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ABSTRACT 

Investments in transportation sector have arisen as significant problems due to the 

substantial cost of maintaining required level of service. Energy transportation draws a particular 

attention. In this dissertation, we focus on two special forms of energy transportation problems. 

On the one hand, we study the quantification of value of expansion investments in high-voltage 

power lines. On the other hand, we quantify the value of expansion of capacities for U.S. Navy 

transportation ships. Problems are subject to severe uncertainties being in the form of smooth 

changes and discrete disruptions. We use geometric Brownian motion and Poisson arrival 

processes to model both types of evolutions, respectively. We utilize real options approach to 

quantify the values of expansion options and provide decision makers with managerial insights. 

My dissertation consists of three papers. In the first paper, we quantify the value of 

expansion options in transmission lines. Revenue of the investment is calculated based on 

differences between locational marginal prices. This research reveals that the proportion of 

susceptance of a power line to its power-carrying capacity is a significant factor to determine the 

value of an expansion investment. In the second paper, we quantify the value of option to expand 

the capacity of a U.S. Navy transportation ship. Decision maker can either choose flexible design 

(relatively more prepared for expansion) or fixed design at initial design phase. Our study indicates 

that flexible design should be preferred over fixed design if initial demand (for transported item) 

value is relatively lower. Third paper revisits transmission expansion problem and adopts 

installation of local generators as an uncertainty in the form of discrete disruption. It shows that 

the value of transmission network does not always reduce with the installation, instead location of 

the installation plays a key role. 
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CHAPTER 1. GENERAL INTRODUCTION 

Engineering is a discipline, which shows the best ways of fulfilling tasks and of reaching 

to desired goals. Through executing these tasks, there exist many tactical and operational level 

decisions that should be made by the decision makers. These decisions in fact represent 

engineering problems from which they are resulted. Each problem has an objective to be reached 

by the decision maker, but there exist other significant parts of these problems: Constraints based 

on physical laws and principles, which serve as the fundamental basis of engineering. Engineering 

problems arise with constraints, which should be obeyed while resolving to the problems. 

Of engineering problems with critical constraints, those in transportation area draw 

attentions of research practitioners and industry professionals because of huge costs of maintaining 

the qualified service and significant uncertainties. To stay competitive in challenging business 

environments, the transportation companies pay attention to their tactical level decisions. They 

often face real-life problems that should be solved with real-life constraints. 

Set of transportation problems consist of various types. The importance of these problems 

can be evaluated by the items transported. Energy transportation is precisely one of the most crucial 

areas in which critical decision making ought to be followed. By 2040, it is estimated that 

transportation energy demand will increase to nearly 75 million barrels of oil per day (Burns 2013). 

Electric power transmission and fuel transportation arise as two significant subsets of energy 

transportation problems. Both energy sources, electric power and fuel, will likely exist to sustain 

the human life forever, which make them indispensable in this respect. That is why many real-life 

engineering problems with relevant constraints are defined and constructed surrounding those 

energy sources. 
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In this dissertation, specific problems arising in electric power transmission and fuel 

transportation areas are considered and modeled with their physical constraints. Specifically, 

electrical circuit laws, known as Kirchhoff current and voltages laws, are taken into account as 

constraints in electric power transmission. As for fuel transportation, the relationship between 

speed, power, length and total mass of transportation vehicles represents constraints. The main 

objective of this dissertation for both problems is to show how economic decisions subject to these 

constraints can be made under long-term uncertainties.  

In these two areas, the problems are dynamic and subject to uncertainties. We use 

stochastic optimal control techniques to derive the managerial insights to be presented to the 

decision makers because the pattern of demand is often modeled as geometric Brownian motion 

(GBM). Among various stochastic optimal control techniques, we utilize real options approach to 

model these problems. The distinguishing part of this approach is to quantify and add the value of 

existing managerial flexibilities into the investment value derived from well-known net present 

value (NPV) approach. 

Let us examine in detail two main problems as follows. In Chapter 2, a real options 

framework that provides the valuation of a transmission owner’s option to expand in his or her 

network is developed and analyzed. What distinguishes this framework from the extant literature 

is that the evolution of the demand follows GBM process, it explicitly accounts for the physical 

flow of the electric power economically manifested as the locational marginal prices (LMP), and 

it shows how the values of the expansion options can be determined in the transmission network. 

Furthermore, this framework shows how to value an option to expedite or delay can be determined 

given that a specific expansion is planned. It reveals that the proportion of susceptance (measures 

the easiness of electric power flow on a transmission line) of any transmission line to its power 
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carrying capacity is influential factor to determine the value of the investment in the corresponding 

circuit. An extensive numerical example is presented to illustrate the key features of this 

framework. A compact version of this chapter is published in The Engineering Economics journal. 

In Chapter 3, an engineering design problem arising in fuel transportation of the navy is 

concerned. In the current environment of constrained expenditure often subject to budget cut, when 

transportation requirements increase in the navy, then some of the practical solutions involve 

jumboization. Jumboization is defined as increasing the capacity of an existing ship by extending 

its length at a future date. In view of this jumboization, the choice of the ship design has future 

ramifications as follows. With fixed design (the ship is not designed initially envisioning future 

jumboization investment), jumboization later will be costly. With flexible design (the ship is 

designed initially envisioning future jumboization investment), jumboization later will be less 

costly, however the initial cost may be more because of initially strengthened hull of the ship. In 

this chapter, we construct and analyze both cases, and determine conditions under which one 

design is superior to another by using stochastic optimal control approach. Jumboization results in 

fuel cost saving per ton due to the decrease in wave-making resistance of the ship. For engineers, 

managers and/or military officers who make decisions, we show that relatively low level of initial 

transportation requirement is a signal for the decision maker to prefer fixed design subject to 

relationships between displacement, speed, length of the ship and power. Moreover, longer 

distances the ships are required to transport are in favor of jumboizing the ships earlier. Key 

components of our framework are illustrated with a numerical example based on a real ship. A 

compact version of this chapter is submitted to Systems Engineering journal. 

We now extend Chapters 2 and 3 in major way as follows. Chapters 2 and 3 consider 

smooth changes of uncertain parameters in their context. Decision makers of private and public 
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sectors frequently face with smooth changes of uncertainties while making strategic decisions. 

However, decision makers have also encountered several types of unexpected and large-scale 

fluctuations (discrete disruptions), which have often catastrophic ramifications such as so-called 

black swan events (rare events) in financial sector. There is a need for a framework to model the 

evolutions of smooth changes and discrete disruptions so that investments (in both financial and 

real sectors) can be evaluated. In Chapter 4, we develop a new computationally efficient lattice 

method to model both types of uncertainties and apply it to transmission expansion investments. 

In recent years, decision makers of expansion investments have faced critical uncertainties such as 

growth of demand for electricity and installation or removal of distributed generations (DGs), 

which are local generations for small communities. This circumstance indicates that expansion 

decisions for transmission lines should be made strategically as installation of DGs may create a 

stranded cost for transmission owners because DGs meet a portion of local electricity demand. In 

Chapter 4, we propose a real options framework which quantifies the value of expansion 

investments under demand and DG uncertainties. The treatment of uncertain parameters is 

achieved by using GBM combined with compound Poisson process. Proposed framework is 

demonstrated on a hypothetical example to illustrate the key components of our framework. It 

shows decision makers should not unquestionably think that DG installation in one area decreases 

the value of transmission network. Instead, they should focus on the location of DG installation as 

it is a significant factor determining the trend in the value of transmission network. 

We can count three commonalities in Chapter 2, Chapter 3, and Chapter 4. First, the type 

of real option evaluated in three chapters is expansion option. For transmission networks, we 

consider that decision maker has a right, but not obligation, to expand the power network by 

installing a power line between centers. For ship design, we think that decision maker has a right, 
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but not obligation, to expand the capacity of a replenishment oiler by extending its length. A second 

commonality is that problems of our interests arise in energy transportation sector. Transmission 

networks transfer electric power and replenishment oilers carry fuel, both of which are special 

types of energy commodities. Lastly, from the methodological perspective, we use the same 

approach to model the investment problems in transmission networks and ship design. We use real 

options approach, or stochastic optimal control framework, to model problems and to quantify the 

values of investments in both application areas. 

The structure of this dissertation is as follows. In Chapter 2, expansion investments are 

evaluated with real options approach in electric power transmission network. In Chapter 3, 

jumboization of a military transportation ship is considered as a real option for the decision maker 

and is quantified to resolve the comparison problem of flexible and fixed designs. In Chapter 4, 

the way of how transmission investments are evaluated under demand and DG installations 

uncertainties are shown. Chapter 5 is an overall appendix, which lists a couple of discussions 

related to Chapter 2 and Chapter 3. Chapter 6 concludes this dissertation by emphasizing 

significant parts and summarizing major findings. 
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CHAPTER 2. EXPANSION PLANNING FOR TRANSMISSION NETWORK UNDER 
DEMAND UNCERTAINTY: A REAL OPTIONS FRAMEWORK 

Introduction 

Since the deregulation of U.S. electric power in the 1990s, the transmission aspect of the 

electric power industry has been separated from the generation aspect, and the responsibilities of 

the transmission network owners have been much different from the responsibilities of generation 

unit decision makers (we will use owners and decision makers interchangeably because the 

decisions made in this article are on behalf of the owners). For example, many generation unit 

decision makers have no obligation to serve, whereas transmission owners are expected to address 

increasing demands and still maintain technical requirements such as reliability and stability. For 

this reason, there have been numerous sophisticated studies on transmission expansion planning 

(see, e.g., Buygi et al. 2004), which are characterized by uncertainties ranging from demands to 

fuel costs, substantial and upfront expansion investment costs, and irreversibility of the expansion 

investment.  

In the often-practiced case of the hybrid merchant/regulated mechanism for the expansion 

investment, a major part of the revenue needed for expansion is collected from the market 

participants such as distribution utilities and power generators. For instance, in California, 

participating transmission owners, who obey the regulatory authority of the independent system 

operator, are allowed to collect the transmission access charge (California ISO 2014a, 2014b). The 

other major part is through the financial transmission rights, which depend on the LMP differences. 

In this mechanism, the transmission network owners hold financial transmission rights and sell 

them to market participants to generate the other major part of the revenue needed for expansion 

(see, e.g., Pringles et al. 2014). 
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We note that, from the perspective of numerous transmission owners in the hybrid 

merchant/regulated mechanisms, the expansion (and when to do it given that they would do it) can 

be viewed as strategic real options offering managerial flexibility under uncertainties (see, e.g., 

Dixit and Pindyck 1994). 

In this article, for such owners in the hybrid merchant/regulated mechanisms, we show how 

the values of the expansion options can be determined in the transmission network. Furthermore, 

our framework shows how to evaluate an option to expedite or delay given that a specific 

expansion is planned. This is achieved under the assumption that the evolution of the demand 

follows a GBM process and there are no other uncertainties, and through the optimal power flow 

(OPF) calculations leading to the appropriate LMP levels. 

The rest of the chapter is organized as follows. We first present a review of the relevant 

literature. Next, we explain the general framework of our chapter. This is followed by an extensive 

numerical example that illustrates the key features of our framework. Finally, we make concluding 

remarks and provide technical appendices on the OPF formulation and the LMP calculations. 

Literature Review 

For the electricity market, the real options approach has frequently been studied for 

generation expansion planning. As for transmission expansion planning, the real options approach 

has been less frequently studied. Of such studies on transmission expansion planning, there are 

primarily three groups of real options applications.  

In the first group, the configuration of the transmission network is simply bi-nodal (a net- 

work of two nodes). Hence, there is only one investment decision under consideration (i.e., to add 

a power line between two nodes; see, e.g., Abadie and Chamorro 2011). 

The second group of studies investigates the option to defer the transmission investment. 

