedaleset of classic AG\assignmentules were developed by
Egbelu and Tanchoco (198#hat guide the response and movement of AGVs on shop floors when
transportatiorrequestsarrive. Classic AGVassignmentules are executed when a vehicle becomes idle
(vehicle nitiated) or gob is ready to be transported (work center initiatddle AGV assignmentules
decidewhich AGV shouldrespond tothe current transportation request when there are several idle
AGVs, or whichrequestan idle AGVshouldrespondwvhen there are several awaiting requebahle 1.1
summarizeghe classic AGV assignment rules.combined strategy of RV/IRW and NV/STi$ most
commonly adopted in practi@nd serves as thebenchmarkof comparisorto the proposed strategies in

our reseach.

Table 11: Classic AGV assignment rules

Work Center Initiated Assignment Rule | Vehicle Initiated Assignment Rule

Random Vehicle (RV) Random Work Center (RW)

Nearest Vehicle (NV) Shortest Travel Time (STT)

FarthesWehicle (FV) Longest Travel Timel(TT)

Longest Idle Vehicle (LIV) Maximum Outgoing Queue Size (MOQS)

Least Utilized Vehicle (LUV) Minimum Remaining Outgoing Queue Space (MRO(

First ComeFirst Serve (FCFS)

Unit Load Shop Arrival Time (ULSAT)

Whenan AGV becomes idle or when one job is ready at the output port of a work cemisiom® on

AGV assignmentire maddbased on lassicrulesin Table 1.1 In each assignment decision, there is a
matching between one AGV and one requisbther wordsthe classic AGV assignment rulesspond

to one requesat a time Such a short decision horizon brings convenience to AGV programmers, and

applying classic AGV assignment ruleseective considering the frequent and complicated material



flows on the shp floor. This strategy is probably not the most efficient, however, since programmable
AGV systems enable shop floor operators to accomplish material handling in a more efficient way by

storing and processing more information in AQ¥bbas, Mohamed, & Hafez, 2014)

Vehicle assignmerroblem ha its application irmore areas other than shop floors such as container
terminals or smart warehous@sonfessore, Fabiano, & Liotta, 2013; J. Kim, Choe, & Ryu, 2013; L. H.
Lee, Chew, Tan, & Wang, 2010; Luo & Wu, 2015; Luo, Wu, & Mendes, 2016; Vis, 2BQ&hermore,
besidesheuristicassignment rules, optimizations methd@sealsobeendeveloped to accomplish AGV
movement optimization ina limited or rolling time horizon(Fauadi, Yahaya, & Murata, 2013;
Fazlollahtabar, 2016 However, unlike AGV planning problems in container terminals, AGV dispaichin

on shop floors has a vital characteristic that makes the problem more complicated. In container terminals,
containers are transported by AGVs only once, from one storage area (can be a ship) to another. For shop
floors on the other hand, jobs are loaded! unloaded, usually by different vehicles, between different
work centers multiple times due to sequential processiagacteristic Consequently, there are more
decision variables in AGV dispatching problems on shop floors than in container teriloedever,

the decision variables and decision making conditions are correlated, i.e., for the same current request,
different AGV dispatching decisions might lead to a different timing and sequence of future requests,

which makes the problem even more ctiogted.

Besides théraditional heuristidbased approacMathematical programminbgasel approaches have been
proposed Multi-objective optimization was adopted by many researchers to meet multiple criteria on
shop floor and container termingls Kim et al., 2013; U A Umar, Ariffin, Ismail, & Tang, 201GV
optimization models usually include integer variables; hence, the problem could usually be described with
integer programming models such as set partitiotfngs. Kim, Chung, & Jae, 2003nd minimum cost

flow networks(Confessore et al., 2013; Joe, Gan, & Lewis, 20Ddferent models have resulted in
different solution techniques, including arithmetic calcula{iBgbelu, 1987)simulation(Wang, Guan,

Shao, & Ullah, 2014)exact solution algorithmg§Tanaka, Nishi, & Inuiguchi2010) and heuristic



algorithms (Nageswararao, Rao, & Rangajanardhana, 20A@)ost all dispatching modelminimize

makespan or waiting timgonfessore et al., 2013; Joe et al., 2014; J. Kim et al., 2013; Pisuchpen, 2012)

In this study, v developed two AGV dispatching strategies based on assignment @ ablaatwork
optimization for a shop floor where the status of vehicles akas@bs (product3 in work centers are
predictable. Firsy, we consider two requests in a row when the first loa been realizeand second
one is predied hence it is expected to be more efficient than only considering current recpesida

we observe the status of products at all work centers, and optimize the comprehensive AGV assignment

The case study is based Egbelu(1987) The product batches are large enough to observe the validity of
proposed AGV assignment rules, and iagpropriate to implemerdn simulation platform Results in
Egbelu(1987) also acts as a reference to validate the simulation mimledbped in this studyThe
packageCPLEX isutilized in JAVA-basedsimulation platform AnyLogic wherolving theoptimization
models in proposed AGV dispatching stragsgIn the dynamic production processprresponding
parameters keep updatingnd are pased tomodelsto be solved repeatedlyThe performance of our
AGYV dispatching strategies are compared witssicrules in scenarios with different AGV fleet sizes,

and it proved that our optimization is validsultng in shorter materiglproduct)waiting time.

1.2.2. DeterministicJob Shop Scheduling withMaterialHandling

The JSSMH problem can be viewed as a combination of a job shop scheduling (JSS) and a vehicle
scheduling (VS) or vehicle routing (VR) problems, which have both been recognized as complicated
decision making problemg§Bafios et al., 2013; Doh et al.,, 2013)hese two problems have been
extensively studied in the existing body of literature. For JSS problewasiedy of techniquesanging

from exact methods to hybrid techniques have been proposed siAbere 19506
Jmnes and C.Rabel(1999) by the end of last centurgnd Chaudhry and Khaii2016) more recently

Typical solution techniques of JSS include classic exact algorithmsbiéeechandbound (Ashour &

Hiremath, 1973and genetic algorithm@ezzella, Morganti, and Ciasche&2008) VS/VR problems is



also known to be NfRard(Lenstra & Kan, 1981)and recent solution technique studies for VS/VR focus
on efficient heuristics such as evolutionary algoritG@hiang & Lin, 2013)and simulatiorbased

approach{Villarreal, GarzaReyes, & Kumar, 2016)

Optimization of JSSMH has mainly been studied for small size manufacturing shop Wbdesrecent
advancement of computational resources has reinvigorated the research in the JISSMH Bilgaemnd

Ulusoy (1995) formulated a nonlinear programming optimization model and proposed a heuristic time
window-based algorithm to solve the problem, and following this work, various models have been
proposedXie & Allen, 2015) Typically, JSSMH models aim to minimize production makespan, either

as a sole objective function or as a vital optimization criterion in the-oljkictive settings. The essence

of JSSMH modelgonsists of a set of job scheduling constraints that determines operations sequences on
machines, and a set of constraints that determines the routing of AGVs. Additional constraints may be
adopted considering shop floor conditions such as path cons{fimyy & Groflin, 2016; Wang et al.,
2014)and task preemptiofibang & Nguyen, 2017; Izabela Nielsen, Dang, Nielsen, & Pawlewski, 2014)
Variations of JSSMH models include different presentation of vehicle move(AbntadiJavid &
HooshangiTabrizi, 2017) or adoption of different modeling methodologies such as constraint
programming(Novas & Henning, 2014and Petri net§Baruwa & Piera, 2016)The classic JSSMH

problem has been proved to be-N&d(Na, Woo, & Lee, 2016)

The solution techniques to JSSMH in the body of literature are mainly heuristic based and specifically
genetic algorithms. When the JSSMH problem was firstly formul&iégke and Ulusoy1995)derived a

time window of job pickup at machines, which was used to regulate the movement of vebietesissi,
Gourgand, and Tcheev (2008)implemented thredifferent metaheuristicalgorithmincluding iterated

local search, simulated annealing, and a hybrid of thesedwbe JSSMH problenReddy and Rao
(2006) formulated the problem into a mutibjective model for scheduling both the vehicles and
machines, and the problem was solved with evolutionary algorithbuelmaguid et al(2004) proposed

a hybrid approactof heuristic and genetic algorithms that greedily search the vehicle starting operation to



solve the simultaneous vehicle améchine scheduling moduledhmadiJavid and Hooshangiabrizi
(2015)developed an algorithm with analogyaparchic societyand the authors applied this algorithm to
JSSMH considering employee timetabling in a follopr study (AhmadiJavid & Hooshangrabrizi,
2017) Zheng, Xiao, and Se(016) applied Tabu Search to the JSSMH probl®&aruwa and Piera
(2016)proposed @etrinetsbased model formulation for JISSMH and reported good performance. They

also reported detailed CPU time of the solution, which was lacking in the body of literature

In this study,the model formulation for JSSMH problem is based on the model propositigbyand

Ulusoy (1995) We applied a linearization to the formulation with conditional constraints to replace the
original nonlinear constraints so thaetmodel can be solved with commercial solvers such as CPLEX,
and we added a constraint to start timing as soon as the first job is taken out of the Loading/Unloading
station (L/U). The results were used as a case study validation and for comparisoizaflptimesults

based on the proposed algorithm is compared to existing solution techniques in literature, and the

performance of the proposed model is justified by its high efficiency and good solution accuracy

Besides, @ explain the mechanism of theoposed algorithm, a new visualization method is adopted
based on traditional Gantt charts to present the job schedule and AGV movement simultaneously, and we
use it to explain how the proposed algorithm works with examples. The new visualization calhthims
information in traditional vehickémplemented Gantt charts in which vehicles are treated as additional
machines; however, the routes and schedules of AGV diedhe shop flooare explicitly presented.
Optimization results based on the proposdégbrithm is compared to existing solution techniques in
literature, and the performance of the proposed model is justified by its high efficiency and good solution

accuracy
1.2.3. JSSMH withVariable Processing Time

Limited attention has been paid to the production scheduling problems that job processing time is

variable, which has been reflected many production scenarios. As mentioned in some previous studies in



JSSMH, when human activity is involved in job procegsie job processing time can be affected by
variability of human manipulation, such as random redundant motion or slowing down due to tiredness
(Fink et al., 2014, Liu, Fan, Zhao, & Wang, 201dpbs themselves can have inherent variability in
processing time too. For exam e , met al products6é6 operation ti me
(Yang, Chen, Wei, & Chen, 2018ps well as industrial chemical procesg@®nfill, Espuna, &
Puigjaner, 2005)There are two common types of variation reported in the bodiecdtlure, processing

time in random distribution and deteriorating processing time. However, variable processing time has not
been considered in job shop scheduling when material handling is part of decision making. With material
handling system as an égral part of production, it is essential to take this into consideration when

making production decisions

Random processing time in production scheduling problems usually results from inaccurate data
collection or uncontrollable operatiorSakawa and Kubota (2008pplied genetic algorithms to fuzzy
programming for multobjective job shop scheduling problems in whiclcanain processing time and

due date were introduced, and in the case study each operation had three possible realized processing
times in triangular distributiorBonfill, Espuna, & Puigjaner (2003prmulated a twestage stochastic
programming model based on job shop scheduling for chemical processes where reaction time is
uniformed distributed. Such models were also described as Stochastic Job Shop Scheduling (SJSS)
problems, while the material handling was not included and it was often assumed that operations could
start immediately after completion of the previous operation. In reality, introducing material handling to
the optimized solution of SJSS will make theolgem more realistic;however, also much more
complicated. Hence simulation has been commonly utilized when randomness exists in (J&SKIH

Allen, 2015). With a large number of experiments, simulation could help in developing heuristic shop
floor management strategyang et al., 2014)The strategy can also be flexible to implement operation
mechanisms, such as behavior r(leg, Eheart, Cai, & Braden, 2011; Y. Zhang, Huang, Sun, & Yang,

2014)and optimizatiorbased decision makir{@lmeder, Preusse& Hartl, 2009; Sacone & Siri, 2009)



Deterioration reflects the phenomenon that job processing becomes longer as the production process goes.
Deterioration was studied first lfyupta and Gupta (1988) steel rolling mills. Following that, a variety

of researchers studied deterioration i gilnop scheduling problems in various production scenarios, such

as single machin@Gawiejnowicz, Lee, Lin, & Wu, 2011jwo-maching(W. C. Lee, Shiau, Chen, & Wu,

2010) and parallel machine based job shop schedudgHuang, Wang, & Ji, 204). Deterioration

brought additional difficulty to optimally scheduling the jobs hence some heuristic solution techniques
were also propose@uo, Hsu, & Yang, 2012; Rustogi & Strusevich, 201®) deteriorating job
processing scenario, the processing time is, to a large degree, dependent on starting time of the operation,
and researchers have reported ipldtdependency relationships. The simplest case is that the processing
time is linear to the operation start tif\y/. C. Lee et al., 2010put it al® common that processing time

can be exponential to the processing sequence ofJolghang, Wu, Lin, & Wu, 2018)In this study

both dependency relationships are discussed with corresponding model formulation of. JISSMH

The major contribution of this research can be summarizedllasvs. Firstly, we introduce variable
processing time to the formulation of JSSMH. The model formulation has been derived to reflect real
production practice, including the production scenario with random and deteriorating processing time.
Secondly, weproposed the Stochastic Programming based JSSMHS$SMH) solution techniques to

find the expected shortest makespan when job processing times are random, and solvelE8MEEP
models with Pyomo. Thirdly, we propose a series of models for differenhdepey functions when
deterioration exists, and the models are solvable with CPLEX including the formulation with linear
dependency function and that with exponential dependency function but can be linearized by

reformulating the model

1.3 DissertatiorStructure
The remaider of thedissertatioris organized as follows
Chapter 2presentsa few proposed AGV dispatching strategies in which the shop floor can be planned

with a large number of jobs and potential uncertaintidse strategiesare based on deterministic



optimization of assignment problenin network optimization, and w#h these strategies, AGVs are
assigned to work centers based on mathematical programming models miniméioil waiting time

of jobs in a decision horizon in wh the status of vehicles as well gsbs in work centers can be

predicted. The strategies are demonstrated in a case study based on a shop floor in literarere and
compared with classic AGV assignment rules including random assignment and neacéstshehiest

travel time rule. The results show that hybrid strategies based on the proposed dispatching strategies and
classic assignment rules outperform pure classic strategy in mininp@bsy wai ting ti me on

floor.