In this case, one can separate such studies into two subgroups based on their network 



 

	

9 

configurations. In one subgroup, the researchers quantify the option to defer in bi-nodal networks 

(see, e.g., Blanco et al. 2009). In the other subgroup, the researchers quantify the option to defer 

in multi-node networks of three or more nodes (see, e.g., Osthues et al. 2014).  

In the third group, there exist studies focusing on special electrical devices such as flexible 

alternating current (AC) transmission systems (FACTS) and DGs. Blanco et al. (2011) evaluated 

the transmission investment in FACTS devices. In the model, the transmission owner invests either 

in a transmission line or in FACTS devices that relieve the transmission congestion. Similarly, 

Vásquez and Olsina (2007) focused on the deferral effect of DGs in transmission investments. The 

authors claimed that the owner can postpone the investment in a transmission network by 

constructing DG units that relieve the transmission congestion. 

General Framework 

In this section, we will first elaborate the revenue being generated by the LMP differences 

and then address the lattice construction for demand uncertainties. This is followed by the 

investment valuation process with flowcharts. We note that the brief information regarding the 

OPF formulation and the way of calculation of the LMPs is provided in Appendices 2.A and 2.B, 

respectively. 

Revenue Generated by the LMP Differences 

When generation centers (nodes in network) are dispatched at optimality of the OPF 

problem and if they are paid according to their own LMPs and the consumption centers (other 

nodes in the network) pay for electricity according to their own LMPs, then there exists a surplus 

amount of money (see, e.g., Hsu 1997; Pérez-Arriaga et al. 2013). This surplus results from the 

congestion in the network and it is generally accepted as the source of revenue for the network 

owner (see, e.g., Garcia et al. 2010; Pringles et al. 2014). This revenue is modeled as in Equation 

(2.1) 
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 𝜋-𝐷- −
-∈?@

𝜋.𝐺.
.∈?B

	 (2.1) 

where 𝜋- denotes the LMP at center 𝑖, 𝐷- denotes the demand amount at center 𝑖, 𝐺. denotes the 

dispacthed amount of power from generator at center j (at optimality of the OPF problem), and 𝑁E 

and 𝑁F  denote the set of consumption centers and generation centers, respectively. Krause (2003) 

stated that Equation (2.1) is always larger than zero if at least one transmission line is congested. 

If none of the power lines (arcs in network) is congested, then the difference equals zero. Although 

we cannot present the details of this payment mechanism (for details of such a mechanism, see, 

e.g., Kirschen and Strbac 2004), in this article, we utilize a simpler version of this difference as 

the revenue of the network. We note that this revenue is on an hourly basis (the unit is dollars per 

hour) because the unit of the LMPs is dollars per megawatt-hour and the units of 𝐷- and 𝐺. are 

megawatts. 

We note that only the transmission income is considered in this context because we make 

an attempt to solve the problem of the transmission owner. As the above discussion implies, the 

income of the transmission owner results from differences between the LMPs. In the literature, 

various studies can be found that take into account only the transmission income to solve the 

investment decision problems.  

For example, Pringles et al. (2014) examined the impact of fixed revenue provided by the 

regulatory authority on the investment decisions made by the transmission owners. The authors 

defined the revenue for the transmission owner as consisting of only two parts: variable revenue 

and fixed revenue. Whereas the former one represents differences between the LMPs, fixed 

revenue is paid to the transmission investor by the regulatory authority, as we adopt in our study. 

In another study, transmission investments were evaluated by Garcia et al. (2010) to find the 
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optimal time of the investments. The authors indicated that investments in transmission assets are 

only remunerated by differences between the LMPs. Having calculated the revenue in each year, 

a NPV curve was created in order to reveal the optimal investment time. In Blanco et al. (2009), 

the option to defer in transmission investments was evaluated. The authors assumed that the 

revenue of an investment arises as a result of differences between the LMPs. A different study was 

conducted by Fu et al. (2006), who considered two types of behavior of transmission investors. 

Whereas one attempts to minimize the investment cost, the other pursues maximizing the revenue 

of the investment. In the latter one, the revenue of the investment is assumed to be generated only 

from differences between the LMPs. Finally, Ramanathan and Varadan (2006) introduced an 

overview of a modeling framework to evaluate the transmission investments under uncertainties 

with the real options methodology. Differences between the LMPs were put forward by the authors 

as a single source of revenue of the investments. 

Uncertainty and Discretization by the Lattices 

Because option evaluation based on a continuous stochastic process such as GBM is 

difficult, we intend to use the discretized form of this process. Before describing demand growth 

modeling, we focus on a demand evolution in a single consumption center in order to present the 

binomial lattice discretization more clearly. Then we introduce the multiple branch lattices to 

illustrate the demand growths in multiple consumption centers.  

We note that our binomial lattice approach has a computationally weak point, especially 

with a multiple number of underlying uncertainties (namely, the curse of dimensionality; see, e.g., 

Abadie and Chamorro 2013; Andersen and Broadie 2004). 

On the other hand, the binomial lattice approach has been successfully utilized as a 

modeling approach of underlying uncertainties and its usefulness has been mentioned extensively 

in the literature. It is well known that when continuous stochastic processes are used, many options 
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(and real options) problems lead to intractable solutions. The reason is that valuation functions 

mostly turn out to be partial differential equations and they can rarely be solved in closed-form 

solution. Therefore, discrete models have to be developed and implemented in order to obtain a 

solution (see, e.g., Pacheco and Vellasco 2009). 

Several discrete models have been proposed in the literature as alternatives to continuous 

models. For instance, Brennan and Schwartz (1978) developed well-known implicit and explicit 

methods for valuing options. Among the discrete models, the binomial lattice has been one of the 

most frequently used models (see, e.g., Hull 2009). It is stated that the binomial lattice is highly 

flexible to incorporate complex real options and it is easy to implement (see, e.g., Mun 2002). 

Moreover, it allows pricing American options, which is a required property in the real options area 

because most of the real options can be exercised prior to their maturity. Luenberger (1997) 

supports the idea that many real-life problems can be solved with the binomial lattice. 

Mathematical properties of the binomial lattice are other reasons why it is usually preferred. For 

example, lognormal distribution of the evolution of asset values can be well approximated by the 

binomial lattice. It also allows incorporating a risk-neutrality property, which is a strong 

assumption in real option valuations.  

Additionally, the power of the binomial lattice in modeling has been mentioned in the 

literature. For example, Boyle (1988) established a lattice model to represent two underlying state 

variables. He verified the accuracy of the developed model by evaluating European options. He 

compared the values of European options derived from his lattice model with the accurate values 

published in other studies. He revealed that the differences are not significant and thus concluded 

that the developed lattice framework can be securely used for the most applications. 
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Single consumption center 

In this section, by taking into account the uncertain demand growth in a consumption 

center, we discuss the derivation of the binomial lattice parameters, discount rates, and the 

importance and derivation of risk-neutral probability. We will address more complicated 

uncertainty discretization in multiple consumption centers afterwards. 

Derivation of parameters for the binomial lattice 

One of the most commonly used discretization methods is the binomial lattice developed 

by Cox et al. (1979). According to this method, a variable 𝑋 (in our case, 𝑋 represents 𝐷-, where 𝑖 

is the single consumption center) has two possibilities after one period; it either goes up or goes 

down. The change in 𝑋 is determined by the multiplication factors 𝑢 > 1 and 𝑑 < 1. In other 

words, it becomes either 𝑢𝑋 or 𝑑𝑋 with probabilities 𝑝 and 1 − 𝑝, respectively (Figure 2.1). 

Therefore, mathematical expressions of the parameters 𝑢, 𝑑, and 𝑝 should be determined. 

	

Figure 2.1 One-step lattice 

Discretization of the GBM process can be performed by considering the natural logarithm 

of the change in 𝑋, which is denoted as ln 𝑋. The binomial lattice matches the expected value and 

the variance of ln 𝑋. By following the derivation procedure shown by Luenberger (1997), the 

parameters can be obtained as 

 𝑢 = 𝑒O ∆$ (2.2) 
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 𝑑 = 𝑒QO ∆$ (2.3) 

 𝑝 =
1
2 +

1
2

𝜇 − 12𝜎
T

𝜎 ∆𝑡 (2.4) 

where 𝜇 is the drift parameter of the process 𝑋, 𝜎 is the volatility of the process 𝑋, and ∆𝑡 is the 

length of one time period in the lattice. We note that ∆𝑡 designates a degree of time granularity 

ranging from days to perhaps years. We also remark that the probability 𝑝 is derived from the 

discretization of the GBM process; hence, it is not a risk-neutral probability. In the binomial lattice 

calculations, risk-neutral probability should be used instead of 𝑝. 

Discount rates 

A discount rate is the interest rate used in discounted cash flow analysis to calculate the 

present value of the future cash flows. Discount rate takes into account not only time value of the 

money but also risk included in future cash flows (Investopedia 2014). 

If it is not desired to include the risk, it is viable to utilize the risk-free discount rate. Zacks 

Investment Research (2014) states that the risk-free discount rate is typically the amount that an 

owner expects to gain from an investment in a zero-risk security. In general, the yield on a U.S. 

Government bond is accepted as risk-free discount rate. 

In the context of company businesses, different discount rates are used to evaluate the 

projects because they have risk. According to Investopedia (2014), the weighted average cost of 

capital is generally used when the project risk profile is similar to the company’s risk profile. On 

the other hand, if they are different, a capital asset pricing model is frequently used to determine 

the project-specific discount rate. The discount rate calculated in this way is called the risk-

adjusted discount rate.  
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The risk-adjusted discount rate is defined as the sum of the risk-free discount rate and risk 

premium (see, e.g., Investopedia 2014). Risk premium can be calculated as (Market rate of return 

- risk-free discount rate) multiplied by the beta of the project. More specifically, Investopedia 

(2014) notes that the beta of the project represents the extent of “how much a company’s share 

price moves against the market as a whole” (paragraph 9). If beta is equal to one, then they move 

in line with each other. Otherwise, if it is larger than one, the share is said to exaggerate the 

movements of market, and if it is less than one, it is said to be more stable. 

Risk-neutral probability 

In the binomial lattice calculations, risk has to be included in the equations. Mun (2002) 

states that cash flows including risk must be adjusted so that risk can be represented. According to 

Mun (2002), there exist two methods for doing this: (i) cash flows are calculated by utilizing the 

risk-adjusted discount rate or (ii) probabilities of the cash flows are adjusted with risk and discount 

of cash flows is performed with risk-free discount rate. Though original (or true) probabilities are 

taken into account in calculations for (i), risk-neutral probabilities are considered in calculations 

for (ii). The methods defined in (ii) are preferred in real options analysis because it is expressed 

that calculating different risk-adjusted discount rates in various states through the binomial lattice 

is avoided in this case. The following simple example depicted in Figure 2.2 (Mun 2002) explains 

how risk-neutral probability is obtained. 

	

Figure 2.2 Simple payoff 



 

	

16 

Let 𝑋) be the payoff of a game. The expected payoff at time point 1 (𝑋)) is simply 

calculated as 

 𝑋) = 𝑞𝑢𝑋) + 1 − 𝑞 𝑑𝑋) ∙ 1 + 𝑟 Q) (2.5) 

where 𝑟 is the risk-free discount rate. By assuming that 𝑋) = 1, then 

 1 = 𝑞𝑢 + 1 − 𝑞 𝑑 ∙ 1 + 𝑟 Q) (2.6) 

gives the risk-neutral probability for up movement as 

 𝑞 =
1 + 𝑟 − 𝑑
𝑢 − 𝑑  (2.7) 

where 𝑢 and 𝑑 are calculated by using Equations (2.2) and (2.3), respectively. Alternatively, in 

Wang and Min (2006), it is stated that risk-neutral probability can be derived by replacing 𝜇 in 

Equation (2.4) with 𝑟. 

After these discussions, we can now proceed to present a more general case of multiple 

consumption centers. 

Multiple consumption centers 

If demand growth is an uncertain factor in multiple consumption centers, then the binomial 

lattice turns into the multiple branch lattice because demand in consumption center 𝑖, 𝐷-, has 

different drift and volatility parameters than those of demand in consumption center 𝑗, 𝐷.. A state 

in the lattice (denoted by 𝑡, 𝑘  where 𝑡 denotes the time point and 𝑘 denotes for each 𝑡 vertical 

numbering starting with 1 from the uppermost state and increments through the undermost state) 

consists of the demand vector 𝐷), 𝐷T, …𝐷 ?@ , where 𝑁E is the set of consumption centers. 

Hence, the number of branches (arcs in the lattice) emanating from a state in the lattice is 2 ?@ . In 



 

	

17 

order to calculate the demands of the next time point’s states in the lattice, all 𝑢- and 𝑑- possibilities 

are taken into account in a permutational manner. 

Figure 2.3 illustrates an example of demand evolution in two consumption centers for two 

periods. We note that period 𝑎 is defined from time point 𝑎 to time point 𝑎 + 1. 

	

Figure 2.3 The multiple-branch lattice 

Although finding the permutation of all 𝑢- and 𝑑- at the beginning of the next period is 

easy, it is not trivial to come up with the probabilities of the branches in the multiple branch lattices 

similar to Equation (2.4). According to Wang and Min (2006), if there is no correlation between 

the demand growths, then the joint probabilities of the branches can be found with the 

multiplication of marginal probabilities. If there is a correlation between demand growths, then 

 𝑝\ = 𝑝]^(\)

|?@|

-`)

+
1

2|?@| 𝛿-. 𝑙 𝜌-.

|?@|

.`-d)

|?@|

-`)

,					𝑙 = 1,2, … , 2|?@| (2.8) 

gives the joint probability for branch 𝑙, where 𝜌-. is the correlation coefficient between demand 

growths in consumption centers 𝑖 and 𝑗. Moreover, 𝛿-(𝑙) and 𝛿-.(𝑙) are defined as follows: 
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 𝛿-(𝑙) =
𝑢-, 𝑖𝑓	demand	in	center	𝑖	has	up	movement	in	branch	𝑙
𝑑-, 𝑖𝑓	demand	in	center	𝑖	has	down	movement	in	branch	𝑙 (2.9) 

 

𝛿-.(𝑙)

= 1, 𝑖𝑓	demands	in	𝑖	and	𝑗	move	in	the	same	direction	in	branch	𝑙
−1, 𝑖𝑓	demands	in	𝑖	and	𝑗	move	in	the	opposite	directions	in	branch	𝑙 

(2.10) 

We note that in Equation (2.8), 𝑝w^ is the probability defined in Equation (2.4). Since we 

need risk-neutral probabilities, we first convert 𝑝w^ to the risk-neutral probability 𝑞w^ by replacing 

𝜇- in Equation (2.4) with 𝑟. Then, if we use 𝑞w^ instead of 𝑝w^ in Equation (2.8), we obtain risk-

neutral probability of branch 𝑙. 

Investment Valuation Process 

Before elaborating details of transmission investments evaluation, we present the notations 

frequently used during creation of the evaluation lattices in Table 2.1 in order to facilitate the 

understanding of the critical flowcharts in this subsection. 

Given the notations in Table 2.1, the general process for the investment valuation is as 

follows. For a given network, an investment alternative is defined as adding a power line between 

two selected centers. In the valuation approach, the investment alternatives between each pair of 

centers are evaluated separately. 

We rely on the NPV lattice without investment for the procedure to evaluate each 

investment alternative. Therefore, the way of creation of the NPV lattice without investment is 

presented first. 

 

 

 

 



 

	

19 

Table 2.1 Notations for the investment valuation process 

Notation Explanation 
𝑡 A time point in the multiple branch lattice 
𝑇 Last time point 
𝑘 Vertical numbering of the states in the lattices. For each 𝑡, its value starts with 1 at 

the uppermost state and increments through the lowermost state. For example, in 
Figure 2.3, 𝑘 starts with 1 from above, increments through bottom, and becomes 
equal to 9 at the lowermost state for 𝑡 = 3.   

𝐸($,y) Demand vector at the state (𝑡, 𝑘) in the demand evolution lattice 
𝑆($,y) Set of all successor states of (𝑡, 𝑘) at the next time point 𝑡 + 1. For instance, the 

cardinality of 𝑆($,y) is 4 in Figure 2.3. 
𝐵($,y)	 Set of all branches that directly emanate from (𝑡, 𝑘). The cardinality of 𝐵($,y) is 4 

in Figure 2.3. 
𝑞\ Risk-neutral probability of the branch 𝑙, 𝑙 ∈ 𝐵($,y) 

𝑁𝑅($,y) The revenue per hour ($/h), which is the result of Equation (2.1), for a given 
demand vector 𝐸($,y). The unit is dollars per hour because the unit of the LMP is 
dollars per megawatt-hour. 

𝑐 The fixed operation and maintenance cost ($/h) 
𝑟	 Risk-free discount rate (%/year) 
𝐻 The number of hours in ∆𝑡 

𝑁𝑃𝑉($,y) NPV of the gained total profit from time point 𝑡 to time point 𝑡 + 1 for (𝑡, 𝑘) ($/∆𝑡 
years) 

𝑉($,y) NPV of the network in the NPV lattice at time point 𝑡 for (𝑡, 𝑘) ($). Thus, as 
opposed to 𝑁𝑃𝑉$y, it additionally includes the risk-neutral expected value of the 
successor states at the next time point. (see Equation (2.13)) 

𝑉(�,y) NPV of the network in the NPV lattice at time point 𝑇 for (𝑡, 𝑘) ($) 
𝐷𝑀𝐶 Decommissioning cost of the network ($) 
𝐴 Supplementary revenue for the owner ($) 
𝐼 Initial investment cost ($) 

 

Constructing the NPV lattice for the network without investment starts backwards. Thus, 

terminal state values 𝑉(�,y) should be determined first. At the terminal states, the LMP-based 

revenues and corresponding profits are calculated for ∆𝑡 years. For the corresponding demand 

values at the state (𝑇, 𝑘), we calculate the LMPs by solving the OPF problem. Then, by using 

Equation (2.1), network revenue denoted by 𝑁𝑅(�,y) is computed and 𝑁𝑃𝑉(�,y) is calculated by 

using Equation (2.11) (Equation (2.11) is written with 𝑡 to represent the general case because it is 
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used for intermediate states as well). In addition to 𝑁𝑃𝑉(�,y) for the terminal states, we add the 

discounted decommissioning cost with Equation (2.12). Thus, we obtain 𝑉(�,y) for the terminal 

states. 

 𝑁𝑃𝑉($,y) = 𝐻 ∙ 𝑁𝑅($,y) − 𝑐 ∙ 1 + 𝑟 Q∆$ (2.11) 

 𝑉(�,y) = 𝑁𝑃𝑉(�,y) + −𝐷𝑀𝐶 ∙ 1 + 𝑟 Q∆$ (2.12) 

For the intermediate states, after calculating the corresponding 𝑁𝑃𝑉($,y) with Equation 

(2.11), we add it to the risk-neutral expected value of the successor states of (𝑡, 𝑘) (corresponding 

𝑉($d),y)) by using Equation (2.13). Thus, we find the NPV of the network at the present time 

denoted by 𝑉(),)) by the recursive relation presented in Equation (2.13). 

 𝑉($,y) = 𝑁𝑃𝑉($,y) + 𝑞\𝑉($d),y)
y∈� �,�
\∈�(�,�)

∙ 1 + 𝑟 Q∆$	 (2.13) 

We now present the general flowchart, which is illustrated in Figure 2.4, for evaluating all 

investment alternatives existing in the network. 

Figure 2.4 

Box 1. In this step, an investment alternative such as adding a power line between centers 

1 and 2 in the network is selected. The set of investment alternatives is defined as the collection of 

each investment alternative between a pair of centers in the network. 
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Figure 2.4 Flowchart for investment alternatives evaluation 

Box 2. This procedure has a sub-procedure illustrated in Figure 2.5. Option 𝑡 represents 

the investment made at the beginning of the period 𝑡. Therefore, for a model horizon equal to 𝑇, 

the owner has 𝑇 options to evaluate. In each option, at the end of period 𝑇, a decommissioning 

cost is incurred. Moreover, we assume that transmission access charge 𝐴 and initial investment 

cost 𝐼 are incurred whenever an investment is made. 

	

Figure 2.5 Flowchart of evaluation of options existing in one investment alternative 
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Figure 2.5 

Box 2. Option 𝑡 represents that an investment is made at the beginning of period 𝑡 < 𝑇. 

Creating the lattice again starts with the terminal states and proceeds by backward induction. At 

the terminal states, we can still use the same equations, Equations (2.11) and (2.12). However, we 

note that because an investment is made before 𝑇, calculations of the LMPs and the LMP-based 

revenues (𝑁𝑅(�,y)) are performed with respect to the new network configuration. For an 

intermediate state after 𝑡, we use the same equation, Equation (2.13), but we should add 𝐴 and 

subtract 𝐼 in Equation (2.13) at the beginning of period 𝑡 because an investment is made at that 

time point. For states before 𝑡, we again utilize Equation (2.13), but we note that because an 

investment is not available at that time point, the LMPs and the LMP-based revenue calculations 

are performed by considering the network configuration without investment. Thus, with the 

recursive relations, 𝑉(),)) is obtained with the investment made at the beginning of period 𝑡. 

Box 3. The value of Option 𝑡 is simply calculated as the difference between 𝑉(),)) of the 

NPV lattice with Option 𝑡 and 𝑉(),)) of the NPV lattice without investment. If the latter one is 

larger than the former one, then we say that value of Option 𝑡 is zero. 

Box 4. Option 𝑇 represents the situation in which an investment is made at the beginning 

of period 𝑇. In that case, at the terminal states, the owner still collects the revenue based on the 

LMP differences, represented by Equation (2.11). Because decommissioning cost is incurred at 

the end of period 𝑇, the corresponding cost should still be considered in Equation (2.12). How- 

ever, 𝐴 must be added and 𝐼 must be subtracted in Equation (2.12) because the owner makes an 

investment at the beginning of period 𝑇. We note that, for Option 𝑇, the LMPs and the LMP- based 

revenue calculations are all performed with the upgraded network configuration at the terminal 

states. For the intermediate states, we can still use Equation (2.13), but network configuration 
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without investment should be taken into account during calculations of the LMPs and the LMP-

based revenues. Thus, by these recursive relations, we provide 𝑉(),)) value at the present time with 

Option 𝑇. 

Box 5. There does not exist any difference between methods in steps 3 and 5. In other 

words, the value of Option 𝑇 is calculated as the difference between 𝑉(),)) of the NPV lattice with 

Option 𝑇 and 𝑉(),)) of the NPV lattice without investment. If the former one is less than the latter 

one, then the value of Option 𝑇 is said to be zero. 

Box 6. In this step, values of all options are evaluated. Because it is better to have a larger 

value, the option with the maximum value is preferred. It also reveals the optimal timing of the 

investment.  

Now, we turn to the upper procedure depicted in Box 3 of Figure 2.4 where investment 

alternatives are compared according to their optimal times and values. 

Numerical Example 

In this section, a small but comprehensive numerical example on a three-center network is 

presented. As can be seen in Figure 2.6, there are two generators at centers 1 and 2. The capacity 

of the first generation center (𝐺)) is 100 MW and its generation cost (𝐶)) is $40/MWh. The capacity 

of the second generation center (𝐺T) is 200 MW and its generation cost (𝐶T) is $30/MWh. We note 

that supply curves of these centers are assumed to be linear and not to change for the sake of 

simplification (see, e.g., California ISO 2005). In other words, generation center 1 is willing to 

produce each additional unit of electricity at $40/MWh up to 100 MW and generation center 2 is 

willing to produce each additional unit of electricity at $30/MWh up to 200 MW.  
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The capacities of the power lines (𝐿)T, 𝐿)�, 𝐿T�,) are 30, 36, and 35 MW, respectively. 