Chapter3 presents an effient algorithm to solve deterministic JSSMFhe proposed algorithm starts

from an optimal solution undex large vehicle fleet, and iteratively redgdte number of available

vehicles until the fleet sizis equalto the original requirements. In eacteiation, one vehicle is removed

from the incumbent schedule, and remaining vehicles are reassigtiegittansportation of operations
according to a set of specially designed heuristic ralkésyhile the schedule is simultaneously adjusted

due tovehicle reassignment. The algorithm stops when all operations are served and the AGV fleet size
meetsthe job shop requiremestA quadratic optimization model is formulated to initialize the vehicle
assignmentThe algorithm is compared to existing sotyimethods in literature on optimized production
makespan and solution efficiency based on the same data sets, and the results suggest that the proposed

algorithm can achieve comparable solution quality on makespan with much higher efficiency.

Chapter 4 dewnstrates the validity afonsidering variable processing time in optimization of JSSMH. A
two-stage stochastic programmingpdel is formulatedo account for randomly distributed processing
time, and two additional models are formulated for different ribgttion scenariasThe models are
validated with small job set examples, ar toptimized shop floor makesmamvith solutions of
proposed models ammmparedo the makespans with solutions of classic JSSMH excluding randomness
or deterioration of proasing time in modeling.The proposed modelprove to be superior in

performancewvith the realization of variable processing time
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The structureand relationship between the studies in this dissertainrberepresenteavith Figurel.1.

Paper3 Stochastic and
(Chapter) Deteriorating JSSMH ™

T ~
N
h N
Variable Processing Time  |dea AGVs can move without reques
| A

N
~N
Paper 1 Job Shop Scheduling
(Chapter) with Material Handling |4—Idea Large AGV Fleet — Paper0
3 (JSSMH
e
e
e
7~
Larger Problem New AGV Dispatching Rule
7 g g
v <
Paper?2 Vehide D . - <
(Chapten) ehicle Dispatching

Figure 11: Research Structure

(S. Huang, Brown, & Hu, 2017; S. Huang & Hu, 2017a, 2017b, 2018)

Paper O:

Huang, S., Brown, C., & Hu, G. (2017). Shop Floor AGV Assignment Optimization with Uncertain
Request Arrival. In K. Coperich, E. Cudney, & H. Nembhard (EBs9d¢eedings of the 2017 IIE Annual
ConferencePittsburgh.

Paper 1.

Huang, S., & Hu, G. (2017bAutomated Guided Vehicle Dispatching Based on Network Optimization

Shop FloorsinternationalJournal of Planning and SchedulintynderReview
Paper2:

Huang, S., & Hu, G. (2017a) Degressive Vehicle Fleet based Heuristic Algorithm for Job Shop

Scheduling with Material Handlingnternational Journal of Production Resear@i® RoundReview

Paper 3:
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Huang, S., & Hu, G. (2018Job Shop Scheduling with AGVs under Variable Processing,Time

Progres.

CHAPTER2. AUTOMATED GUIDED VEHICLE DISPATCHING BASED ON NETWORK
OPTIMIZATION ON SHOP FLOORS

Thecontents in this chaet is organized as follows: two optimizatibased strategies are formulated and
their application scenarios are discusse8ection 21 with two subsectionseparatelyln Sectior2.2, all
AGYV dispatching strategies are implemented in the simulation plgtionchcompared to each other in a
case studysummarized in Section 2.3his chapterconcludes with a summary of research findings and

futureworks

2.1 AGV Dispatching Based on Network Optimization

The complexity of AGV dispatching problems is mainly because of sequential decision making and the
dependence of future decision making conditions and current decisions. The complexity increases when
more shop floor components (work centers, vehicles, products etc.) are included, and classibyrequest
request assignment rules are highly likely to be biased from global optimality. AssumifigehaesiR

is described bfr=(w, p), meaning produgt has finished processing in Work Centerand travel time of

AGV j for transporting reque® is Tj, the tree in Figure 2.1 of two sequential requests demonstrates the
nonoptimality of classic rule NV/STTin which Solid arrows are real AGV assignmemtder NV/STT,

while dash arrows are alternative assignments

Ri=(1,1)
ﬁ.G"u"Z AGV1
=2) (Ty=1
1.2) ,A' (Tiz 11 }\‘?Rz 2.1)
ﬂGqu (Ta=1] (To=3) AGV1
L J
Tyt To=3 Ty #Tz=4

Figure 21 Two sequential requests and AGV assignment.
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When requesR; is generated, there are two AGVs that can be assigned, and different dispatching can
lead to different time and place of the next reqiRdiecause of different product processing time, shop
floor layout, AGV speed, etc. Assume that at the beginnindgy A@&Vs 1 and 2 are in the same depot,

and AGV 1 is known to be quicker than AGV 2 for the transportatioR §T11 < T1z). Then AGV 1 is
assigned under NV/STT and results in a new regdesAGVY 1 also takedR; since it is the nearest
vehicle and the associated travel tim@4is Consequently, the total travel time of vehiclesTig«T21).
However, there is another combination of sequential AGV assignments which is marked with dash lines
in Figurel, and it lads to shorter total vehicle travel time, but such a strategy is not adopted by NV/STT
since AGV 2 takes a longer time to transpgrthan AGV 1. Classical AGV assignment rules excluding
random assignment, like NV/STT adopted in this example, are nohalghecause they take only one

step searching the decision tree lkigure 21.

Thus to search a dispatching solution consisting of sequential AGV assignthanis closer to global
optimality, we should look further beyond a single current requesth ghat the problem can be
formulated into mathematical programming models. However, the correlation between decision variables
(dispatched AGVs) and parameters (dispatching decision making conditions) means that the model is
highly likely to be nonlineaand difficult to solve. This is probably the reason why the adoption of classic

AGYV heuristic assignment rules have been the focus of shop floor AGV dispatching.

Although we cannot take too many future requests into consideration, considering more thsastittne
applicable because in automated shop floors, future statuses of work centers, products, and vehicles are
predictable based on current status and operating pararfititexdo,2009) Two strategies are proposed,

and both of them consider more than one futageiesto shorten the material productwaiting time for
transpotation. The difference between decision horizons makes two formulations distinct; thus, solution
technques are different. The objective of both models is to minimize total waiting time for being loaded

by a vehicle of all product#ll notations for model formulation are includedTiable 21.
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Table 21 Notations of AGV dispatching models.

Ses
N Set of AGVs.
M Set of requests in th&GV dispatching decision horizon
w Set ofwork centes.
Indices
¢ Index of an AGVE N pltfB Fed s .
w Index ofa work centerd ¥ plth8 Fan s.
i i request in theptimizedtime horizon.
¢hQ An assignment oAGV n to request.
i Index of arc assignment FQ
Parameters
Q Travel distance of AG\A to work centefv.
0O Fixed distance between work cente@ndw.
© Travel time of AGVn for requesit.
Q Waiting time of product at Work Centerfor AGV n.
0 Ther™t i me p oi n tstatisibchdackedhiGtheptonizedtime horizon.
0 AGYV speed.
Decision variables
i Bi nary‘ vari abl e. nifassighed to eequsis ginsne abd o
p, otherwisew TL

The whole production period can be divided into two periods with the time point that all products enter
the shop floor and start waiting for the processing procedure. At the beginning of production period,
initial products arrive on the shop floor randomly and stay in the initialization zone with unlimited
capacity, hence requests for AGVs are uncetafiore the arrivals finish. When all products enter the
system, the randomness is eliminated, such thatudeeeding transportation requests are predictéile

the first periodrandomnesss considered angequests are respondetth classicAGV assignment rules.
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In the second periogiroductstatis is predictablesince processing time, vehicle speed, andclehoutes

are assumed to be fixed, therefore AGVs can be dispatched according to corresponding prediction
2.1.1 2-requesOptimizationAssignmenttrategy (OA2)

First, we consider one step further, jwe optimally dispatch AG¥for the current transportation request

as well asthe following requesthat is predictable. In the example Bigure 2.1, when requesR;: is
generated, we can predict where and when the next reguestll be, by enumeration of AGV
assignments tdér;. After that we can evaluate the outcome of assigning each AGV to corresponding
requestR, based on the assignment of AGV Rg and make the decision that is optimal to these two

sequential requests. In real operations, such a process repeats every tinmecuasiis generated.

We focus on two requests in a row rather than considering more sequential requests because of the
complexity of enumeration brought by correlation between variables and parameters. The dependency can

be demonstrated by a simple exdenp Figure2.2.

Request AGV

Figure 22 Assignment network of two sequential requests with three AGVs

There arethree AGVs for two requests from two work centeircs connecting requests and AGVs
represent assignment of AGVhe arc weightsci, is the travel distance of AGY for loadingrequest.
The assignmerns expected toninimize the total travel distancendhencet he corresponding

total waiting time is also minimized.
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The difference between such an assignment probleraandmon assignment problem is thefixed

arc weightc, and this difference is a reflection of correlation between decision variables and decision
making conditions (parameters) in AGV dispatching feois For instance, let binary denote the
assignmentsthen in assignmentii=1 andx»;=1, AGV 1 is assigned first to request 1 then to request 2;
and in assignmentiz=1 andx»;=1, AGV 2 is assigned to request 1 and AGV 1 is assigned to request 2
simultaneously In these two assignments, AGV 1 travels different distances to request 2, whiclcmeans

has two different values.

Such a dependency of parameters on varidblethe AGV assignment optimizatiaa quite difficult to
describe byan explicit function due to nonlineashop floor layout and timing. At any moment, we can
capture thestatusegpositiors) of AGVs, but their distances to all other places at a certain time point after
an assignment can only be described by drhdn correspondencEor example, at timpointt;, AGV 1

is somewhere betweaffork Center 1 (WC1) andlVork Center 2 (WC2), and its distance to WCXJis.

If AGV 1 is assigned to a work center fat & time pointt; 6 0 ,AGV 16s dWGQGltisanc e
formulated as Equain (2.1), which is correlated with the assignment:at

Q 0 00 QoW i QOHDHE

® Q 0 00 "OOWQNI | QA

2.1)

As a result, the model formulation woulddoeevery compicated if we model the problem into a pure
linear programming modeln which extensivelinearization is necessary for tloenditional distance
between AGVs and work centetEnumeration should be the most efficient solution method if we only
considertwo requests in a row; however, if we consider more sequential requests, enumeration would
take more time toeachthe optimal solution. Consequently, we only constderrequests in a row in our
optimization practice in this paper. For any AGV fleet size care model the situation inamassignment

problem in network optimizatio(Bertsekas, 1998Jike the generalized netwoik Figure2.3.
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Fequest AGV

Figure 23 Assignment network 2 sequential requestsMAdsVs

Equations 2.2) to 2.5 consist of a standard formulation of the assignment probldrigire 2.3. We

consider two requests in a row; therefoeguals to 1 or 2 in our case.

i ET Ow (2.2)
R
s.t. ® plQ (23)
O plQ (2.4)
O Qo (25)

Equation (2.2) is the objective function minimizing the total waiting time of the two products. Constraint
(2.3) and (2.4) ensure that at the decisia@kimg time point each AGV cdoe assigned to multiple work
centersdbuteach work center can only takeeoAGV. Equation (2.5) mearise arc weights are dependent

on decision variablesith an implicit relationship

Modelrepresented by Equati@B.2) to 2.5) can be easily solved on simulation platfotmgsenumeration

due to a limited number of variables asdnple model formulation, and can lpgogrammed in
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centralized AGV controlling systems or in each ABY simple searching loops. Unlike classic AGV
assignment rules, OA2 also enables assigning requests to AGVs that have not arrived at any work center,
andnew tasks are saved in an AGVO6s memory, such th
immediately start the next triguller and Lond2016)developed similar systems with customized AGV.

The operation mechanism of the AGV system proposed in this paper is furtbduastd inSection2.4.

2.1.2 All-work-centerOptimizationAssignmenttrategy (OAW)

Besides assigning AGVs for current requests generated by products ready for transportation, for products
in processing, AGVs can be assigned for future requests. If AGVs can be assigned without requests
generated by ready products, some ready productd faiyto request an AGV with immediate response

since all AGVs are on the way to other work centers. We still define reRa€et p) which is from

Work Centew by Producpp, and example in Table 2.2 explains hc
are tiree AGVs and three work centers on the shop floor. At tir® request (1,1) is observed, while

Product 2 is in Work Center 2, and Product 3 is in Work Center 3. Since processing times are fixed, it can
be predicted that request (2,2) will be readyimett;=2, and request (3,3) will be ready at tinge3.

AGVs are assigned for all these three requests,
processing route. It can be observed in Table 3 that before any of the AGVs arrive at their next
destination, a new request (1,4) is generatégkat . 5 ; however, since all AGVs

until an AGV becomes idle

Table 22 Considered certain requests with unconsidered requests in between

Time Request | Planned AGV assignmer AGV travel time to next d&ination
0 (1,2) AGV 1 2

15 (1,4) No AGV is assigned -

2 (2,2) AGV 2 2.5

3 (3,3) AGV 3 2.5
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As a result, when we observe that all work centers are busy, we can optimize the AGV assignment for
these certain requests, and temporarily Aignoreo
after current assignments. The ignored requedisbe respondedo after optimizediransportationsre

completed Compared to responding with assignment of one AGV until single requests are generated,
assigning AGVs to a group of potential requests is expected to reduce the total waiting time of most
products, although some products migitperiencelonger waiting time. Different processing and
transportation time on the shop floor lead to different consequence of adopting such an AGV assignment
strategy. Intuitively, quicker transportation and sloweocpssing can take more advantage of this
strategy, while slower transportation and quicker procesgiogu | d | ead t o more Aigno

enlarge the total product waiting time

In this strategy, the dispatching is determined by an optimizatiorelmadd the optimizatichased
assignment initiates when all work centers are detected to be busy for the first time. If work centers can
process multiple products simultaneously, the optimization is for products that are getting ready as the
earliest at ach work center. The dispatching and transportation order is executed strictly according to the
optimization result until the last optimized transportation starts. Before that, if a new transportation
request is generated, AGVs are assigned accordingdsiclassignment rules when the vehicles become

idle. When all optimized transportation is completed, the optimization process repeats

The optimization model in the OAW strategy actually solves the assignment problem in Figure 2.4, in
which arc weightnw equals the waiting time of the product at Work Centérthe corresponding vehicle
nis assigned to it. It should be noted that since in AGVs are can be assigned without existing tequests

nodes no longer represartuests and AGVs like in Figuke3 but AGVs and Work Centers
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AGVY Work center

Figure 24 Network of assignment of OAW

Definition of link weights inFigure24 r el i es on ac c ur-tne status.eThecefore, too f a g €
implement this strategy in an AGV systetine remaining time of a work center having one job ready

for pickupo , andremaining time ofAGV n becoming idled should be monitored and recordéd.

modern shop floors, this information can be easily colledtedcelink weightscaw in Figure 2.4 can be

calculated by Equatior2(6).

Q

0

0 0 a® o

&) (2.6)

a oourrﬁQT 0 O n® o
For any possible assignment of AGVto Work Centenw, a vehicle and b always become ready
earlier than another; hence, Equati@6) differentiates the two cases. If the processingloin Work
Centerw finishes after AGVh becoming idleq 0 ), the waiting time of thigob is the summation of
the time difference anadbedBiMoide happeasveardied (t © ineche | f AC
waiting time is the travel time of AGVOSs remainir

and waited at the work center

With link weights calculated with Equatio.6), EquationsZ.7) to 2.9) can be formulated as a typical

linear integer programing model of assignment problem in network optimization.
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I ET o o (2.7)

s.t. w plo (2.8)

(2.9)

Equation 2.7) is the objective function minimizing the total waiting timgalfsin the decision horizon.
Equation 2.8) and 2.9) are the constraints that ensure in one optimization only one@@@\We assigned

to each work center and each AGV can only have one destination.

Models @.7) to 2.9) on shop floor scale can be quickly solved by commercial solvers like CPLEX. The

operation mechanism of the AGV system in practice and simulation igfumthoduced in Sectiop4.

2.2 Architecture of Shop Floor Simulation for AGV Dispatching

A simulation model for a shop floor is constructed based on data from Egbelu (1987) in AnyLogic, shown
in Figure2.5. The shop floor operates ondn8ur shift per day ith eight work centers on the shop floor,

and five types ojobsare produced. Each typejob has unique processing routes and processing times at

each work center. Table 6 includes fbletypes and processing routes.
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Figure 25 Simulation model of shop floor in AnyLogic

All products must go through Work Center 1 at the beginning and never come back, and this means
unloading does not happen at this work center. Moreover, products finish all prgaasaiork Center 8,

but the processing time at this work center is always 0. Besides the core processing machine, Work
Centers 2 to 7 consist of AGV loading and unloading ports with corresponding queues, and a queue for
AGVs that arrive earlier than produready for transportation. There is no product transported by AGVs

out of Work Center 8; therefore, there is no AGV gueuing area at Work Center 8, either.

At the beginning, all AGVs are kept at Work Center 1, which serves as the depot of vehicles. When
products are ready at the loading port of work centers, transportation requests are generated. Destination
of an AGV with loaded product is determined by the product type, and once the product is unloaded, the
AGV decide whether to stop and stay idle atadberent work center, or go to another work center to load

additional products. If there is a transportation task assigned to it by optimization during its last trip and
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saved in its memory, it will go to the corresponding work center for product loddingltiple tasks are
saved in the memory, the AGV will follow a firsbmefirst-serve rule to decide the next destination

Table 23 Attributes ofjobson shop floor

Jobtype Processing route Processing time per unit load@/(ninutes)
1 1,3,2,5,8 1.0, 5.0, 10.0, 7.0, 0.0

2 1,6,5,4,7,8 1.0, 8.0,5.0, 10.0, 7.0, 0.0

3 1,4,6,8 1.0,9.0,9.0,0.0

4 1,7,2,3,8 1.0, 10.0, 5.0, 10.0, 7.0, 0.0

5 1,2,6,3,5,7,4,8 1.0,8.0,7.0,9.0,10.0, 8.0,5.0,0.0

The processing time for all products at each work center are assumed to be fixed values, and we make this
the basis of our AGV dispatching optimization, since only with fixed processing time, the statuses of

products and vehicles are predictable.

In realty, the processing time is not always a fixed value, but it is quite likely to be a random distribution.
We take the fixed processing time as an assumption to formulate the models; however, in the case study
we relaxed this assumption by replacing the diygocessing timel in Table 2.3 with a uniform
distributionU[T-1,T+1] to make the scenario closer to reality. Good performance of the proposed models

on uncertain processing time is a proof of robustness to production uncertainty

Figure 2.6 andFigure 2.7 demonstrate how OA2 and OAW strategies work on the shop floor. At the
beginning, AGVs are dispatched by RV/STT, and the optimization based dispatching strategies are not
activated until aliobs enter the shop floor and randomness from job arrivalelarénated. When OA2

and OAW are activated, models are called repeatedly and solved with solution enumeration or
commercial solvers, and solutions are transformed into transportation tasks distributed to corresponding

AGVs.
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Figure 27 OAW mechanism on shop floor

In Egbelu(1987) the optimal AGV fleet sizes are calculated with different AGV assignment rules, and all
of the combinations of fleet size and assignment hiesild complete all jobs in 8 hours. Thirteen AGVs

can complete all jobs on time with the RV/RW rule and nine AGVs complete all jobs on time with
NV/STT. Simulation experiments are carried out in our model, and resulting makespans show that with
thirteenAGVs and the RV/RW strategy adopted, all jobs are completed in approximately 8 hours, as well
as with nine AGVs and the NV/STT strategy. There is only limited data for validation, but the
consistency of makespans proves that the simulation model of thdlsbois a good replication of the

reality, and with this model, AGV strategies can be compared in the case study
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2.3 Case Study Result

A case study is carried out for the simulation model described in S@ctioam evaluate the optimization
models descrigd in Sectior2.3. All AGV dispatching strategies, including OA2, OAW, and classic AGV
assignment rules RV/RW and NV/STT, are implemented and compared. For each given AGV fleet size,
all strategies are tested with 20 replication simulation experimentshamdakespan in each experiment

and waiting time of eacjob are recordedFigure 2.8 andFigure2.9 show how average makespans and
jobss waiting times fluctuate with AGV fleet size

different AGV dspatching strategies, which can be used to evaluate their performances on the shop floor.
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Figure 28 Shop floor makespan of all AGV dispatching strategies

Except for rare cases, the NV/STT strategy always leads to shortest makespan, but when the AGV fleet
size grows, the makespan under other AGV assignment strategies get close to makespan under NV/STT.
This can be partly explained by the definition of makespvhich is finish time of the last product. When

there are only limited number of products on the shop floor, more AGVs are likely to be idle compared to
busy production period, hence NV/STT rule can maximally reduce the waiting time of these products
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since there are more choices. On the other hand, in the entire production horizon, impact of long waiting
time of products in busy production period is not reflected in the makespan because long waiting time can

be made up by following transportation.

For nost realistic shop floors, where minimizing makespan is usually the management objective, other
AGV dispatching strategies may not be attractive; however, if some other criteria are valued on shop

floors, the situation becomes different
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Figure29J obs 6 average waiting time of all AGV

From Figure 2.9, it can be observed that AGV dispatching strategies OA2 and OAW based on network
optimization shorten the pr odraspectyely. Relativety ispeakingt i me i
with a large number of transportation requests on the shop floor, the waiting times that proposed
strategies can save is quite significaigure2.9 leads to an empirical conclusion that the threshold of an

AGYV fleet size differentiating the validity of OA2 and OAW lies approximately at the number of work

centers with both loading and unloading port
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When an AGYV fleet is small, OA2 leads to shortest average waiting time of products, but its performance
becomes worse hren the AGV fleet size grows. This is foreseeable since OA2 only focus on two
transportation requests that are the closest to the current time point of decision making, and all possible
dispatching are enumerated. The growing fleet size means more caetphgture scenario and larger

bias from global optimality by OA2.

For large AGV fleet sizes, OAW is the best among all strategies on controlling product waiting time and
the trend is quite stable. The theoretic evidence is that although the optimization in OAW still cannot
guarantee global optimality, it reaches the lagatimality in a moderatéength period. It better utilizes

the growing feasible solution set when AGV fleet size increase compared to other AGV dispatching
strategies. We can also observe that OAW is never the worst among all strategies under alleAGV fle

sizes.