There is a consumption center at center 3 and the load amount (𝐷�) is 52 MW. Susceptance of the 

power lines is assumed to be equal. 

	

Figure 2.6 Three-center example 

Because there exist two generation centers in adjacent places, it results in counter flow on 

the power line connecting centers 1 and 2 (for the details of this issue, please see Appendix 2.D 

showing the formation of the OPF formulation for the existing network). Thus, in this numerical 

example, we assess the impact of counter flow on profit and the value of the expansion option. 

The OPF Problem 

Throughout the numerical example, we solve the OPF problems by using the power flow 

equations analyzed by Bushnell and Stoft (1995). Because there are only two generation centers 

and one consumption center in the network, the equations proposed by Bushnell and Stoft (1995) 

can be utilized. Moreover, because those equations are more intuitive to understand the nature of 

power flows on the power lines in the case that two generation centers and one consumption center 

exist in the network, we prefer to switch from the classical OPF formulation to the formulation put 

forward by Bushnell and Stoft (1995). 

In Bushnell and Stoft (1995), it is stated that network losses are negligible; voltage support 

and reactive power are not represented. Thus, linear power equations can be written by using the 
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superposition theorem. This theorem says that net power amounts flowing on the lines can be 

found by considering only one generation center in each step. After finding the individual power 

flows triggered by only one generation center, net power flows can be found by adding these 

individual amounts algebraically. For details regarding how to construct the OPF problem 

analyzed by Bushnell and Stoft (1995), please see Appendix 2.D. We note that Appendix 2.A is 

different from Appendix 2.D in the sense that whereas the former one presents the classical OPF 

formulations, the latter shows the OPF formulation proposed by Bushnell and Stoft (1995). 

The Demand Lattice 

Because there is one consumption center in the network, it is legitimate to use the binomial 

lattice. We assume that the length of one period (𝛥𝑡) in the binomial lattice is 1 year and the 

modeling horizon is 2 years. In Jin et al. (2011), drift and volatility of demand growth are estimated 

by analyzing real data from Midcontinent Independent System Operator website (MISO 2016). 

Drift (𝜇) and volatility (𝜎) are given as 0.0072 and 0.0094, respectively. However, for this 

numerical example, volatility was changed a bit in order to maintain consistency with other 

network parameters such as capacities of the power lines. Therefore, we use volatility equal to 

0.13. We accept that initial demand is 52 MW. By using Equations (2.2) and (2.3), 𝑢 and 𝑑 values 

are calculated as 1.138 and 0.878. Thus, for demand evolution, the binomial lattice illustrated in 

Figure 2.7 is created. 

Fifty-two megawatts in the demand lattice represents the beginning of the first period and 

59.22 (or 45.66 MW) represents the beginning of the second period. We again note that 𝑡, 𝑘  

denotes the states in the binomial lattice and 𝐸 $,y  denotes the demand value at the state 𝑡, 𝑘 . 

Thus, 𝐸 T,) = 59.22, 𝐸 T,T = 45.66 and 𝐸 ),) = 52. 
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Figure 2.7 The demand evolution lattice 

Investment Valuations 

As can be seen in Figure 2.6, there are three investment alternatives: between centers 1 and 

3, between centers 1 and 2, and between centers 2 and 3. In this section, we first create the NPV 

lattice for the network without investment. Then for each investment alternative, two options 

(investment made at the beginning of the first year and investment made at the beginning of the 

second year) are evaluated. 

The NPV lattice without investment 

The demand lattice triggers the NPV lattice without investment by matching each state of 

the demand lattice to the corresponding state of the NPV lattice. At the end of the second year, the 

network is removed and decommissioning cost is incurred. In this example, we assume that 

decommissioning cost of the existing network is $250,000. 

We accept that fixed operation and maintenance cost (𝑐) is $30/h and the risk-free discount 

rate (𝑟) is 5%. Moreover, by using Equation (2.7) (it is enough to use Equation (2.7) instead of 

Equation (2.8) because we have just two branches that emanate from any state in the lattices) and 

𝑢 and 𝑑 values equal to 1.138 and 0.878, respectively, we calculate the risk-neutral probability of 

up movement (𝑞) as 0.66. Finally, we note that the number of hours in one year (𝐻) is 8,760. 

The results of the LMP calculations for all states and the network revenue per hour 

(𝑁𝑅($,y)) are given in Table 2.2. We note that the units of 𝐸($,y) and 𝐺- are megawatts, the unit of 
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𝜋- is dollars per megawatt-hour, and the unit of 𝑁𝑅($,y) is dollars per hour. Moreover, we remark 

that 𝑁𝑅($,y) is calculated as the difference between 𝜋�𝐸($,y) and 𝜋)𝐺) + 𝜋T𝐺T (see Equation (2.1). 

We note that we multiply 𝜋� with 𝐸($,y) because 𝐸($,y) is the demand at center 3) For the calculation 

details regarding the LMPs, please see Appendix 2.E. 

Table 2.2 LMP calculation - without investment 

𝑡 𝑘 𝐸($,y) 𝜋) 𝜋T 𝜋� 𝐺) 𝐺T 𝜋�𝐸($,y) 𝜋)𝐺) + 𝜋T𝐺T 𝑁𝑅($,y) 
2 1 59.22 40 30 50 13.44 45.78 2961 1911 1050 
2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 
1 1 52 30 30 40 0 52 2080 1560 520 

 

By using Equation (2.11), 𝑁𝑃𝑉($,y) (NPV of total profit gained in one year) for the states 

of the binomial lattice can be calculated in Table 2.3. We remark that the unit of 𝑁𝑃𝑉($,y) is dollars 

per year. 

Table 2.3 NPV calculation - without investment 

𝑡 𝑘 𝑁𝑅($,y) 𝑁𝑃𝑉($,y) 
2 1 1050 8,509,714 
2 2 0 -250,285 
1 1 520 4,088,000 

 

For the final lattice, for 𝑡 = 2, we have to incur decommissioning cost by adding 

−250, 000 1	 + 	0.05 Q). Thus, for 𝑡 = 2 and 𝑘 = 1, NPV with decommissioning cost is 

$8,271,619. For 𝑡 = 2 and 𝑘 = 2, NPV with decommissioning cost −$488,381. For 𝑡 = 1 and 𝑘 =

1, in addition to the 𝑁𝑃𝑉($,y) value in Table 2.3, we have to add the risk-neutral expected value of 

the successor states at the next time point. Thus, 

4,088,000 + 0.66 ∙ 8,271,619 − 488,381 ∙ 0.34 (1 + 0.05)Q) = 9,123,428 
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Therefore, the lattice shown in Figure 2.8 without investment is obtained: 

 

Figure 2.8 The NPV lattice without investment ($) 

The NPV lattice - investment between centers 1 and 3 

Option 1 (Investment at the beginning of the first period) 

We assume that a power line is added between centers 1 and 3 at the beginning of the first 

period. We further assume that the capacity of the new line is 4 MW and it has the same 

susceptance with the existing power line. With this upgrade, fixed operation and maintenance cost 

increases to $40/h. The updated network can be seen in Figure 2.9. Because a new line is added to 

the network, underlying OPF problem formulation changes. It should be noted that the susceptance 

of the power line between centers 1 and 3 is now doubled (see Appendix 2.F for details). 

 

Figure 2.9 Upgraded network - investment between centers 1 and 3 

The results of the LMP calculations for the upgraded network are given in Table 2.4 (see 

Appendix 2.G for details). The same remarks for Table 2.2 regarding the units of values are noted. 
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Table 2.4 LMP calculation - investment between centers 1 and 3, Option 1 

𝑡 𝑘 𝐸($,y) 𝜋) 𝜋T 𝜋� 𝐺) 𝐺T 𝜋�𝐸($,y) 𝜋)𝐺) + 𝜋T𝐺T 𝑁𝑅($,y) 
2 1 59.22 40 30 45 1.33 57.89 2664.90 1789.90 875 
2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 
1 1 52 30 30 30 0 52 1560 1560 0 

 

By using Equation (2.11), 𝑁𝑃𝑉($,y) for the states of the binomial lattice can be calculated 

as shown in Table 2.5. 

Table 2.5 NPV calculation - investment between centers 1 and 3, Option 1 

𝑡 𝑘 𝑁𝑅($,y) 𝑁𝑃𝑉($,y) 
2 1 875 6,966,285 
2 2 0 -333,714 
1 1 0 -333,714 

 

We note that decommissioning cost of the network with a new power line is assumed to be 

$300,000, which is larger than that of the network without investment. 

For the final lattice, for 𝑡 = 2, we have to incur decommissioning cost by adding 

−300, 000 1	 + 	0.05 Q). Thus, for 𝑡 = 2 and 𝑘 = 1, NPV with decommissioning cost is 

$6,680,571. For 𝑡 = 2 and 𝑘 = 2, NPV with decommissioning cost is −$619,429. For 𝑡 = 1 and 

𝑘 = 1, in addition to 𝑁𝑃𝑉($,y) value, we have to consider transmission access charge (𝐴 = $17𝑀) 

and initial investment cost (𝐼 = $15𝑀) as well as a risk-neutral expected value of the successor 

states at the next time point. Thus, 

−333,714 + 17𝑀 − 15𝑀 + 0.66 ∙ 6,680,571 − 619,429 ∙ 0.34 (1 + 0.05)Q) = 5,660,147 

Therefore, the lattice shown in Figure 2.10 with Option 1 can be obtained. 
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Figure 2.10 The NPV lattice ($) - investment between centers 1 and 3, Option 1  

Because $5,660,147 is less than $9,123,428, the value of Option 1 is zero for this 

investment alternative. 

Option 2 (investment at the beginning of the second period) 

We assume that a power line is added between centers 1 and 3 at the beginning of the 

second year. Moreover, we assume that the capacity of this line is 4 MW and it has the same 

susceptance value with the existing line. 

Table 2.6 gives the corresponding LMPs and LMP-based revenues. The same remarks for 

Table 2.2 regarding the units of values are noted. We note that with demand value equal to 52 

MW, the LMP calculations are the same as those in the without investment situation because there 

is no investment at that time. 

Table 2.6 LMP calculation - investment between centers 1 and 3, Option 2 

𝑡 𝑘 𝐸($,y) 𝜋) 𝜋T 𝜋� 𝐺) 𝐺T 𝜋�𝐸($,y) 𝜋)𝐺) + 𝜋T𝐺T 𝑁𝑅($,y) 
2 1 59.22 40 30 45 1.33 57.89 2664.90 1789.90 875 
2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 
1 1 52 30 30 40 0 52 2080 1560 520 

  
By using Equation (2.11), 𝑁𝑃𝑉 $,y  for the states of the binomial lattice can be calculated 

as shown in Table 2.7 (but 𝑐 is $40/h for the second period). 
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Table 2.7 NPV calculation - investment between centers 1 and 3, Option 2 

𝑡 𝑘 𝑁𝑅($,y) 𝑁𝑃𝑉($,y) 
2 1 875 6,966,285 
2 2 0 -333,714 
1 1 520 4,088,000 

 

For the final lattice, for 𝑡 = 2, we have to incur decommissioning cost by adding 

−300, 000 1	 + 	0.05 Q). Moreover, 𝐴 and 𝐼 should be added and subtracted, respectively. 