By observing the productsd waiting time FEguetri but
2.10, we can summarize more positive characteristics of the proposed strategies, and they are extremely
important when some special manageinobjectives are pursued on the shop floor, such as keeping all

products6é waiting times under a tolerable thresho
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Figure2.10 Waiting time distribution under all AGV dispatching strategies

In Figure 2.10 (a), OA2 under small AGV fleet size is superior to other strategies according to its shortest
longest waiting time of products and high probability of short waiting time. Such a superiority of OA2 is
less significant when AGYV fleet size imases but OAW shows its advantage. In Figure 2.10 (b), (c), and

(d), OAW has the shortest longest waiting time and aggregating short waiting time in all AGV fleet size
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scenarios, and the more AGVs there are, the more superior OAW is for the given shop floo
Theoretically speaking, classic AGV assignment rules including RV/RW and NV/STT can never
eliminate the possibility that certain products beyond their-sbele decision making horizon wait
extremely long, especially for shop floors with large numbegrotlucts and work centers; however, the

proposed strategies avoid this scenario to a large degree

Consequently, we can conclude that if the primary objective of the shop floor in this case study is
controlling the product s 0 tegea can iben gpnsitlereth mstead@Aie a n d
commonly adopted RV/RW and NV/STT strategies. This is especially true for shop floors like what is in

this case study, where processing times in work centers are fixed or quite stable, and minimizing
productgot iwae tifor transportation also means mi ni

production system

2.4 Conclusion

In this papertwo AGV dispatchingstrategiedbased on network optimization of assignment problaras

developed fosshop floors Classic AGVassignment rules make decisions for each single sgquéile

the basic idea abur optimizationbased AGV dispatching strategiesnsiders one more step further than

classic intuitive AGV assignment rules, such that the system can be more effitiertivo strategies

have different dispatching decision horizons, and the case study results show that the two strategies also
have different performance in minimizing a produc
fleet sizes. In practicef & shop floor has a small sized AGV fleet (empirically this means the number of
AGVs is fewer t han number of work centers), adory
waiting time, while for shop floors with a large AGV fleet (empirically thisame number of AGVs is

larger than the number of work centers), OAW can save more waiting time of products. Minimizing
waiting time of products for transportation is significant for products such as heated steel and frozen food

that cannot be exposed to maeemperature or natural environments for too long
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If OA2 and OAW are implemented on shop floors, one technique characteristic must be paid enough
attention for useful application. There cannot be too many sources of randomness in the system,
especiallyin vehicle traveling, product processing, and job arrivals. If vehicle traveling time or product
processing time are not fixed values, they should be limited in a narrow interval. This is one of the major
assumptions of this paper, and without this, thémipation models can lead to significant bias on
dispatching solution efficiency, which might be even worse than random assignments. For job arrivals,
there are two conditions that must be met to successfully implement OA2 and OAW strategies. First, all
jobs enter the system and get started shortly after production begins. If the first condition is not met, there
must be a long delay between pairs of entering jobs such that in this time interval, statuses of agents in the
shop floor are predictable. Witthdse two conditions, the AGV dispatching strategies based on
deterministic optimization in this paper are valid, therefore they can be regarded as the limitation of the
work so far but still adoptable in applicationiisthe conditions are met and the puation scenario asks

for short job waiting time
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CHAPTERS. A VEHICLE REDUCING ALGORITHM FOR JOB SHOP SCHEDULING WITH
MATERIAL HANDLING

This chapteris organized as followsthe mathematical formulation for the JSSMH problem and an
example of visalization of simultaneous job and vehicle schedule are desanilssttion3.1 In Section

3.2, the proposed algorithm of this study is introduced and presented with an exampéetion3.3,
computational experiments are carried out to validate tygoged algorithm, and the optimization results
are compared to existing solution techniques in the body of literafinechaper concludes with a

summary of research findings

3.1 Model Formulationfor Job Shop Scheduling with Material Handling

The JSSMH problem addressed in this study can be described as following: on a shop floor, a sét of jobs
is processed on a set of machireexjeach machine can only process one job at a time. Eaghhpsba
unique processing route consisting of a $etperationsOto complete the manufacturing process, and for
each operation a fixed timep; is required A fleet of AGVs is available on the shop floor to handle jobs

at the L/U or after the completion of each operation at the machirfixed loade travel timet; is
incurred for each job before the start of next operatitfrone AGV takes operatiomandi successively,

the deadheading trip takes another fixedtiodt . The objective is to achieve the shortest makespan

which is defined bgompletion time of the last operation on the shop floor

The JSSMH problem can be formulated as a linear programming model ba&jemnd Ulusoy
(1995) In the formulation there is not any specific subscript representing jobs for variables and
parameters because all operatiores sequentially indexed. There are subscripts representing AGVs

either because the routes of AGVs are representddstigct visiting sequences.

Table 3.1 and 3.2 include all necessary notations in modeling of JSSMH, and a linearized model of

JSSMH is formulated with EquatioB.1) to (3.16).
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Table3.1: Notations of sets and parameters

0 Set of jobs.

€ Number of operations of jgb

0 Total number of operations of the jobs indexed before

£ Total number of operations of all jolis. B g€ .

"0 | Index set of all operation® pltr8 FE .

O Set of operations associated with job

() Index set of operations excluding operati@md succeeding operations of the same job.
‘O Index set of operations excluding operativend preceding operations of the same job.
0 AGYV fleet size.

n Processing time of operation

0 Travel time to loaded trip heading for operation

T Travel time of deadheading trip from machine of operatitmmachine of operatioin

Table3.2: Notations of variables

Z Jobshop makespan.

18 Completion time of operation

Y Completion time of loaded trip for operatian

A Binary variablery  p,if @ ®h i

. Binary variablew p, if a vehicle is assigned for deadheading trip from operat
® htoi.

W Binary variableoy  p, if a vehicle starts from L/U to operatioas its first trip.
W Binary variable p, if a vehicle returns to L/U from operatitras its last trip.
o Auxiliary variable for time between AGV hamally of operatiori andh that both belong to

jobj.
y Auxiliary variable for time between AGV handling of operatioandthefirst operation of
jobj.
i O | Auxiliary variable for start time of operation
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A mixed integer programming (MILP) model is formulated for the JSSMH Riglnitions (3.1) to (3.16)
as the following. The optimal solution will include the routes of AGVSs, the job processing sequaenktes

operationgompletion time.

i E® (3.1)
subjectto:
O 100 (3.2)
S 6 n o I "8Q pN O O (3.3)
© N o e ) (3.4)
s gr 8 a)w 2 .',g]p ; L w07 v ORGOY (RO Q (35)
® w P I Q0 (3.6)
Ny
® N © P v 0 (3.7)
©w U (3.8)
0 w T (3.9)
Y ® 1 | "0 O (3.10)
Y 0 & I "63Q pN OO (3.11)
0 Yoty Q@R p I "6Q pn Oy Gy 0 (3.12a)
O T, n I "@Q pn Gy Q0 (3.12b)
Y 0 wtp r’O I "8Q pN OO O (3.12¢)
YoOY T Q@ P F'ov'd R o (3.13a)
Y mQ®@; i L'ov'® A o (3.13b)
Y o . Y Y (3.13c)
0" ot | o0 (3.14)
amn Tip (3.15)
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NCRD 10 (3.16)
Equatiors (3.1) to (3.5) are based oa typicalJob Shop Scheduling(JSP)model(Pinedo, 2009)while an
additional parameteb is used to considamnecessary transportation time ofad from one machine to
another for a pair of consecutive operatioihen jobs finish their lastperation, they are immediately
removed from the machine, and AGVs do not handle them back to L/U, hence the makespan is defined as
the finish time of the last operation on the shop floor in Equation (3.2). Bimaigblex represerts the

routes of AGVswhich indicates the sequential relationship of each operdiguatiors (3.6) and 8.7)
regulate the strict oney-one following relationship between each pair of operations. Equation (3.8)
defines that the number of AGV routes is limited by AGV fleeé sEquation (3.9) ensures that for each
AGV, there musbe a starting trip as well as an ending trip. Equation (3.10) means the operation must
begin after the job arrival to the machine. Note tBgtiation(3.10) is not an equation because it is
possiblethat in an optimal schedule, an eaalyiving job waits at the machine until another job whose
operation arrives later to start firskhe operation sequence of one job is ensured in Equation (3.11).
Equatiors (3.12) and (3.13) are linearized conditiocahstraints to replace the nonlinear constraints by
Bilge and Ulusoy(1995) which indicate the impact of previous trips on the next afirrach AGV.
Equation (3.14) is used to start timing when a vehicle leaved.thlewith the firstjob it conveys, and

such a constraint means a default initial condition that AGVs are at the L/U until they leave for the first
job handling task. Sometimes the trip of védmscbetween L/U and machinesnot considere¢Khayat,
Langevin, & Riopel, 2006)however, we decide to include these tiipshe optimizatiorthus reflecting

the production reality(Y. J. Xiao, Zheng, & Jia, 2014)

The scheduling model defined in EquatioB4) to 3.16) can be solved by commercial solvers to get the
optimal schedule for small sized problem. However, it either takes @ tone or becomes
computationally intractable when the problem size increases, which is why an efficient solution technique

iS necessary
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3.2 A HeuristicAlgorithm Based orDegressivé/ehicleFleet for JISSMH

The job shop planning configuration is based on the case stigligamand Ulusoy(1995) which were
also used bybdelmaguid et al(2004)Khayat, Langevin, and Riop&006) Umar et al(2015) Zheng,

Xiao, and Seq(2016) and AhmadiJavid and Hooshandiabrizi (2017) for model formulation and

algorithm validation. Table 3.3 and 3.4 include Layout 1 and Job Set 1 as an example

Table 33 Layout 1

L/U M1 M2 M3 M4
L/U 0 6 8 10 12
M1 12 0 6 8 10
M2 10 6 0 6 8
M3 8 8 6 0 6
M4 6 10 8 6 0

Table 34 Job Set 1

1 2 3
Job 1 (J1):| 1.M1(8) 2.M2(16) 3.M4(12)
Job 2 (J2):| 4.M1(20) 5.M3(10) 6.M2(18)
Job 3 (J3):| 7.M3(12) 8.M4(8) 9.M1(15)
Job 4 (J4):| 10.M4(14) 11.M2(18) -
Job 5 (J5):| 12.M3(10) 13.M1(15) -

In Layout 1, there are 4 machines and 1 Loading/Unloading station on the shop floor. Each job is initially
at L/U, and each job must follow the production sequence defined in Table 3.4 with aodiagp
processing times in the parenthesis. For example, M1(8) means the job is processed by M1, and the
processing time is 8 minutes including loading, processing and unloading. The items in Table 3.4 are

indexed to keep consistent with modeling notaiiothe formulation defined in Section 3.1
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3.2.1 Proposed/isualization ofJob andVehicleScheduling

In this section, we begin with a new visualization method for job and vehicle scheduling to explain the
mechanism of the proposed algorithm.the existingbody of literature the activity of vehicles for
material handling on shop floors is presented by treating them as machines. Additional timelines are
added for vehicles and time blocks are marked with job names and travelAyjkdmaguid et al.,

2004; Baruwa & Piera, 2016yvhich is good to present the vehidehedules but the presentation of
vehicle routes relies on text markers. The impact of vehicle movement on the job scheduling cannot be
easily read from the scheduleence modifying the vehicle routing and observing the outcome is
inconvenient The proposd method improves the visualization of vehicle scheduling and routing, with

Gantt chart implemented with arrows representing vehicle routes

The scheduling of the job set in Table 3.4 on shop floor represented by Table 3.3 with 2 AGVs is solved

on NEOS sever by CPLEX, and we present the result in Figure 3.1.

0 4 3 44 43 52 56 60 o4 63 J2 76 80 B84 B3 92 96

4.2 \ |\ 1)1 \/L 13.J5 L.l 9.3 |

\11J4 /"‘-. \ 201 ,a’v A 6.12

d 8.J3

Figure3.1: An example of schedule of Job Set 1 and AGV route in Layout 1 (2 AGVS)

In Figure 3.1, each operation is marked with its index and job name, and uekisting literatures, we

add arrows on the Gantt chart of jobs to represent the movement of vehicles so that the interaction of jobs,
machines, and vehicles can be observed simultaneously. In this example, arrows in different colors
represent different AGY. Solid arrows are for loaded trips and dashed arrows are for deadheading trips.
AGVs do not stop in the middle of a path, hence allvesrim Figurel start and endratichins. Note that

initially AGVs are all standby at the L/U
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The length of an arrowags not reflect the travel time of AGVs, but its projection on the time axis does.

If arrows for a single AGV are always connected, it means the next trip starts immediately when last one
finishes. If interruptions happen between arrows, the vehicle aitsee current machine until the next

trip starts. Less and shorter interruptions in the schedule usually indicate a higher vehicle utilization.
Vehicle utilization can be measured by many critéBeamon, 1998)and in this research, the utilization

U. of a single AGVa s evaluated b¥quation (3.17yvith makespaiZ and traveling timd'T.

. "Y"Y uYuY
Y ——
W

I 6N B (3.17)

In Equation 8.17), A is the set of available AGVSY"Yand”Y"Y stand for the traveling time of a loaded

and a deadheading trip respectively for AGQVWith a given makespag, the relative utilization of

AGVs can be directly compared with total traveling time

In Figure3.1, heads and tails of solid arrows are always connected with the starting and finishing point of

an operation of the same jdigcagea loaded AGV cannot change the transported job in the middle of

its trip. If an arrow adheres with operations, it means the corresponding AGV does not wait for either
loading or unloading at a machine. For example, for the Blue AGV handling Operatiwh8/for Job J3

between M3 and M4, it picks up or drops off the job as soon as it arrives M3 and M4, respectively. For an
example of AGV or job waiting, the solid arrow of the seconthédast trip of Red AGV is for handling

of Job J2, while it does natdhere to either Operation 5 or 6. This means when Operation 5 finishes, the
assigned Red AGV has not arrived. When the corresponding Job J2 is conveyed to M2 from M3, the
machine is occupied by Job J1, a n &l hénceeQperatianté f i ni s

does not start until Operation 2 finishes

With the AGV route embedded job schedule visualization, we can discuss the proposed algorithm to solve

JSSMH.
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3.2.2 Degressive Vehicle Fleet Algorithm (DVFA)
Fortwo AGV fleetsin similar fleetsizes, with the scheduling of one AGV fleet, the scheduling of the
other can be found quickly by adjusting the assignments of operations to AG¥deuristic is adopted

in theproposed DVFA

Usually the target fleet size is much less than the numbgibef In DVFA, we start from a feasible

solution with an AGV fleet in a size same as the number of jobs, in which the feasible solution can be
derived by assigning one AGV to the operations of one job. AGV fleet size is iteratively reduced until the
targeed size is reached. In each iteration, the operations need efficient reassignment to vehicles, and the
makespan increasing due to degressive AGV fleet and consequent operation reassignment should be
controlled. In initialization, the AGV fleet size isedua t o j ob set si ze, such t|
scheduled (TOS) can be acquired by letting each
horizon on the shop flooin TOS, makespan is equal to the solution from just solving Equations (3.1) to
(3.5) asa job shop schedulingrroblem with the additional parameteiof considemng necessary
transportation timeFigure 3.2 shows suchT@S solution of Job Set 1 on Shop Floor Layout 1, in which

Red AGV follows J1, Blue AGV follows J2, Green AGV follow8, Purple AGV follows J4, and Gad

AGYV follows J&

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 B4 683 V2 V6 BO 84 8 92 96
L/u

M1 11 R, 412 \ I A3.15 | 9.3 |
h /
M2 \{ 201 4 AN\ /114 | 6.2 |
, /
V! N 1205/ | 5.2

7.3
M4 \ 10.J4 w 8.13 3.1

Figure 32 Example of schedule of Job Set 1 and AGV route in Layout 1 (5 AGVS)
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Beginning withTOS, we can reduce the AGV number and reassign operations. Figuirgrddices a
general framework of the heuristic algorithm designed for JSSMH based on reducing the AGV number

iteratively.

Initialize job schedule witlfOS

AGV fleet size meeéts
Requiremert

Yes——

No
v

Remove the vehicle with least utilization defined by
Equation(3.17), mark the operations that transportation
is completed by this vehicle as unserved operations

No more unserved
opeartior?

—Yes

No
A 4

Choose the unserved operation with highest prior
determine the AGV going to serve this operation and the
start time of corresponding AGV travelingpdate
makespanremove the operation from unserved

operations

Figure 33 General framework dbegressive/ehicle FleetAlgorithm

Generally speaking, the proposed DVFA tries to adjust the schedule for unserved operations, while
keeping served operations on time. In other words, the algorithm approaches to an optimal scheduling

solution, and ensure the feasibility of incumbent schiegwolutiors.

The detailed steps of the proposed DVFA are presented below:
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Step Q Initialize the scheduling priority of each operatioas Prioi., Prioj =  + £} "OGet targeted
AGYV fleet size ad\y, solve TOS and get the minimum AGYV fleet siagthat satisfies TOSA is the set

of available AGV. Go to Step 1.

(Solve the pure job scheduling problem in Equati®a)(to 3.5) as a relaxation of JSSMH. This is the

optimal solution withK = |J|, that the AGV fleet size equals to job set size.)

Step 1: For current AGV fleet, calculate vehicle utilization with Equation 8.17). Define setnserv

with operations taken by AG¥,, wheretd a ri =Y. SetPrio; = 0,! "Q “Y& i 'QGeb current shop

floor makespaiz, removea, from A. Go to Step 2.

(Reset parametdf and make constraints in Equatidhg) unsatisfied. For operatiann Unsery @

Step 2: For each operatioi® Y& i Qif ® QQ p~ 'Q andQ pe "Y¢ i QBebPrio; = 1. Sort
operatios in Unservaccording to operation start tin®et rank of sorted operatiorasRank, setPrio; =

Prioi + Rank Go to Step 3.

(Operationi in Unservare assigned priorities to satisfy the constraint in Equafid). (Due to the
constraint in Equatio(3.11), to minimize the impact of completion time of previous unserved operation
on following served operationi+1) of the same job, operatidmas higher priority. Unserved operations

with earlier start time also deserve higher priority to minimizeitipact on following operations.)
Step 3:Find the Operatioiy that'Q A O C [0E 1"QGet the operation start tinhed. For each vehicle

N 0, get the completion timer of a travel for operationtaken by vehicle that is dosest td 0 as
well as the timéY that AGV a completes transporting if starting from”Y (i.e. @ p in the
optimization model), and thusy Y t ; 0 . Notate completion time of the travel for previous
scheduled operatiof that is right after operatio@as”Y . If it was now after transportation cf2by

vehicle a, the expected transportation completion time wouldYe “Y t ; 0 . Go to Step 4.
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(Following constraints in Equatio.2) and 8.13), calculate the arrival time of operatiowith highest

priority if AGV ais assigned.)

Step 4(operation delaying): Notate the operation right &afdamn the same maahe asQ

T

T

If m@N O that”Y "Y and”Y 1§ i 0, assigna to "Qat"Y , followed by original

schedule, remov@from“Y¢ i ‘Candigo to Step 6.

If MON O that”yY "Yandi 6 Y i 6 -n ,assignato "Qat"Y, update start
time of operatiorQ:i 0 N Y 1N ;removeQfromY¢ i Candigo to Step 6.

If mQON O that”Y Y but”Y n i 0 -n ,orWN othat”y Y, assignato "Qat
“Y and go to Step 5.

If WweON O that”Y Y, assigmto "Qat”Y, go to Step 5.

(An AGV is assigned to the operationwith highest priority to satisfy the constraint in Equati8t6),

which has the least impact tollowing operations. The delaying of starting operations caused by this

AGYV reassignment is calculated based on constraints in Equatid) and 8.11).)

Step 5(operation swapping): Notate the operation right &en the same machine ‘&

f "Y Niodo nf ,andi oN Y ; addQinto"Y¢ i Cand)seth i Q¢ 7. Let the vehicle

serving’Q skip this mission including the loaded and deadheading trip. Go to Step 6.

(An AGV is assigned to the operatiomwith highest piority to satisfy the constraint in Equatio8.§),

which has the least impact of following operations by swapping operations on the same machine, keeping

the constraint in Equatiom36) satisfied. The delaying of starting operations is calculated based

constraints in Equatior8(10) and 8.11).)
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Step 6:1f Y& i Qs @mpty, return current job schedule and vehicle assignments and go to Step 7;

otherwise go to Step 2.

(One of the unsatisfied constraints for operations in Equal®) is now satied, with corresponding

constraints for AGVs in Equatio3.(2) and 8.13) satisfied.)
Step 7:1f |A]> Ao, go to Step 1; otherwise stop.
(Check if parameteX is reset to meet the requirement of AGV fleet size.)

A few principles should be emphasized dnsure the algorithm validity and efficiency. First, each
operation can be marked as unserved only once at the most. This allows the algorithm to speed up and
prevents it from entering an endless loop. Second, if multiple operations have the samdrpfoeiby3,

or if multiple vehicles meet the condition, the breaen rules are adopted with the rank in Table 3.5 and

3.6. If one rule cannot break even, then move down to next rule.

Table 35 Breakeven rules for selecting epations with same priority

Rank | Rule

1 Select the operation closer to first operation of a job.
2 Select the operation of a job with less operations.

3 Select the operation with smaller index.

Table 36 Breakeven rules for selecting vehicles meeting same condition

Rank | Rule

1 Select the vehicle that can arrive early for the newly assigned opera
2 Select the vehicle with less utilization.

3 Select the vehicle serving less operations

4 Select thevehicle with smaller index.
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3.2.3 Example ofSolving JSSMH with DVFA

In this section we present an example of applying DVFA to the JSSMH problemawithedule in

Figure 3.1, in which the targeted AGV fleet size is 2. Figure 3.4 (a) to (e) has shown how the AGV fleet
size is reduced to 4 from 5 step by step with DVFA, and Figure 3.5 (a) and (b) include the optimized job
schedule with 3 and 2 AGVs. Thégarithm is expected to result in a schedule similar to Figure 3.1 in

Figure 3.5 (b) in terms of minimized makespan

o 4 8§ 12 16 20 24 28 32 36 40 44 43 52 56 60 64 68 J2 76 B8O B4 BE 92 96
L/u

M1 11 R, 4.2 \ | 43.5 | 9.3 |
h /
M2 \( 21 4 A\ 11
/

M3 703 N 1255/ |

M4 \ 10.J4 M 8.13

(&) TOSwith 5 AGVs following jobs.

6.2 |

o 4 § 12 16 20 24 28 32 36 40 44 43 52 56 o0 64 68 V2 T 80 B4 B8 92 96
Lfu

M1 11 N 412 9.3 |

M2 6.2 |
/

M3 703 N 1215/ |

M4 10.J4

(b) Golden AGV removed

o 4 & 12 16 20 24 28 32 36 40 44 48 52 56 o0 64 68 V2 V6 B8O 84 88 92 96

6.J2

(c) Purple AGV serves Operation 12 instead of Golden AGV
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o 4 8 12 16 20 24 28 32 36 40 44 43 52 56 60 64 683 T2 76 80 B4 B3 92 96

| 13.J5 |

1
11 R, \an»
r\ \
J \ 211

(d) Operation 9 and 13 assvapped, Blue AGYV takes Operation 13, Operation 6 becomes unserved

8 12 16 20 24 28 32 36 40 44 438 52 56 60 64 68 72 76 80 84 88 92 96
\ ’f\
11 R, \an»z
' \
! \ 211

| 13.J5 |

| 6.2 |

(e) Red AGV serves Operation 6 and complete scheduling

Figure 34 DVFA illustration for Job Set 1 and Shop Floor Layout 1
(reducing AGV fleet size from 5 #).

In Figure 3.4 (a), 5 AGVs are assigned to operations and each AGV follows a jobOBie achieved

and the makespan is equal to 76. With Equat®h7] the utilization of AGVs can be calculated, and
Golden AGV has the lowest utilization, hence it is removed from the schedule, and Operation 12 and 13
are marked as unserved in Figure 3.4 (b). Then Purple AGV is assigned to start Operation 12 as shown in
Figure 3.4 (c) after it finishes handling Job 4 to s@peration 10 After that Purple AGV continuing
handling Job 3 to start Operation 11 is found to be the most efficient, although is delayed due to previous
reassignment. Notice that Operation 6 is also delayed, hence the makespan is increased tour8. In Fig
3.4 (d), the Blue AGV is assigned to Operation 13. Since keeping current sequence of Operation 9 and 13
would cause a long delaying, Operation 9 and 13 are swapped. Now unlike previous reassignment of

Purple AGV, Blue AGV going back to continue handlidob 2 is not efficient, hence Operation 6 is
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marked as unserved. Red AGV is found to be thetbdsike Operation 6 and keeprrent makespan, as
shown in Figure 3.4 (e).

72 76 80 B4 88 92 96

(a) Job schedule with 3 AGVs based DWFA.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 683 V2 J6 B0 84 B8 92 96

LU

M1 f4J'2\ \ 1305 | 9.3 |
/

M2 /{ Ip-fl / A 6.12 |

M3 12J5 5J2\ | "y

M4 /' s

(b) Job schedule with 2 AGVs (target) baseddfFA.

Figure 35 DVFA result for Job Set 1 in Layout 1 (3 and 2 AGVS)

3.2.4 OptimizationbasedAlgorithm Initialization

Currently based o OS, the initial vehicle assignment scheme is that each vehicle uniquely follows a
job; however, we expect that when a vehicle isremoveld,be r eassi gnments affect
transportation tasks to the least degreerefore, with th@OS, we formulate an optimization model to
maximize the total idle time of vehicles. During idle time, if additional transportation mission presents, it
is more likely that a vehicle is able to take over the transportation without affecting its originaldsnigce
missions. Such an idle time maximization model is formulate&quations (3.18) to (3.21). In the
formulation, additional binary variabig, is used to indicate whether vehiéiés assigned to operatian

in theTOSor not
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vORBRw (3.18)
Subject to
v RBR v boro (3.19)
YOY 0t o Qe p IOy plgfB Y FON @Y & 6 0 0 (3.20)
G Tip (321)

Equation 8.18) is the objective functiomaximizing the total idle time of vehicle assignment, and the
idle time is calculated by the difference on start time of two operations assigned to the same vehicle.
Equation 8.19) regulates that each operation can only be assigned to one vehicle.re@2@ipensures

the feasibility of vehicle assignment. If operatioandv are both assigned to vehidigi.e.® ()

p, the time between arrival of the two operations must be long enough for \Vetudtavel.