Thus, for 𝑡 = 2 and 𝑘 = 1, 

6,966,285 + 17𝑀 − 15𝑀 + −300,000 1 + 0.05 Q) = 8,680,571 

For 𝑡 = 2 and 𝑘 = 2, 

−333,714 + 17𝑀 − 15𝑀 + −300,000 1 + 0.05 Q) = 1,380,571 

For 𝑡 = 1 and 𝑘 = 1, in addition to 𝑁𝑃𝑉($,y) value, we have to add the risk-neutral expected 

value of the successor states at the next time point. Thus, 

4,088,000 + 0.66 ∙ 8,680,285 + 0.34 ∙ 1,380,571 1 + 0.05 Q) = 9,986,624 

Therefore, the lattice shown in Figure 2.11 with Option 2 can be obtained. 

 

Figure 2.11 The NPV lattice ($) - investment between centers 1 and 3, Option 2  
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Because $9,986,624 is larger than $9,123,428 (𝑉 ),)  value of the NPV lattice without 

investment), Option 2’s value is found as the difference between these two values; that is, 

$863,196. This is the value of investing at the beginning of the second period. By comparing 

Option 1 and Option 2, it is clear that Option 2 turns out to be valuable. 

The NPV lattice - investment between centers 1 and 2 

Option 1 (investment at the beginning of the first period) 

We consider that an investment is made between centers 1 and 2 at the beginning of the 

first year. For consistency with the previous investment’s parameters, the capacity of the new 

power line is assumed to be 4 MW and its susceptance is assumed to be equal to that of the current 

line. Similarly, we consider that operation and maintenance cost is again $40/h. The upgraded 

network can be seen in Figure 2.12. Due to the change in the network configuration, a new OPF 

formulation should be devised because the susceptance value of the power line between centers 1 

and 2 needs to be doubled (see Appendices 2.H and 2.I for the OPF problem and the LMP-based 

revenue derivations for the upgraded network). 

 

Figure 2.12 Upgraded network - investment between centers 1 and 2  

The results of the LMP calculations for the upgraded network are given in Table 2.8. The 

same remarks for Table 2.2 regarding the units of values are noted. 
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Table 2.8 LMP calculation - investment between centers 1 and 2, Option 1 

𝑡 𝑘 𝐸($,y) 𝜋) 𝜋T 𝜋� 𝐺) 𝐺T 𝜋�𝐸($,y) 𝜋)𝐺) + 𝜋T𝐺T 𝑁𝑅($,y) 
2 1 59.22 40 30 60 2.66 56.56 3553.20 1803.20 1750 
2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 
1 1 52 30 30 30 0 52 1560 1560 0 

 

By using Equation (2.11), 𝑁𝑃𝑉($,y) for the states of the binomial lattice can be calculated 

as shown in Table 2.9. 

Table 2.9 NPV calculation - investment between centers 1 and 2, Option 1 

𝑡 𝑘 𝑁𝑅($,y) 𝑁𝑃𝑉($,y) 
2 1 1750 14,266,285 
2 2 0 -333,714 
1 1 0 -333,714 

 

We note that decommissioning cost of the network is the same as in the previous 

investment. That is, we accept the same decommissioning cost, which is equal to $300,000. 

For the final lattice, for 𝑡 = 2, we have to incur decommissioning cost by adding 

−300, 000 1	 + 	0.05 Q). Thus, for 𝑡 = 2 and 𝑘 = 1, NPV with decommissioning cost is 

$13,980,571. For 𝑡 = 2 and 𝑘 = 2, NPV with decommissioning cost is −$619,429. For 𝑡 = 1 and 

𝑘 = 1, in addition to 𝑁𝑃𝑉($,y) value, we have to consider transmission access charge (𝐴 = $17𝑀) 

and initial investment cost (𝐼 = $15𝑀) as well as a risk-neutral expected value of the successor 

states at the next time point. Thus, 

−333,714 + 17𝑀 − 15𝑀 + 0.66 ∙ 13,980,571 − 619,429 ∙ 0.34 (1 + 0.05)Q) = 10,243,941 

Therefore, the lattice shown in Figure 2.13 with Option 1 can be obtained: 
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Figure 2.13 The NPV lattice ($) - investment between centers 1 and 2, Option 1 

Because $10,243,941 is larger than $9,123,428 (𝑉 ),)  of the NPV lattice without 

investment), the value of Option 1 is found as $1,120,513. This is the value of investing between 

centers 1 and 2 at the beginning of the first year. 

Option 2 (investment at the beginning of the second period) 

We assume that a power line is added between centers 1 and 2 at the beginning of the 

second year. Moreover, we assume that the capacity of this line is 4 MW and it has the same 

susceptance value with the existing line. 

Table 2.10 gives the corresponding LMPs and LMP-based revenues. The same remarks for 

Table 2.2 regarding the units of values are noted. We note that with demand value equal to 52 

MW, the LMP calculations are the same as those in the without investment situation because there 

is no investment at that time. 

Table 2.10 LMP calculation - investment between centers 1 and 2, Option 2 

𝑡 𝑘 𝐸($,y) 𝜋) 𝜋T 𝜋� 𝐺) 𝐺T 𝜋�𝐸($,y) 𝜋)𝐺) + 𝜋T𝐺T 𝑁𝑅($,y) 
2 1 59.22 40 30 60 2.66 56.56 3553.20 1803.20 1750 
2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 
1 1 52 30 30 40 0 52 2080 1560 520 

  

By using Equation (2.11), 𝑁𝑃𝑉($,y) for the states of the binomial lattice can be calculated 

as shown in Table 2.11 (but 𝑐 is $40/h for the second period). 
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Table 2.11 NPV calculation - investment between centers 1 and 2, Option 2 

𝑡 𝑘 𝑁𝑅($,y) 𝑁𝑃𝑉($,y) 
2 1 1750 14,266,285 
2 2 0 -333,714 
1 1 520 4,088,000 

  

For the final lattice, for 𝑡 = 2, we have to incur decommissioning cost by adding 

−300,000 1	 + 	0.05 Q). Moreover, 𝐴 and 𝐼 should be added and subtracted, respectively. 

Thus, for 𝑡 = 2 and 𝑘 = 1, 

14,266,285 + 17𝑀 − 15𝑀 + −300,000 1 + 0.05 Q) = 15,980,571 

For 𝑡 = 2 and 𝑘 = 2, 

−333,714 + 17𝑀 − 15𝑀 + −300,000 1 + 0.05 Q) = 1,380,571 

For 𝑡 = 1 and 𝑘 = 1, in addition to 𝑁𝑃𝑉($,y) value, we have to add risk-neutral expected 

value of the successor states at the next time point. Thus, 

4,088,000 + 0.66 ∙ 15,980,571 + 0.34 ∙ 1,380,571 1 + 0.05 Q) = 14,570,417 

Therefore, the lattice shown in Figure 2.14 with Option 2 is obtained: 

 

Figure 2.14 The NPV lattice ($) - investment between centers 1 and 2, Option 2 
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Because $14,570,417 is larger than $9,123,428 (𝑉 ),)  of the NPV lattice without 

investment), the value of Option 2 is found as $5,446,990. Thus, it can be said that the value of 

investing between centers 1 and 2 at the beginning of the second year is $5,446,990. Because the 

value of Option 2 is larger than that of Option 1, Option 2 becomes more likely to be implemented. 

The NPV lattice - investment between centers 2 and 3 

Option 1 (investment at the beginning of the first period) 

We consider that another power line is added between centers 2 and 3. To maintain 

consistency with the parameters of previous investment alternatives, the capacity of the new line 

is assumed to be 4 MW and susceptance of it is equal to that of the existing power line between 

centers 2 and 3. The upgraded network can be seen in Figure 2.15. In order to reformulate the OPF 

problem for the upgraded network, susceptance value of the power line between centers 2 and 3 

should be doubled (see Appendices 2.J and 2.K for the OPF problem and the LMP-based revenue 

derivations for the upgraded network). 

 

Figure 2.15 Upgraded network - investment between centers 2 and 3 

For the network with the corresponding new line, the results of the LMP calculations are 

given in Table 2.12. The same remarks for Table 2.2 regarding the units of values are noted. 
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Table 2.12 LMP calculation - investment between centers 2 and 3, Option 1 

𝑡 𝑘 𝐸($,y) 𝜋) 𝜋T 𝜋� 𝐺) 𝐺T 𝜋�𝐸($,y) 𝜋)𝐺) + 𝜋T𝐺T 𝑁𝑅($,y) 
2 1 59.22 40 30 50 20.94 38.28 2961 1986 975 
2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 
1 1 52 40 30 50 6.5 45.5 2600 1625 975 

 

By using Equation (2.11), 𝑁𝑃𝑉($,y) for the states of the binomial lattice can be calculated 

as shown in Table 2.13. 

Table 2.13 NPV calculation - investment between centers 2 and 3, Option 1 

𝑡 𝑘 𝑁𝑅($,y) 𝑁𝑃𝑉($,y) 
2 1 975 7,800,571 
2 2 0 -333,714 
1 1 975 7,800,571 

 

For the final lattice, for 𝑡 = 2, we have to incur decommissioning cost by adding 

−300, 000 1	 + 	0.05 Q). Thus, for 𝑡 = 2 and 𝑘 = 1, NPV with decommissioning cost is 

$7,514,857. For 𝑡 = 2 and 𝑘 = 2, NPV with decommissioning cost is −$619,429. For 𝑡 = 1 and 

𝑘 = 1, in addition to 𝑁𝑃𝑉($,y) value, we have to consider transmission access charge (𝐴 = $17𝑀) 

and initial investment cost (𝐼 = $15𝑀) as well as a risk-neutral expected value of the successor 

states at the next time point. Thus, 

7,800,571 + 17𝑀 − 15𝑀 + 0.66 ∙ 7,514,857 − 619,429 ∙ 0.34 (1 + 0.05)Q) = 14,318,295 

Therefore, the lattice shown in Figure 2.16 with Option 1 can be obtained: 
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Figure 2.16 The NPV lattice ($) - investment between centers 2 and 3, Option 1 

Because $14,318,295 is larger than $9,123,428 (𝑉 ),)  of the NPV lattice without 

investment), Option 1’s value is found as $5,194,868. This is the value of investing between 

centers 2 and 3 at the beginning of the first year. 

Option 2 (investment at the beginning of the second period) 

We assume that a power line is added between centers 2 and 3 at the beginning of the 

second year. Moreover, we assume that the capacity of this line is 4 MW and it has the same 

susceptance value with the existing line.  

Table 2.14 gives the corresponding LMPs and LMP-based revenues. The same remarks for 

Table 2.2 regarding the units of values are noted. We note that with demand value being equal to 

52 MW, the LMP calculations are the same as those in the without investment situation because 

there is no investment at that time. 

Table 2.14 LMP calculation - investment between centers 2 and 3, Option 2 

𝑡 𝑘 𝐸($,y) 𝜋) 𝜋T 𝜋� 𝐺) 𝐺T 𝜋�𝐸($,y) 𝜋)𝐺) + 𝜋T𝐺T 𝑁𝑅($,y) 
2 1 59.22 40 30 50 20.94 38.28 2961 1986 975 
2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 
1 1 52 30 30 40 0 52 2080 1560 520 

  

By using Equation (2.11), 𝑁𝑃𝑉($,y) for the states of the binomial lattice can be calculated 

as shown in Table 2.15 (but 𝑐 is $40/h for the second period). 
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Table 2.15 NPV calculation - investment between centers 2 and 3, Option 2 

𝑡 𝑘 𝑁𝑅($,y) 𝑁𝑃𝑉($,y) 
2 1 975 7,800,571 
2 2 0 -333,714 
1 1 520 4,088,000 

 

For the final lattice, for 𝑡 = 2, we have to incur decommissioning cost by adding 

−300,000 1 + 0.05 Q). Moreover, 𝐴 and 𝐼 should be added and subtracted, respectively. Thus, 

for 𝑡 = 2 and 𝑘 = 1, 

7,800,571 + 17𝑀 − 15𝑀 + −300,000 1 + 0.05 Q) = 9,514,857 

For 𝑡 = 2 and 𝑘 = 2, 

−333,714 + 17𝑀 − 15𝑀 + −300,000 1 + 0.05 Q) = 1,380,571 

For 𝑡 = 1 and 𝑘 = 1, in addition to 𝑁𝑃𝑉($,y) value, we have to add the risk-neutral expected 

value of the successor states at the next time point. Thus, 

4,088,000 + 0.66 ∙ 9,514,857 + 0.34 ∙ 1,380,571 1 + 0.05 Q) = 10,510,486 

Therefore, the lattice shown in Figure 2.17 with Option 2 is generated: 

 

Figure 2.17 The NPV lattice ($) - investment between centers 2 and 3, Option 2  

Because $10,510,486 is larger than $9,123,428 (𝑉 ),)  of the NPV lattice without 

investment), the value of Option 2 is found as $1,387,058. This is the value of investing between 
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centers 2 and 3 at the beginning of the second year. Of Option 1 and Option 2, the first one is more 

preferable because it has larger value. 

After all of these calculations, we can present Table 2.16 as a summary for all investment 

alternatives. 

Table 2.16 Investment alternatives, their values and times 

Investment Alternatives Values Timing of the Investments 

Centers 1 - 3 $863,196 2 

Centers 1 - 2 $5,446,990 2 

Centers 2 - 3 $5,194,868 1 
 

The owner has two different flexibilities. One is that he or she can expand the network or 

not because expansion is not an obligatory issue. The other flexibility is that if the owner decides 

to invest, he or she can defer the investment, which means that he or she can invest at the beginning 

of any year. We clarify that these flexibilities cannot be exercised independently. 

As can be seen, Table 2.16 shows only the investment values for each investment 

alternative at the time when it is optimal to invest. In other words, for an investment alternative, 

the second column indicates the investment value that is the maximum of the values of Option 1 

(making the investment at the beginning of the first year) and Option 2 (making the investment at 

the beginning of the second year). The third column shows the corresponding time in which the 

maximum occurs. For example, for the investment alternative between centers 1 and 2, the 

computational results reveal that Option 1 and Option 2 have values of $1,120,513 and $5,446,990, 

respectively. Thus, the value of the investment at the beginning of the second year is given as the 

maximum in Table 2.16 and the corresponding time is determined as the optimal time of the 

investment.	
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For the investment alternative between centers 1 and 3, Table 2.16 shows that the value of 

Option 2 is $863,196. With regard to the value of Option 1, it is calculated as $0 in the preceding 

sections and it is not shown in Table 2.16 because it turns out to be less than Option 2’s value. It 

is inferred from these results that the decision maker expands the network by installing a 

transmission line between centers 1 and 3 and this investment is deferred to the beginning of the 

second year. We note that the decision maker is assumed to behave optimally. 

As for the investment alternative between centers 1 and 2, Table 2.16 presents the value of 

Option 2 as $5,446,990. The value of Option 1, not shown in Table 2.16, is calculated as 

$1,120,513. Therefore, it can be inferred that the decision maker decides to expand the network 

by investing in a transmission line between centers 1 and 2, and it is carried out after postponing 

it for one year.  

The investment alternative between centers 2 and 3 results in different outcomes. More 

specifically, Table 2.16 demonstrates the value of Option 1 because it turns out to be larger than 

the value of Option 2. The value of Option 1 is determined as $5,194,868. However, it is revealed 

that Option 2 has a value of $1,387,058. This implies that the decision maker decides to expand 

the network by adding a transmission line between centers 2 and 3, but this investment is not 

deferred.  

As stated above, the investment made between centers 2 and 3 behaves differently relative 

to the investments between centers 1 and 2 as well as between centers 1 and 3 as follows. 

Specifically, investing at the beginning of the first year is the most preferable because more 

revenues are gained. The reason is that because an added power line has the same susceptance 

(thus total susceptance is doubled on that circuit), it dramatically changes the network 

configuration and more power tries to flow on that circuit. However, because the capacity of the 
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new line is very low (4 MW) with respect to the capacity of the existing power line (35 MW), this 

increases congestion and increases the revenue due to the increase in differences between the 

LMPs. Therefore, the investor is not in favor of deferring this investment.  

As for the investment made between centers 1 and 2, investing at the beginning of the 

second year is more preferable because more revenue is generated throughout the first year if no 

investment is made at the beginning of the first year. The reason is that a new power line changes 

the network configuration, but it decreases congestion and decreases revenue due to the decrease 

in differences between the LMPs. Therefore, the current set of parameters is in favor of delaying 

the investment and the investor tends to defer it to get more revenue throughout the first year.  

For the investment made between centers 1 and 3, making an investment in this circuit at 

the beginning of the second year is also more preferable because more revenue is generated 

throughout the first year if any investment is not made at the beginning of the first year. The reason 

is that a newly added power line changes the network configuration in favor of decreasing 

congestion and decreasing revenue generated by differences between the LMPs. Thus, the current 

set of parameters is in favor of postponing the investment and the investor defers it to gain more 

revenue throughout the first year. 

Further Discussions 

A critical question might arise related to whether stochastic processes different from GBM 

can be incorporated into the developed framework. We can state that there are several attempts in 

the literature to approximate other stochastic processes by lattice approaches. These studies can be 

classified into two groups: one that seeks to develop the binomial lattices and another that puts 

effort to construct the trinomial lattices. 

In the first group, Nelson and Ramaswamy (1990) presented a method to develop 

recombining binomial lattices for the stochastic processes other than GBM such as Cox-Ingersoll- 
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Ross (Cox et al. 1985) and Ornstein-Uhlenbeck processes. In another study, Bastian-Pinto et al. 

(2010) developed a recombining binomial lattice for mean-reverting processes by matching the 

expected value and the variance of the underlying continuous and its discrete counterpart 

processes. The lattice model of Nelson and Ramaswamy (1990) was extended by Hahn and Dyer 

(2008) to the discretization of two correlated Ornstein-Uhlenbeck processes. The extended model 

is employed in order to evaluate the real options. Slade (2001) made use of the binomial lattices 

developed by Nelson and Ramaswamy (1990) to model the mean-reverting copper price and unit 

cost evolutions to evaluate the managerial flexibilities in mining operations. There are many other 

studies that use the binomial lattice models to discretize the stochastic processes that are different 

from GBM (see, e.g., Bastian-Pinto et al. 2009; Lari-Lavassani et al. 2001). 

In the second group, the researchers aim to find the trinomial lattices to approximate the 

stochastic processes different from GBM. For instance, Jaillet et al. (2004) took advantage of a 

trinomial lattice to model the underlying uncertainty that follows the Ornstein-Uhlenbeck process. 

Yet another study conducted by Tseng and Lin (2007) pursued the development of a bivariate 

trinomial lattice for two correlated mean-reverting processes. 

Another crucial question might arise as to why a short term is selected as the modeling 

horizon in the numerical example. The reason is that our fundamental goal is to derive the 

managerial insights from the framework by keeping the model as simple as possible. If the 

modeling horizon were expanded to many years, it would be challenging to find the policy insights. 

As a matter of fact, there exist many core studies in the literature in line with this consideration. 

Those studies likewise employ the small-scale dynamic programming or lattice models.  

For instance, Dixit and Pindyck (1994), which is probably the most remarkable reference 

in real options literature, expressed their ideas as to the value of the options with a small-scale 
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dynamic programming model. According to this model, the current price of an item will increase 

or decrease by a constant amount at the end of the first year and then the new price will stay at the 

same level forever. The authors explained their intents in relation to why the matter is kept so 

simple as follows: “It is best to begin with some simple examples, involving a minimal amount of 

mathematics, in which investment decisions are made at two or three discrete points in time. In 

this way, we can convey at the outset an intuitive understanding of the basic concept” (p. 26). 

Similarly, Luenberger (1997) conveyed the core ideas regarding dynamic pricing by presenting 

straightforward dynamic programming models that commonly involve a few periods. For instance, 

a fishing example (Luenberger 1997, p. 117) has three periods and a gold mine example 

(Luenberger 1997, p. 347) has 10 periods. The main purpose of the author is to make the central 

ideas understandable.  

As for the transmission investment literature, in the study by Blanco et al. (2009), two 

different real options in transmission investments are evaluated. These options have maturity equal 

to 2 years and, therefore, the binomial lattices have just two 1-year periods. In a related study, 

Blanco et al. (2012) exploited the stochastic dynamic programming approach to evaluate the value 

of flexibility in transmission investments. In the numerical example, the authors made the 

assumption that building permits to install the transmission lines are valid for 3 years, which results 

in a 3-year dynamic programming model. In transmission investment literature, several other 

research works can be found that prefer using small-scale dynamic programming or lattice models 

(see, e.g., Loureiro et al. 2015; Vásquez and Olsina 2010). 

The use of small-scale dynamic programming models can be found in other application 

areas as well, such as stockpiling of oil. For example, Bai et al. (2012) sought an optimal 

stockpiling path for China’s petroleum reserve between the years 2008 and 2020. The authors built 
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and solved a 12-year dynamic programming model to reach the goal. A similar study was carried 

out by Wu et al. (2008), who were concerned with finding an optimal stockpile acquisition strategy 

for China in the time intervals 2007–2010 and 2011–2020. A 4-year dynamic programming model 

was built for the first time interval. Furthermore, Wu et al. (2012) dealt with China’s optimal 

stockpiling and drawdown strategies for petroleum reserves. The authors pointed out that this 

problem is dynamic in nature because the country has to determine the level of acquisition and 

release in each year. For this purpose, a dynamic programming model spanning 10 years was 

introduced and implemented.  

If a much longer modeling horizon was selected such as 40 years, the quality of the solution 

would suffer from the quality of old data/input/parameter values. For instance, what was projected 

in a 1976 study as an outcome of 2016 would certainly be different from the actual observations 

in 2016 not only in terms of numerical value but also in terms of the nature and context of the 

changed business environment. 

We again note that we prefer to study a small-scale lattice model in the numerical example 

because our essential purpose is to come up with some managerial insights while keeping the 

problem size as small as possible. For researchers who follow a similar strategy in their models, 

readers can refer to the studies mentioned above. 

As our framework indicates, we consider the decommissioning cost as the terminal 

condition. Keeping this in view, one question might arise as to why the residual values of the 

transmission assets are not considered. In general, the cost of decommissioning can be negative, 

which implies that residual value might be significant. In our model, the cost of decommissioning 

is a parameter but not a central parameter. We leave the incorporation of residual value into the 

model as a future study. 
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Concluding Remarks and Future Research 

In this article, we developed and analyzed a real options framework that provides the 

valuation of a transmission owner’s option to expand in his or her network. Specifically, under the 

assumption that the evolution of the demand follows a GBM process, our framework explicitly 

accounts for the physical flow of the electric power - economically manifested as the LMPs. 

Through this framework, we show how the values of the expansion options can be determined in 

the transmission network. Moreover, given that a specific expansion is already planned, we show 

how to value an option to expedite or delay. An extensive numerical example is provided to 

illustrate the key features of our framework with interesting managerial insights. 

We note that the framework in this article can be used as a basis for several expanded 

studies. For example, additional uncertainties such as fuel costs and regulatory changes can be 

incorporated. At this point, some questions might arise as to the modeling of fuel prices and 

changes in regulatory framework. A large number of studies in the literature support the idea that 

GBM can be employed to model fuel prices. For instance, Postali and Picchetti (2006) devoted a 

whole paper to discussing the appropriateness of GBM to represent the evolution of fuel prices. 