It should be noted théMlodel (3.18) to B.21) must be feasible, since one intuitive feasible solution is the
schedule that each vehicle followgod along all its operations, like the caseFigure 3.4(a). With this
initialization boosting method implemented, tB&/FA takes longer coputation time to solve the
guadratic model 318) to @.21), but the performance on minimizing makespan is expected to be

improved.

3.3 Computational Experiments and Analysis
Computational experiments and comparisons have been conducted on makespan A@Wer ith
other algorithmsbased on shop floor layouts and job sets da@ilgé and Ulusoy(1995) There are 4

shop floor layoutsrad 10 job sets, and their combinations result in 40 experimental data sets.

The proposed DVFA is implemented in 3 stdpisstly, the pure job scheduling problem with minimum
necessary transportation time (Equationl (3.1) to (3.5)) is solved with CPLENEOS, as the basis of
initialization. Secondy, model (3.18) to (3.21) is solved with CPLEX as well to initialize the AGV

assignment to operatiorsinally, the vehiclereducing iterations are executed irv&sion 3.1.3R Core
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Team, 2015pn a personal computer with Intel Xeon 2.40 GHz CPU and 16 GB RAM. Therefore, the

computation time of DVFA is the summation of time used by the 3.steps

The solution methods referred to from the literature did not report the correspondipgtation time
except fo Baruwa and Pierg2016) hence the comparison on algorithm efficiency only tgkese
between their work, CPLEX and proposed DVFA. The integrated comparison is presented iB.7able
and the cases are named withrXrepresenting the shop floor case of Job 18aind Lay outn. As
references, B is the makespan of the same job s8ilpy and Ulusoy(1995) and similarly U is for
Ulusoy, Sivrikayak e r i f o Y1 u(19973 A id forB\bdelmaguid et al(2004) R is for Reddy and
Rao(2006) D is forDeroussi, Gourgand, and Tcherr{@@08) Z is forZheng, Xiao, and Sg@016) and

Ba is forBaruwa and Pieré2016) The integrated JISSMH problems are solved as a whole with CPLEX

on NEOS(Czyzyk, Mesnier, & Moré, 1998; Dolan, 2001; Gropp & Moré, 199Mtated with CPLEX in

Table 3.7.
Table 37 Comparison results for the 40 test shop floor cases.

Makespan Computation Timé€s)
Case B U A R D Z Ba | CPLEX | DVFA | Ba CPLEX | DVFA
EX11 |96 [96 |96 |96 |96 |96 |96 |96 96 138.5| 30.58 4.85
EX21 |105| 104|102 |100 | 102 | 100 | 100 | 100 100 282.4| 730.77 | 3.72
EX31 |105({105|99 |99 |99 |99 |99 |99 100 27.7 | 176.83 | 7.94
EX41 |118 | 116|112 112|112 | 112|112 | 112 118 255.4]| 50803.3 | 4.4
EX51 (89 |87 |87 |87 |87 |87 |87 87 87 18.4 | 136.43 | 3.34
EX61 |120| 121|118 | 118|118 | 118|118 | 118 134 74.7 | 7927.26 | 4.04
EX71 |119 (118 | 115|111 111|111 111 | Fall 117 549.3| - 5.81
EX81 |161| 152|161 |161 161 | 161|161 |161 161 1300 | 27.79 7.55
EX91 |120| 117|118 116|116 | 116|116 | 116 123 57 22.09 7.61
EX101 | 153 | 150 | 147 | 147 | 147 | 146 | 146 | 146 157 115.5| 7138.1 | 4.97
EX12 (82 |82 |82 |82 |82 |82 |82 82 82 39.2 | 4.34 3.22
EX22 |80 |76 |76 |76 |76 |76 |76 76 76 100.5| 5.44 5.46
EX32 |88 |8 |85 |8 |8 |85 |85 85 91 449 | 8.3 4.18
EX42 |93 |88 |88 |87 |87 |87 |87 |87 89 268.7| 3118.96 | 4.19
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EX52 |69 (69 |69 |69 |69 |69 |69 |69 69 98.7 | 17.82 4.55
EX62 |100|98 |98 [98 |98 |98 |98 |98 98 66.6 | 10.18 7.89
EX72 |90 |8 |79 (79 |79 |79 |79 |79 85 2303 | 11915 |5.17
EX82 | 151|142 | 151|151 151|151 |151 | 151 151 2.7 14.77 6.87
EX92 | 104|102 | 104 | 102 | 102 | 102 | 102 | 102 109 284 | 9.69 7.77
EX102 | 139 | 137 | 136 | 135 | 135 | 135 | 135 | 135 145 3252 | 161.63 | 6.63
EX13 |84 |84 |84 |84 |84 |84 |84 |84 84 1451} 8.14 5.04
EX23 |86 |86 |86 |86 |86 |86 |86 |86 86 96.6 | 95.98 7.03
EX33 |86 |8 |86 |86 |86 |86 |86 |86 86 617.3| 6.68 7.27
EX43 |95 (91 |89 |89 |89 |89 |89 |89 99 216.5| 3997.25| 6.52
EX53 |76 |75 |74 |74 |74 |74 |74 |74 74 139.4| 83.23 3.9

EX63 | 104 | 104 | 104 | 103 | 103 | 103 | 103 | 103 104 902.6| 23.33 7.17
EX73 |91 |88 |86 (83 |83 |83 |83 |83 90 2403 | 33725.1| 7.14
EX83 | 153|143 | 153 | 153 | 153 | 153 | 153 | 153 153 9.3 14.45 7.8

EX93 | 110|105 | 106 | 105 | 105 | 105 | 105 | 105 109 54.1 | 10.17 4.87
EX103 | 143 | 143 | 141 | 139 | 138 | 137 | 139 | 137 147 66.6 | 290.78 | 6.5

EX14 | 108 | 103|103 | 103 | 103 | 103 | 103 | 103 103 510.2| 27.67 3.89
EX24 | 116 | 113|108 | 108 | 108 | 108 | 108 | 108 108 475.9| 3698.61 | 5.93
EX34 |116 (113|111 111|111 111|111 |111 115 414.9| 832.66 | 6.67
EX44 | 126|126 | 126 | 126 | 121 | 121 | 121 | 121 121 452 | 22554.1 | 3.68
EX54 |99 |97 |96 |96 |96 |96 |96 |96 96 223.2| 176.06 | 3.16
EX64 | 120|123 | 120 | 120 | 120 | 120 | 120 | 120 127 370.2| 1760.19 | 7.7

EX74 | 136 | 128 | 127 | 126 | 126 | 126 | 126 | Fall 139 3598 | - 7.82
EX84 |163|163 | 163|163 | 163 | 163 | 163 | 163 163 295.8| 4681.18 | 6.45
EX94 | 125|123 | 122|122 | 120 | 120 | 120 | 120 120 1266 | 61.69 5.66
EX104 | 171 | 164 | 159 | 158 | 159 | 157 | 157 | 157 171 822.2| 79885 |5.2

The makespan of B, U, A, R, D, and Z are basedloeng, Xiao, and Se(?016) Note that CPLEX

failed on EX71 and EX74, which means CPLEX cannot find the optimal salution

Summarized from Tabl8.7, the performance of DVFA on solving JSSMH is comparable to other

techniques in terms of solution accuracy and efficiency. Generally speaking, DVFA is capable of
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achieving optimal and neaptimal solutions with an overall optimality gap of 3.9%. DVFA soli/éf

the 40 cases to global optimality, and for those cases that DVFA cannot solve to global optimality, the
average optimality gap is 6.5%. The worst case is 13.6%, when solving EX61. However, DVFA is able to
result in a solution in significantly shorteme compared to CPLEX and Ba, and this could serve a reason

to adopt DVFA in practice. By any solution methods, a job set has a makespan of at most 177 minutes,
and the average makespan of all job sets solved with all methods is about 109 minutesr, tbeev
solving time of Ba and CPLEX can reach as long as 60 and 1331 minutes, respectively. Such a high ratio
of solving time and makespan is not reasonable in practice, unless job shops know the information of job
sets in advance and there is enough tiorethem to complete scheduling before they start working.
Considering the fact that shop floors are likely to be responsible for multiple job sets in a given
production horizon, the long solving time of JSSMH might furthermore limit the application ah@a
CPLEX. The DVFA proposed in this paper has advantage in this sense, that a schedule close to optimality
can be acquired in short time, hence the production can be executed quickly even if there is not much

allowed time for scheduling, such as onlimel aeal time scheduling scenarios

The main reason of DVFA efficiency should be attribute to the logic defined in the algorithm, and in the
program, it is likely to be a set of simple conditional judgement statements. Like all other solution
techniques, th performance of DVFA is influenced by problem size, and for JSSMH, the number of
operations can be used as an indicator of problemigere 3.6 (a) and (byecord the solving time and
optimality gap of DVFA on different numbers of operations of jdis.deéssentially, both the solving time

and the optimality gap increase when there are more operations in the optimized job set (as shown by the
trend lines). Specifically, for small job sets with less operations, DVFA is able to reach the global

optimality in short time
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Figure 36 DVFA performance against operation number
3.4 Conclusion
In this study, the JSSMH problem that jobs and vehicles are scheduled and routed simultaneously is

studied, and a heuristic algorithm is proposed to solve the problem instead of exact commercial solvers to

achieve a good quality solution in shtme.

The algorithm starts with the scenario that the vehicle fleet size is large enough that the job schedule
solved by the pure JSP model can be achieved. A quadratic optimization model is formulated to initialize
the job and vehicle schedule, themiate fleet size is iteratively reduced. In each iteration, whenever one
vehicle is removed from the system, the operations served by the removed vehicle are reassigned to
remaining vehicles according a series of heuristic rules. The algorithm ends Wbfeth@loperations are

served by vehicles and the number of remaining vehicles is equal to the original requirement.

The major contribution of this research can be summarizéallewss. Firstly, we linearized the JISSMH
model of Bilge and Ulusoy (1995)with conditional constraints to replace the original nonlinear

constraints, and added on a constraint to start timing as soon as the first job is takéntheut
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Loading/Unloading station (L/U). We can solve the reasonable sized problem to optimality with CPLEX,
which is used as a reference in a case study. Secondly, a new visualization method is proposed based on
traditional Gantt charts to present the githedule and AGV movement simultaneously, with which we
explain how the proposed algorithm works. Different with treating vehicles as additional machines in
Gantt charts in the existing body of literature, the proposed method explicitly presents thaiontera
between vehicles and jobs. Thirdly, a heuristic algorithm is proposed to solve JSSMH more efficiently.
The algorithm includes an initialization with a vehicle fleet size same as the number of jobs. During each
iteration, one vehicle is removed frorhet system, and a set of heuristic rules guide the operation
reassignment to vehicles (or vehicle reassignment to operations). Finally, we designed an algorithm
initialization boosting mechanism with an optimization model that can significantly improseliteon

quality. The initialization countentuitively maximizes the idle time of vehicles, such that it is more
likely to accommodate additional operations during the vehicle reduction step without affecting original

transportation schedule
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CHAPTER 4.AGV-BASED JOB SHOP SCHEDULING WITH MATERIAL HANDLINGJUNDER
VARIABLE PROCESSING TIME

This chapteris organized as followsThe SPISSMH model considering random processing time is
introduced in Sectio®.1. In Section4.2, the JSSMH model is modified to incorporate deteriorating
processing timeAll proposed models are validated with small datasetSeiction4.3 and a systematic

case study based on data in the body of literature is inclndgettiond 4.

4.1 A Two-Stage Sichastic Programming for JISSMH wiandom Processing Time

The JSSMH problem wéocus onin this chaptercan bestated as follow on a shop floor, a job sétis

processed on a set of machinesereteach machine can only process one job at a time. Eaghhsba

unique processing route consisting of a®ef operations to complete its manufacturing procedurd, a

for each operatiori, a random processingime ) , is requiredwherer), follows a specific

distribution A fleet of AGVs is configured on the shop floor to handle each job after completion of an
operation. A fixed loaded travel tinteis incurred for each job before the starthaf next operation, and
deadheading trips of W&les take another fixed peridd dependi ng on the vehicle
operationh. The scheduling objective is to achieve thi@imumexpectation omakesparhatis defined

as thecompletion time othelast operation on the shop floor.

A two-stage stochastic programming model is formulated to minimize the expected makespan over a
number of scenarios, and we notate it as)SBMH. The job sequences on each machine and raG¥s

are defined as firsdtage variables, anlobth of themdo not chage under uncertaintyThe job arrival

time at machines, processing completion time, and makespan of each scenario are regarded-as second
stagevariables thaare dependent on scenario realizatMatice thatthe processing start time is a hidden
secondstage variable that is executabléorrespondinglycompared to the model in Chapter dth

notation and moddbrmulationare modified in this chapter to form into a SP model. The notations are
included in Tables 4.1 and 4.2omparedto Tables 3.1 and 3, additional and modified notations are
bolded. The formulation of SPSSMH is presented with Equation (4.1) to (4.16)
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Table 41 Notations of Sets and Parameters forJS5ISMH

0 Set of jobs.

{ | Set of scenarios

£ Number of operations of jgb

£ Number of operationg, B g€ .