An interesting finding from the empirical tests is that the reversion speed in mean-reverting process 

is too low. Therefore, GBM can be utilized as a good proxy to the evolution of oil prices. The 

overall results of empirical tests led the authors to reach the conclusion that using GBM does not 

lead to a significant error in real options evaluations. Because that is the case, it can be adopted by 

research practitioners due to its advantage of obtaining analytical solutions. In another study, 

Gibson and Schwartz (1990) tested the hypothesis that the spot price of oil is lognormally 

distributed. Having collected weekly data between 1984 and 1988, the authors observed that the 

spot price of oil presents a random walk behavior and historical volatility appears to be stable 

across the periods. It shows that GBM can be used to model the oil price evolution. There are also 
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other studies in the literature that model fuel price evolutions with GBM (see, e.g., Aronne et al. 

2008).  

As for the changes in regulatory framework, GBM is not an appropriate process to model 

this because there cannot be a change in regulatory framework in each tiny time interval, which 

should be the case in GBM. However, jump processes are generally utilized to model the evolution 

of the changes in regulatory framework. For example, Hassett and Metcalf (1999) investigated 

how tax policy uncertainty affects the investment decision of firms. Having focused on a 

hypothetical firm, the authors modeled the after-tax price of the product with GBM. Because tax 

policy changes affect this price in a discrete manner, its evolution is modeled with a Poisson jump 

process embedded in a GBM process. 

As for the discrete versions of Poisson jump along with GBM processes, the literature has 

noteworthy studies that combine two processes in a single lattice model. For example, Amin 

(1993) made one of the first attempts in discretizing Poisson jump-GBM processes. In his lattice 

model, whereas a movement to one state above or below in the next time point represents GBM 

process, the movement to more than one state above or below mimics the jump process. It is 

important to emphasize that Amin (1993) discretized GBM and the jump processes in the same 

grid, which means that states in the vertical space are located equidistantly and each state 

represents either a jump or GBM event. Yet another prominent study carried out by Hilliard and 

Schwartz (2005) distinguishes itself from Amin (1993) by analyzing GBM and Poisson jump 

processes on separate grids. In other words, the distance between jump states and the distance 

between GBM states are formulated differently. Additionally, the way of calculating the jump 

branch probabilities is distinct from that of Amin (1993). In a different study, Martzoukos and 

Trigeorgis (2002) extended the model of Amin (1993) to multiple types of Poisson jumps, which 
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means that there are multiple sources of events to induce the diffusion process to make a jump. 

Though this model is structurally the same as in Amin (1993), one fundamental difference can be 

mentioned that a jump event is assumed to happen after a GBM event occurs in a tiny time interval. 

More studies can be found in the literature that discretize Poisson jump-GBM processes with a 

lattice approach (see, e.g., Dai et al. 2010). 

Therefore, the above discussions related to fuel prices and changes in regulatory 

frameworks indicate that both uncertain factors can be incorporated into the developed lattice 

framework. To put it briefly, the evolution of fuel prices can be modeled with GBM and changes 

in regulatory framework can be represented in discrete Poisson jump processes. We note that if it 

is desired to embed the change in regulatory framework into the developed model, the current 

lattice model should be extended to the lattice framework of Poisson jump-GBM processes.  

Another extension of the current study would be that more computationally intense models 

can be considered where the number of periods extends into the hundreds (e.g., a 10-year span 

with a potential decision point in each month). Through such realistic extensions, we hope that this 

line of study will be helpful in understanding the critical issues in transmission expansion planning 

faced with substantial and increasing uncertainties in the near future. 

Yet another extension of the current model would be to consider both the residual value 

and the decommissioning cost in the terminal states of the lattice model. This will hopefully 

facilitate observing the effect of the residual value on the investment decisions. 
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APPENDIX 2.A THE OPF PROBLEM 

The OPF problem is a power flow configuration to operate an electrical system in a best 
way. It is an optimization problem that results in the best way to operate the system. For an AC 
network, the decision variables of the OPF problem are the voltage magnitudes and angles in the 
centers, power flow amounts on the power lines, and amounts of power dispatched from the 
generation centers. 

For transmission networks, it is sufficient and legitimate to use the linearized form of the 
AC OPF formulation. The resulting form of the OPF is called direct current (DC) OPF and the 
decision variables can be listed as voltage angles in the centers, power flow amounts on the power 
lines, and amounts of power dispatched from the generation centers. 

In DC OPF, the objective function generally arises as the minimization of the total cost of 
power generations in the network. As for the constraints, nodal balance requirements (the amount 
of power entering into a center should be equal to the amount of power emanating from this center) 
are placed for each center. In addition, power line capacities and capacities of power generation 
centers should not be exceeded. We note that Kirchhoff current and voltage laws are represented 
in DC OPF formulations. Throughout this study, we use a DC OPF formulation. 

In electricity market, generators and consumers offer their hourly bid by considering their 
marginal cost or benefit functions. In reality, for strategic purposes, it is possible that suppliers and 
consumers do not bid their real marginal cost or benefit functions. However, in network planning, 
it is legitimate to assume that system operator can guess their average behavior that represents 
their real cost or benefit functions.  

It can be stated that generator's marginal cost can be estimated because of their strategic 
behavior. In other words, a producer of electricity most likely offers bid at its marginal cost. The 
reason is that if the producer bid higher than its marginal cost, then the producer could be extra-
marginal producer, which means he/she could not sell any energy. Moreover, if the producer bid 
lower than its marginal cost, then he/she could produce at a loss. Finally, if he/she bid at his 
marginal cost, then the producer would be paid at market clearing price and would make profit in 
the case that he/she is marginal or infra-marginal producer. Therefore, it can be concluded that in 
order the producer to make money, there is no other incentive other than bidding at the marginal 
cost. Even in this case, he/she should expect to be infra-marginal or marginal producer to make 
money. 

Since it is assumed that system operator can estimate generator's marginal cost by 
observing the bidding strategy, we think that the OPF problem can be solved with the offered bid 
(or, marginal cost by the assumption that they are equal). In this chapter, we adopt that the OPF 
problem is solved with the marginal cost of generators that can be estimated by bidding strategy.      

In fact, generators are dispatched in order to maximize the social welfare, which is defined 
as difference between total benefit obtained by the customers and total cost incurred by the 
generators. If demand is price-insensitive, then the problem turns into the minimization of 
generation cost. In this case, generators are dispatched with the least cost. In this study, we assume 
that demand is price-insensitive. 

Mathematical presentation of the OPF problem is given below. In addition to notations 
used in the main text, we define the following notations: 

 
• 𝑁: The set of all centers in the network 
• 𝑀: The set of power lines in the network 
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• ℬ-.: An element in the susceptance matrix (Siemens) 
• 𝑏-.: The susceptance of the power line between centers 𝑖 and 𝑗 (Siemens) 
• 𝜃-: The voltage angle at center 𝑖 (Radian) 
• 𝐿-.: The amount of power flows between centers 𝑖 and 𝑗 (MW) 
 
The OPF problem is given as Equations (2A.1) - (2A.6). Objective function minimizes 

total generation cost in the network. The constraints are AC approximated by DC power flow 
equations (For approximation details, see Appendix 2.C). 

Equation (2A.2) represents the power balance expression for each center. In fact, this 
balance can be called Kirchhoff Current Law, which states that amount of power entering into a 
center is equal to the amount of power emanating from this center. If there does not exist any 
generator at center 𝑖, then 𝐺- becomes zero. Similarly, if there is not a consumption center at center 
𝑖, then 𝐷- is equal to zero. 

Equation (2A.3) expands ℬ-. known as the element at 𝑖$� row and 𝑗$� column in the 
susceptance matrix. Susceptance matrix is a significant network analysis tool in power systems. 
Its significance originates from the fact that a computer program can solve the OPF problem of a 
huge power network by using the susceptance matrix as an input. As can be seen in Equation 
(2A.3), ℬ-. is just an element in susceptance matrix consisting of actual susceptance values 𝑏-. of 
the power lines. Susceptance of a power line is defined as the measure of how easily electrical 
current flows on this line. We note that if there is not any power line between centers 𝑖 and 𝑗, then 
corresponding 𝑏-. value becomes zero. 

Equation (2A.4) calculates the power amount flowing on the line connecting centers 𝑖 and 
𝑗. This equation is called as Kirchhoff Voltage Law because it is said to implicitly take into account 
the law due to the fact that it is an expression for Ohm's law. This is justified in a way that Equation 
(2A.4) includes the potential function 𝜃- and 𝜃.. 

Constraints (2A.5) and (2A.6) present the thermal limit constraints of the power lines and 
production capacity constraints for the generators. If there does not exist any power line between 
centers 𝑖 and 𝑗, then 𝐿�� is accepted as zero. 

 min 		 𝐶-𝐺-
-∈?B

 (2A.1) 

 subject	to					𝐺- − 𝐷- = ℬ-.𝜃.,					∀𝑖 ∈ 𝑁
|?|

.`)

 (2A.2) 

 ℬ-. =

−𝑏-., 𝑖𝑓	𝑖 ≠ 𝑗

𝑏-.

|?|

.`),.�-

, 𝑖𝑓	𝑖 = 𝑗
						∀𝑖, 𝑗 ∈ 𝑁 (2A.3) 

 𝐿-. = 𝑏-. 𝜃- − 𝜃. ,					∀𝑖, 𝑗 ∈ 𝑁 (2A.4) 

 −𝐿�� ≤ 𝐿-. ≤ 𝐿��,					∀ 𝑖, 𝑗 ∈ 𝑀 (2A.5) 
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 0 ≤ 𝐺- ≤ 𝐺�,					∀𝑖 ∈ 𝑁F  (2A.6) 

For details on the OPF problem, please see Kirschen and Strbac (2004) and McCalley 
(2007). 
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APPENDIX 2.B DERIVATION OF THE LMP DIFFERENCES 

Given a network of transmission power lines, the price of the electricity is determined at 
specific locations and it is called as the LMP. The LMP consists of the generation cost, line losses 
and network constraints. It is significant for electricity market because it represents the market 
clearing price of energy. 

The LMP at center 𝑖 can be calculated as follows: Firstly, the OPF problem is solved with 
the given demand values. Then demand value at center 𝑖 is increased by 1 MW and the OPF 
problem is solved again. The difference between objective function values gives the LMP at center 
𝑖. 
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APPENDIX 2.C APPROXIMATION OF AC POWER FLOW EQUATIONS 

Instead of dealing with AC OPF problem, one can linearize the AC power flow equations 
and reformulate the problem as DC OPF. For high-voltage transmission lines, certain real-life 
observations facilitate the derivation of DC power flow equations. In summary, these observations 
can be listed as follows: 

 
1. The resistance of the power lines is extremely less than the reactance (which leads to 

the elimination of conductance from the AC power flow equations).  
2. The difference in voltage angles of two centers is around 10–15° (which leads to 

relaxation regarding the cosine and sine functions in AC power flow equations).  
3. In a per unit system, the voltage magnitudes at centers are close to one (which leads to 

the elimination of voltage magnitudes from the AC power flow equations). 
 
Before elaborating, note that admittance of a power line is mathematically defined as 𝑦 =

𝑔 + 𝑗𝑏 where 𝑔 is the conductance and 𝑏 is the susceptance of the power line. We note that 𝑗 here 
denotes the imaginary unit of admittance, not the index of a center in the network. Furthermore, 
impedance of a power line is mathematically defined as 𝑧 = 𝑟 + 𝑗𝑥 where 𝑟 and 𝑥 are resistance 
and reactance of the power line. It is well known that admittance 𝑦 is just the reciprocal of 
impedance 𝑧. 