0 Index set of operation®® plths R

O Set of indices associated with jpb

0 Total number of operations of the jobs indexed beffave Tt

® Index set of operations excluding operati@md succeeding operations of the same job.
‘O Index set of operations excluding operatioeind preceding operations of the same job.
0 Number of vehicles.

0 Travel time to loaded trip heading for optiza i.
T Travel time of deadheading trip from machine of operatitmmachine of operatioin
O y | Probability of scenarios
-..v Processing time of operatidim scenarios.

O A large number
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Table 42 Notations of Variables for SPSSMH

dLv The makespan of scenari®s
J|'f' Completion time of operatioinn scenarios.
J||v Completion time of loaded trip for operatiom scenarios.
) Binary variablen p if operationr ands belong to different jobs and are on the
n . .
same machine arrds processed earlier than
i Binary variable o p if a vehicle is assigned for deadheading trip from operdtic
()
toi.
W Binary variabled  p if a vehicle starts from L/U to operatioms its first trip.
@ Binary variable p if a vehicle returns to L/U from operatidras its last trip.

Auxiliary variable for time between AGV handling of operaticandh that both belong tq
jobjin scenarios.

Auxiliary variable for time between AGV handling of operatioandthe first operation of

Fv I jobj in scenarios.
FTET 1 @ (4.1)
subject to:
®w Lih Q0 (4.2
S 6 noo Lih  @Q pN Q0 (4.3)
) n o Lih Q0 (4.4)
8 8{ 8 c": :‘] ,',gﬁp ; ViR 6~ 0D ORBOY 0 @ (45)
® w P I Q0 (4.6)
v T
@ N w p e INe) (4.7)
o o (4.8)
@ W 7 (4.9)
YO N lih @O (4.10)
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Y o ® Lih  "@Q p~ "G O (4.11)
.0 Y o th wp Op wp

O Y Th @f  Op f ViR EQ p aT T O (4.12)
O Th O Qo
O Th Of Qo j

Y 0 @ty 0O Lih  "@Q pN QY O (4.13)

Ny

|'|J6 Y T C‘Oﬁ (@) p W p
(WY

oY T ey Op wp Lih  ovd® Ao 0 (4.14)
Lo T g Qo
6 T f Qw

Y 0 : 0 Lih O 0 (4.15)
wY ot lih @O (4.16)
o Tip (4.17)
NS T (4.18)

Similar to the model in Chapter 3, the structure ofJSBMH is not significantly changeBquations

(4.1) to @.5) represent a typical Job Shop Scheduling (JSP) niBdetdo, 2009)but the variables and
parameters are specified for different processing time scenarios. The additional paramaieonsider
necessary transportation time of a job from one machine to another for a pair of consecutive operations.
Unlike variable job processing time, such a travel time accomplished by AGVs are relatively constant and

usually not influencedignificantly by environmental factors.

When jobs finish their last operation, they are immediately removed from the machine. AGVs do not
handle the completed jobs back to L/U, hence the makespan is defined as the finish time of the last
operation on the shop floor in all scenarios. Binary \deix represents the routes of AGVs, which
indicates the sequential relationship of each operation. Equatiodis ghd 4.7) regulate that each

operation can only follow one another operation. Equatd8) (imits the number of AGV routes by
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AGYV fleet skze. Equation4.9) ensures that for each AGV, there must be a starting trip as well as an

ending trip.

Equation 4.10) means an operation can begin only after the job arrival to the machine. The operation
sequence of one job is ensured in Equatibhl(). Equations 4.12) to @.15) are linearized constraints to
replace the nonlinear constraints Byge and Ulusoy (1995¢ontaining variable product, whighdicate

the impact of previous trips on the next trip of each AGV

Equation 4.16) is used to start timing when a vehicle leaves the L/U with the first job it conveys. Such a
constraint means a default initial condition that AGVs are at the L/U untilldzae for the first job

handling task

4.2 Job Shop Scheduling with Material Handling with Deterioration

Deterioration is the effect that processing becoming difficult with the production proceeding, usually
reflected by elongating processing time. When rifaation exists, the optimization of JSSMH could
become more complicated with processing time dependency function implemented. In this section with
discuss two types of dependency separately and propose different formulations for corresponding

Deterioratng Job Shop Scheduling with Material HandlingIJ®SMH)

4.2.1 Linear Deterioration of Processing Time
Lee et al.(2010) described a deteriorating job processing time that was linearly dependent on the
operation start time. Based on the notations in Table 4.1 and 4.2, remove the scenario subscripts and let
variablei denote the start time of operatigm andr] denote the basic and realized processing time of
operationi, and_ denote the deterioration rate, the linear deteriorating processing time is described in
Equation (4.19).

n n d (4.19
Correspondingly, the completion time of an operatietermined by start time and realized processing

time is calculated in Equation (4.20).
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Therefore, the comprehensive model ofJBSMH with linear deteriorating processing time can be

formulated in Equation (4.21) td.38) as the following.
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Y ot I "0 (4.39

¢ mip (4.37)

N T (4.38
Compared to the model formulation of -38SMH, except for the scenatiased variables and
constraints, the model of -DISSMH in Equation4.21) to (4.39 has two major difference. First the
variable of operations completiaime is replaced with start and realized processing time; second the
equation groups for linearly calculating the time between consecutive AGV trips are simplified with

conditional constraints.

4.2.2 ExponentiaDeterioration of Processing Time

In the study ofX. Zhanget al. (2018) the processing time of an operation was exponentially dependent
on the its processing sequence on the machine. Like the linear deterioration, this means the later the job

being processed on the machine, it took longer time to compgldtitional notations are included in

Table 43.
Table 43 Additional notations for Exponential-DSSMH
M Set of machines
O The operations on Machime
4 Indicator of sequence of operatinmndv on the same maching. p if uis processed

beforev.

i Rank of operatiomon the machine.

@ Parameter of deteriorating rate.

Note that variableq is redefined to form the operation sequence on machines. The exponential
deterioration is described in Equatigh39.
n nep (4.39
The optimization model of ExponentiatIBSMH is formulated in Equatiod.40 to (4.61).
i Ed (4.40

subject to:
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NG (4.60

o) T (4.61)

Like all previous JSSMH models, Equation (4.40) minimizes the makespan defined by Equation (4.41).
Equation (4.42) to (4.44) define the sequence of operations on the same machine with binarygyariable
and regulate the rank of operatinras a unique positive integer between o and number of operation on
the machine. Equation (4.45) to (4.47) represent the scheduling of job operations, under the realized
processing time depending on operations ranking. Equ@idh) to (4.47ps well as4.52 are nonlinear
constraints derived with Equatiort.89; however, for small ISSMH problems that number of
operations on a machine is small, Equatié/39 can be approximated with linear functions. Figdre

shows the scatter plot of Equatich3) given deteriorating rate=0.32 and basic processing tifpre3 in

X. Zhang et al(2018) and Tablet.4 recorded the linear regression function and corresporirfinglue

with different maximum rank (number of operations on a mach#g@ 9 of operations.

40
35
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Figure 41 Scatter plot of Equation (4.39)
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Table 44 Linear approximatiommf Exponential deterioration function wig*3 anda=0.32

sOs Linear regression function R?
3 n T Xip TP ¢ 0.9937
4 n 1 oi¢ ™ p T 0.9851
5 n T U T @ T 0.9743
6 n T Wwo T @ T 0.9615

In JISSMH application, number of operations on a machine is usually between 3 and 6, hence a linear
approximation is accurate enough for scheduling. For large jobageexewise regression can also retain

the linearity in each short interval kefitted by thememorylessness of exponential functions. In other
words, if the exponential deteriorating function in Equatibi39 is divided evenly on the axis of the

linear regression on all segments will have the s&ie

With the linear approximation exponential deteriorating function, ExponebDHdBSMH model in

Equation (4.40) to (4.9Xan be solved with commercial solvers on cases in reasonable size.

4.3 Schedling Example of SSSMH and RISSMH

With stochastic job processinignie, one option of job shop scheduling is adopting the average processing
time (Y. Y. Xiao, Zhang, Zhao% Kaku, 2012) In JSSMH, with average processing time the sequence of
operations and route of vehicles can be determined, while the realization of variable processing time
could result in different operation start and end time with the solution withge@rocessing time. With
deteriorating job processing time, the scheduling decision can be made without considering deterioration
although the schedule will be influenced by realized deteriorating processing time. The models proposed
in this study can bevalidated by better optimal solution of considering variable processing time
(stochastic and deteriorating) in modeling compared to simply adopting average processing time or

ignoring the deterioration. The job shop layout is LayoutRilige and Ulusoy1995)

4.3.1 Job Shop Scheduling wiRJSSMH
We use a small job set a simple example to demonstrate the validityJ&S®H in solving the problem

under uncertain job processing time. In this case there are 3 possible scenarios of job processing time for
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all operations, as shown in Tables, and tle probability of realizing each scenario is 1/3. The average

scenario is calculated in Tabeb, and this average scenario is used to make deterministic decisions with

JSSMH model.

Table4.5 Job Set Example with processing time3iacenarios and 1/3 probability for each scenario

Operation
1 2 3
Job
Scenariol| M1(4) M2(16) M4(10)
3(32)1 Scenario 2| ML1(3) | M2(19) | M4(13)
Scenario 3| M1(4) M2(12) M4(16)
Scenario1| M1(25) M3(12) M2(17)
‘](32)2 Scenario 2| M1(15) M3(10) M2(16)
Scenario 3| M1(22) M3(14) M2(18)
Scenario 1| M4(13) M2(16)
Job 3 .
(33) Scenario 2| M4(16) M2(17)
Scenario 3| M4(10) M2(15)

Table 46 Average scenario of the job set example

Operation
1 2 3
Job
Job 1 (J1) M1(3.67) | M2(15.7) | M4(13)
Job 2 (J2) M1(20.7) | M3(12) M2(17)
Job 3 (J3) M4(13) M2(16)

The performance of SPSSMH is compared to the deterministic JSSMH model on average makespan in

all scenarios with the AGV and job schedulhegcision. It is expected that the two models will produce

di fferent

schedul i

ng

resul ts

n

t er.ms

of

AGV

rout

Figure4.2(a) to (c) shows the job schedule and AGV routes solved by deterministic JSSMH based on

average sawrio in Table4.6 ,

which i s
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routes and operations sequences on machines are fixed according to deterministic optimization results, but
realized processing time in each scenario caused differeratigpestart and end time. All operations are

indexed to keep consistent with the model notations in Section 2

o 4 8 12 16 20 24 28 32 36 40 44 43 532 56 60 o64 68 F2 76 B0 B4 83 92

L/u
M1
M2 6.12
M3
M4
AGV 1 AGV2
Loaded Trip EEE—
Deadheading Trip —— — —» -———=r

(a) Schedule in Scenario 1

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 TF6 80 B84 B 92

6.2

AGV 1 AGV 2
Loaded Trip _— —_—
Deadheading Trip ————» —-————"

(b) Schedule in Scenario 2
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6.12

AGV 1 AGV 2
Loaded Trip —_— ——_—
Deadheading Trip ————® —_————

(c) Schedule in Scenario 3

Figure4.2 Schedulébased on EV solution in all scenarios

Since the job sequence on each machine and the AGV path are definedstagirstariables and do not
change cross scenarios, it can be observed in FHgRithat the sequences of jobs on each machine keep
consistehover all scenarios, and the destinations of each AGV also keep the same, while there are only
varianca in time of starting and ending tspvhich are secondtage variables dependent on scenarios.
Since each scenario has an equal likelihood of reaizathe expectation of makespan with the EV

solution is 85.67, which is known as fiexpected re

Figure4.3 (a) to (c) shows the job schedule and AGV paths solved B}SSIMH, which is known as the

iRecour seRPProbl emodo (

o 4 8 12 16 20 24 28 32 36 40 44 48 52 536 60 64 68 72 T6 30 B84 B3 92
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M1
M2 6.12
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Deadheading Trip — = ——# —_——

(a) Schedule in Scenario 1
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(c) Schedule in Scenario 1

Figure4.3 Schedule based on RP solution in all scenarios

For this small example, the sequerafgobs on machines @snot change when stochastic programming

is adoptedcomparing tathe deterministic model; however, the AGV routes are different and lead to

shorter makespan in Scenario 3. Correspondingly, the makespan expectation becomes 84. Tierefore,

Value of theStochasticSolution (VSS) can be calculated as 1.67 according to Equati6ég)(4
®YYOO®'YD (4.62)

4.3.2 Job Shop Scheduling with-JSSMH

Like SRISSMH, we validate the-DSSMH model with an example job set. The basic processing time of

the operations of the 4 jobs are included in Table 8, which is the inpu88MH. For comparison, the

processing time in Tablé.7 is directly adopted ideterministic JSSMH models, but the real processing
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time is deteriorating linearly or exponentially. In linearJBSMH, deteriorating rate=0.25. In

exponential RISSMH,U=0.432,6=0.51,a=0.32.

Table4.7 Basic processing time of the job set example

Operation
Job 1 2 3
Job 1 (J1) M1(8) M2(16) M4(12)
Job 2 (J2) M1(20) M3(10) M2(18)
Job 3 (J3) M4(14) M2(18)

The performance of IJSSMH is compared to the deterministic JSSMH modahakespan under two
types of deterioration with the AGV and job scheduling decision. Figure 4 (a) and (b) present the resulting
schedule of RISSMH and deterministic JSSMH under linear deterioration, and Figure 5 (a) and (b)

present the schedule of two méxlender exponential deterioration.
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(b) Schedule produced by deterministic JSSMH

Figure4.4 Schedule of example job set under linear deterioration
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(b) Scheduleroduced by deterministic JSSMH

Figure4.5 Schedule of example job set under exponential deterioration

It can be observed that ignoring deterioration in JSSMH would cause delay of makespan. The bottleneck
in this case is always Job 2 consisting of Operation 4, 5 and 6; however, when linear deterioration exists,
deterministic JSSMH model cannot foresee tleltying operation 3 could make its processing time so

long that it becomes the last completed operation and enlarges the makespan, On the other hand the D
JSSMH model can deal with this by balancing the start time of all operations. Like the caserof linea
deterioration, RISSMH results in shorter makespan with realized exponential deteriorating processing
time than adopting the original value of processing times in deterministic JSSMH model. Note that since
in both cases the deterministic JSSMH model attep same original processing time data, the operation
sequences and AGV routes are identical. Moreover, although there might be multiple optimal scheduling
solution, like delivering Job 1 to Machine 4 after Operation 2 with AGV 2, the optimal makespan is

always the same, determined by the bottleneck of processing Job 2.
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We can conclude from Figu#e4 and4.5 that considering deterioration in modeling can achieve shorter
makespan than simply making scheduling decision with average processing time.e@his like the
positive VSS of SBSSMH, we can also define thatJS8SMH has a positive impact on improving the

optimal solution.

4.4 Case study

We tested SBSSMH and RISSMH formulation on the job shop layouts and job setBilge and

Ulusoy (1995which has been widely adopted as a computation reference in the body of literature. There
are 10 job sets and each includes 5 to 8 jobs. There are 4 differpritogindayouts, hence the case study
consiss of 40 cases. Each case is notated amBXvherem represents the index of job set ani$ the

index of shop floor layout. For example, EX41 means the combination of Job set 4 and Shop floor layout

1.

4.4.1 SPRJSSMH case study

To keep consistent with the body of existing literature, the processing time of opéliatassumed to

follow triangular distributionTriangular(0.753, pi, 1.25), wherep; is the original processing time. For

each operation, 20amples are generated following the triangular distribution, then in one scenario the
processing time of operations is a combination of one sample of each operation. Hence there are 20
scenarios to reflect the stochasticity in theJS¥SMH model. Figurd.6 is the example of Job set 3 with

16 operations, in which the distributions of discretized processing time approximate the corresponding

triangular distributions.
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Figure4.6 Distribution of discretized processing time of Job setBilige and Ulusoy (1995)

The models are solved with Pyomo and CPLEX on a server with 252 G®nyeand 40 CPUs, and 2
servers with 31 GB memory and 8 CPUs. Both RP and EV solutions are solved for each case, except for
EX71 and EX74 on which Pyomo and CPLEX fail to solve. With realized stochastic processing time,

Figure4.7 presents the makespanuliag from implementing RP and EV solution with a scatter plot.
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Figure4.7 Comparison of makespan under stochastic processing time with RP and EV solution

If a point lies on the dash line in Figut&, it means EV and RP le&olthe same makespan with realized
stochastic processing time of operations of the job set. It can be observed that sihneobslow the

dash line, which means the RP solutions always result in shorter makespan than EV solutions. Averagely,
with the RP solution of SBSSMH model, the makespan can be reduced for 5.4%. The most significant
makespan reductions happen to EX31 BX&3, where 15.5 minutes or 12.3% of makespan was reduced

compared to the corresponding EV solution.

4.4.2 D-JSSMH case study

Same with the validation example ofI3SMH models, parameters associated with deteriorating rates
applied to Bilge cases as=0.25 fa linear deterioration ant=0.432,6=0.51,a=0.32 for exponential
deterioration. The solution of operation sequences and AGV routes solved by original JSSMH model and
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D-JSSMH are implemented respectively, and the resulting makespans affected by deteréveat
compared with each other. Models are formulated in AMPL and solved with CPLEX on NEOS public
server, on which conditional constraints based on binary variables can be directly input without
complicated linearization, including Equatioh32), (4.3), (4.43), (4.54) and (4.%6Figure4.8(a) and

(b) present the scatter plot of makespan under different job scheduling and AGV routing solutions facing

with deteriorating operations.
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Figure4.8 Comparison of makespan under deterioration with solution of JSSMH -a%EDIH

Same with Figurd.7, points below the dash line indicate solutioesulting in shorter makespan with D

JSSMH solutions, which happen to most of the cases. In some cases, JSSMHASHEII produce the

same job scheduling and AGV routing solutions, thus revealing identical makespan represented by the

corresponding pointying on the dash line in Figure 8. In some cadee are significant difference on

makespan, for example EX82 under linear deterioration, reducing the makespan for approximately 40%.

It can be observed that under current parameter setting, the infloledeterioration is more significant

with the linear deteriorating function than that with exponential deteriorating function. FHdlire

provides a clearer comparison for the effectiveness of modeling with deterioration.
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Figure4.9 Makespan difference with original JISSMH withkISSMH under linear and exponential
deterioration

In Figure4.9, thex-axis is the number of operations in each job setSBMH with linearly deteriorating
processing time is more effective on reducihg makespan compared to original JISSMH model.
Furthermore, for more complicated job sets with relatively large number of operations, solutions of D

JSSMH have obvious advantage.
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CHAPTERS. SUMMARY AND DISCUSSION

In this dissertation, threstudies in Job Shop Scheduling wittaterial Handling(JSSMH)are included,
and eactof the studiesocuseson a spedic aspect of the JISSMH problemcluding AGV assignment in
the first study, a heuristic algorithm for JSSMH in the second study, afdHI88h variable processing
time in the third studyWith three independent but correlated chapters beginning from Chaptes 2, t
dissertation aims to provide systemati@pproach fodSSMH The contributiorincludesinnovations in

mathematicamodelingas well as solution techniques.

In the first study JSSMH is regarded as the combination of a series of AGV assignment problems.
Classic AGV assignment rules make decision when transportation requests are generated, while in our
study AGVs are assigned Wwitoptimization models that account for current as well as future requests.
Two AGV dispatching strategies based on combinatorial optimization of assignment problems were
developedwith different decision making horizons. In the first strategy, AGV assighiaecisions are
iteratively made for tw consecutive requestand in the second strategy the assignment desisi@n

made for all current jobs in each work statioheTesultsof the case study show that tipgoposed AGV
assignment strategies result in shorter job waiting time than classic AGV assignment rules, which is
critical in many production scenarios, suchsasel and foodndustriesthat jobs cannot be exposed to

room temperature or natural envirommtefor too long

The first study suggestwo research extensianBirst, kesides optimization based on the assignment
problems in networkptimization additional optimization of AGV dispatching, such as models of vehicle
routing problems in network opmization, shouldhave better performance improving the job shop
efficiency. In fact, classicJSSMHmodels considering job scheduling and AGV routing can be formulated
to achieve the global optimal makespan of a job sitie. second extensiadirectionis to focus on

taking variability in production systems into consideration to make the optimization on the system more
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robust, andJSSMH modelscan be modifiedd account forprocessing time with multiple kinds of

variability. Both extensions are realized in the following two studies.

In the second studythe linearized optimization model of JSSMH is formulatsttla heuristic algorithm

is proposed to solve the problem instead of esatution to achieve agood qualitysoluion in a
reasonable amount dime. Given that available AGV fleet size is smaller than the job set size, the
proposed algorithm starts with the scenario th@l fleet size is same as the number of jobs. With this
assumptionthe job schedule solved byetiob Shop Schedulinmodelwithout material handling would

be a feasible solution amm@n befound relatively easilylin each iterationAGV fleet sze is reduced by,

and whenever aAGV is removed from the system, the operations served by the remds¥dake
reassigned to remaining AGVs accordio@ series of heuristic rulewhile the incumbent schedule may
also be adjusted. The algorithm ends when all the operations are handled by AGVs, and the remaining
AGYV fleet size matches witthe original AGVavailability. Overall the proposed algorithm can provide
an optimal or neaoptimal solution very efficiently, anchis would enable real time scheduling and
reactive scheduling on the shop floor when decisions must be made in a shodiithestrate the
algorithm a new visualization method extending traditional Gantt chartproposedto reflect the
interaction between AGV movements and job operatiSame with the first study in this dissertatiam, i
this second study, the processing time is asdutbebe known with certainty,dwever, the uncertain
processing time ivery common in real industrial applications. This considerationaniabilities of

processing timserves as the major motivation for the third study

In the third study three models are formulated to incorporate variable processing time in job shop
scheduling problems with material handliidased on literature review and anecdotal information, the
two common typs of variabilities in processing time arancertainty (radomnessjand deterioration.
Random processing time in production scheduling problems usually results from inaccurate data
collection or uncontrollable operatignand deterioration describes the phenomenon that processing

becomedess efficient agproducton moveson, resulting in longemprocessing timeWhen processing
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times are random andollow specific distributiors, a two-stage stochastic programming model is
formulated to minimize the expectation of makespaross a series of scenarios discretizmunfthe

distribution of processing timeDeteriorating processing time can be linear to operation start time or
exponentiat o oper ati onso0 s equdendeteriaton isaconsider@din moeelingh en c e
two models are formulated to incorporalte deterigation functions respectivelfodeling techniques
areproposedo linearize the nonlinear model and ensure the model solvabitignecessityof this study

is supportedoy comparing the makespaasedproposed models and solutions of original modéthout

considering thevariable processing time8ased on the case studi¢lse proposed models considering

variable processing time outperform the original models in minimizing the makespanrandomor

deteriorating processing time.

To sumnarize, this dissertation focusesn the JSSMH problem, which has beenaddressed
comprehensivelywith AGV assignment, classic modeling and corresponding solution techniques, and
extensions for variable productionrpeeters Multiple theoriesare coveredincluding classic JSSMH
modeling, AGV assignment problems as a simplification of JSSMH, an extension beyond JSSMH
considering randomness and deterioration. Optimization models in different types are formulated,
including linear programming mix-integer linear programmingand nonlinear programmingV arious

tools are utilized in the series of studiesvalidate and implement the proposed models and solution
techniquesSimulation models are constructed to study A&/ movement and shop floor workflow,

and they are utilized as the platform to test existing AGV assignment rules and proposed strategies based
on optimization. The simulation platform also contributes to a good reference in validating the models
and soluibn techniques in the following studies at early stages. The mathematical models are coded with
various programming languages includihg the first study, models are coded with JAVA to iteratively
solve optimization models in simulatighatform. In thesecond studythe proposed algorithm is realized

with R, while originalmodels are coded with AMPL and solved on NEOS public solvers for the

algorithmvalidation. In the third study, the stochastic programming model is coded with Python to call
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Pyomo withspecific algorithms for stochastic programmindhile models considering deterioration are

coded in AMPL.

This dissertation is subject to a few limitations which suggest future research directions filsshop
scheduling studies, besides randord deteriorating processing time, shortening processing time is also
sometimes reported, mainly dueth® learning effect of workers, who become increasingly proficient in
the with production moving orThe learning process could be described with muchlemomplicated
models than random distribaiis and deterioration functions, and the scenario can be even more
complicated if the combinations of them are consideférefore, the modeling of JSSMe¢duld be
expanded to incor por tstarmdhe miged &kffects ofdlearhirmgadetarioratign apdf f e ¢
randomness. Seconayith specific shop floor configuration)SSMH should meet many additional
requiremerg in application, such as avoiding AGV collision, reducing AGV congestion,irestdnt
responséo jobs with preemptiontherefore the JSSMH model ask for further modification and this might
bring more challenge to computatiorhird, there are some JSSMH cases that are extremely difficult for
commercial solvers andeed special attention, hencetbetsoltion techniques coulte developed in

future research to ensure solvability of JSSMH modetsits extensions
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