AC power flows equations are written as follows: 

 
𝑃y = 𝒱y 𝒱- 	(𝑊y- 𝑐𝑜𝑠 𝜃y−𝜃- + ℬy- 𝑠𝑖𝑛 𝜃y−𝜃-

|?|

-`)

) (2C.1) 

 
𝑄y = 	 𝒱y 𝒱- 	(𝑊y- 𝑠𝑖𝑛 𝜃y−𝜃- − ℬy- 𝑐𝑜𝑠 𝜃y−𝜃-

|?|

-`)

) (2C.2) 

where 𝑃y and 𝑄y denotes the net injected real and reactive power at center 𝑘. Net injected power 
can be found by subtracting demanded power from injected power at center 𝑘. Moreover, |𝒱y| and 
|𝒱-| denotes the voltage magnitude at centers 𝑘 and 𝑖, respectively. 𝑊y- and ℬy- are the elements 
in conductance and susceptance matrices. 

As stated in the main text, ℬy- can be expanded as 

 

ℬy- =

−𝑏y-, 𝑖𝑓	𝑘 ≠ 𝑖

𝑏y-

|?|

-`),y�-

, 𝑖𝑓	𝑘 = 𝑖
 (2C.3) 

where 𝑏y- is the susceptance of power line connecting centers 𝑘 and 𝑖. Similarly, 𝑊y- can be 
expanded as 
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𝑊y- =

−𝑔y-, 𝑖𝑓	𝑘 ≠ 𝑖

𝑔y-

|?|

-`),y�-

, 𝑖𝑓	𝑘 = 𝑖
 (2C.4) 

where 𝑔y- is the conductance of power line connecting centers 𝑘 and 𝑖. 
 

Observation 1: It is said that reactance of transmission lines is importantly greater than 
their resistance. Thus, admittance 𝑦 can be calculated by the serial equations 

 𝑦 =
1
𝑧 = 	

1
𝑟 + 𝑗𝑥 ×

𝑟 − 𝑗𝑥
𝑟 − 𝑗𝑥 =

𝑟
𝑟T + 𝑥T −

𝑗𝑥
𝑟T + 𝑥T = 𝑔 + 𝑗𝑏 (2C.5) 

Since 𝑥 is very large when compared to 𝑟, 𝑏 will be very large compared to 𝑔. Thus, it is 
appropriate to approximate 𝑔 and 𝑏 as 𝑔 = 0 and 𝑏 = Q)

§
. Therefore, it can be assumed 𝑊y- = 0. 

After this observation, power flow equations turn into the following form: 
 

𝑃y = 𝒱y 𝒱- 	(ℬy- 𝑠𝑖𝑛 𝜃y−𝜃-

|?|

-`)

) (2C.6) 

 
𝑄y = 	 𝒱y 𝒱- 	(−ℬy- 𝑐𝑜𝑠 𝜃y−𝜃-

|?|

-`)

) (2C.7) 

 
Observation 2: For almost all operating conditions, the difference 𝜃y−𝜃- is less than 10 - 

15 degrees. If we consider cosine and sine function of such a small angle, we can reach a 
simplification. It is known that if angle goes to 0, then cosine of this angle goes to 1 and its sine 
goes to angle itself. If we apply these relationships on the equations, we get 
 

𝑃y = 𝒱y 𝒱- 	(ℬy-(𝜃y−𝜃-

|?|

-`)

)) (2C.8) 

 
𝑄y = 	 𝒱y 𝒱- 	(−ℬy-

|?|

-`)

) (2C.9) 

Equation (2C.9) can be written by separating it into parts, which includes ℬyy and ℬy.. 
Thus, 

 
𝑄y = 	 𝒱y 𝒱- 	(−ℬy-

|?|

-`)

) = − 𝒱y Tℬyy − 𝒱y 𝒱- 	(ℬy-

|?|

-`),-�y

) (2C.10) 
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We can expand ℬyy and ℬy- by using Equation (2C.3). After doing algebraic operations, 
we get 

 
𝑄y = − 𝒱y T𝑏y − 𝒱y 𝑏y- 𝒱y − 𝒱- 	

|?|

-`),-�y

 (2C.11) 

The second term of Equation (2C.11) is reactive power flowing on the line connecting the 
centers 𝑘 and 𝑖. It is proportional to voltage magnitude at center 𝑘 and voltage magnitude 
differences of centers 𝑘 and 𝑖. 

As for real power flow equation given in Equation (2C.8), we can also separate it into two 
parts with ℬyy and ℬy-. Thus, 

 
𝑃y = 𝒱y T ℬyy 𝜃y−𝜃y +	 𝒱y 𝒱- 	(ℬy- 𝜃y−𝜃-

|?|

-`),-�y

) (2C.12) 

and 

 
𝑃y = 𝒱y 𝒱- 	(ℬy- 𝜃y−𝜃-

|?|

-`),-�y

) (2C.13) 

From Equation (2C.13), we can say that real power flowing on the power line connecting 
centers 𝑘 and 𝑖 is proportional to voltage magnitudes at centers 𝑘 and 𝑖 and voltage angle difference 
at those centers. 

 
Observation 3: The voltage magnitudes 𝒱y  and 𝒱-  are very close 1 in per-unit system. 

Usual range for the voltage magnitudes under most conditions are 0.95, 1.05 . Thus, if we assume 
𝒱y = 𝒱- = 1, then we make a small and negligible mistake in the multiplication term 𝒱y 𝒱- . 

On the other hand, by the same assumption, we make a huge mistake in the difference term 𝒱y −
𝒱- . For example, let's consider the worst case, which is the case that 𝒱y = 1.05 and 𝒱- 	=
0.95.  In that case, the multiplication result is 0.9975 and the difference term equals to 0.1. If we 
assume that the voltage magnitude is equal to 1, then multiplication result in 1 and difference 
equals to 0. Hence, the mistake in multiplication is 1 − 0.9975 = 0.0025 and the mistake in 
difference is 0.1 − 0 = 0.1. After comparing two mistakes, we can say that it can be assumed the 
voltage magnitudes are equal to 1 in real power flow equation. However, we cannot make the same 
assumption for reactive power flow equation, except for inserting 1 in the place of single |𝑉y|. 
Therefore, the last form of power flow equations is 
 

𝑃y = ℬy- 𝜃y−𝜃-

|?|

-`),-�y

 (2C.14) 
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𝑄y = −𝑏y − 𝑏y- 𝒱y − 𝒱- 	

|?|

-`),-�y

 (2C.15) 

We observe that reactive power flow is proportional to circuit susceptance and voltage 
magnitude differences. The maximum difference between voltage magnitude is 1.05 − 0.95 =
0.1. On the other hand, the real power flow is proportional to circuit susceptance and voltage angle 
differences. The maximum difference between voltage angles are 0.52 radian, which equals to 30°. 
Thus, real power flow is significantly greater than reactive power flow. Finally, with these 
observations, we state that in approximated power flow equations, it is sufficient to consider only 
real power flows. Thus, AC approximated by DC power flow equations is given as 

 
𝑃y = ℬy- 𝜃y−𝜃-

|?|

-`),-�y

 (2C.16) 

For more detail regarding the approximation procedure, please see the relevant references 
Kirschen and Strbac (2004) and McCalley (2007). 
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APPENDIX 2.D THE OPF FORMULATION BY USING BUSHNELL AND STOFT 
(1995) ANALYSIS FOR THE NETWORK WITHOUT INVESTMENT 

As stated in the main text, it is assumed that network losses are negligible and voltage drops 
and reactive powers are not represented (see, e.g., Bushnell and Stoft 1995; Kirschen and Strbac 
2004). Thus, we are allowed to use the linear power flow equations found by dividing the power 
dispatched from one generation center with respect to the path’s total susceptance. Bushnell and 
Stoft (1995) explained this principle by using admittance. However, admittance and susceptance 
are equivalent in this context because we are only concerned with the ease of flow on the power 
lines. Therefore, whether admittance or susceptance is used in this context is not important. This 
principle is known as superposition principle. In this principle, only one generation center is taken 
into account at each step and power amounts on the lines are found. At the end, power amounts on 
the lines are summed algebraically and net power amounts are obtained. 

 

 

Figure 2.D.1 Hypothetical directions of power flow  

For our numerical example, we assume that the directions of power flows occur as seen in 
Figure 2.D.1. Let us first consider generation center 1. If power is dispatched from this center, then 
it flows in two paths: from center 1 to center 3 and from center 1 through center 2 to center 3. If 
two power lines are connected serially, then total susceptance is found by (see, e.g., Svoboda and 
Dorf 2014) 

 1
𝑏)T�

=
1
𝑏)T

+
1
𝑏T�

=
1
𝑏 +

1
𝑏 =

2
𝑏 ⟹ 𝑏)T� =

𝑏
2 (2D.1) 

where 𝑏)T� denotes the total susceptance of path from center 1 through center 2 to center 3, 𝑏)T 
denotes the susceptance of power line connecting centers 1 and 2, and 𝑏T� denotes the susceptance 
of power line connecting centers 2 and 3. Here, we denote one unit of susceptance as 𝑏. Let 𝒱) and 
𝒱� denote the voltage at centers 1 and 3, respectively. By using Ohm’s law (see, e.g., Svoboda and 
Dorf 2014), we can write that 

 𝒱) − 𝒱� =
𝐿)�
𝑏)�

=
𝐿)T�
𝑏)T�

=
𝐿)�
𝑏 =

𝐿)T�
𝑏
2

 (2D.2) 



 

	

63 

where 𝐿)� denotes the amount of power flow from center 1 to center 3 and 𝐿)T� denotes the power 
flow from center 1 through center 2 to center 3. Therefore, Equation (2D.2), we can say that 
2𝐿)T� = 𝐿)�. Hence, the following power flow equations can be written: 

 𝐿)T =
1
3𝐺),			𝐿)� =

2
3𝐺),			𝐿T� =

1
3𝐺) (2D.3) 

Let us now consider the second generation center. If power is dispatched from this center, 
then it flows in two paths: from center 2 through center 1 to center 3 and from center 2 to center 
3. By using the Ohm's law, we can write that 

 𝒱T − 𝒱� =
𝐿T�
𝑏T�

=
𝐿T)�
𝑏T)�

=
𝐿T�
𝑏 =

𝐿T)�
𝑏
2

⇒ 𝐿T� = 2𝐿T)� (2D.4) 

Hence, power flow equations can be written in the following form: 

 𝐿)T = −
1
3𝐺T,			𝐿)� =

1
3𝐺T,			𝐿T� =

2
3𝐺T (2D.5) 

By summing up these power flows, one can reach the net power amounts as follows: 

 𝐿)T =
1
3𝐺) −

1
3𝐺T, 𝐿)� =

2
3𝐺) +

1
3𝐺T, 𝐿T� =

1
3𝐺) +

2
3𝐺T (2D.6) 

We note that net power flows on the line connecting centers 1 and 2 have reverse directions. 
Thus, the signs of these power flows are reverse. In fact, the power flows on the line connecting 
centers 1 and 2 do not cancel each other. Rather, the superposition principle is used to find the 
actual power flow on the line. Thus, we can call the individual power amounts triggered by each 
generation center fictitious (see, e.g., Kuphaldt 2006). 

Thermal limit constraints of the power lines and capacity constraints for the generation 
centers are added: 
 −30 ≤ 𝐿)T ≤ 30 (2D.7) 

 −36 ≤ 𝐿)� ≤ 36 (2D.8) 

 −35 ≤ 𝐿T� ≤ 35 (2D.9) 

 0 ≤ 𝐺) ≤ 100 (2D.10) 

 0 ≤ 𝐺T ≤ 200 (2D.11) 

Because we do not know the right directions of power flows on the lines, we add the 
capacities of the power lines with both negative and positive signs. Finally, the demand amount 
should be equal to the total amount of power dispatched. Thus, as a final equation, we add the 
following constraint: 

 𝐺) + 𝐺T = 52 (2D.12) 
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The objective of the OPF problem is to minimize total generation costs. Thus, the objective 
function is 

 min
F«,F¬

40𝐺) + 30𝐺T 
(2D.13) 
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APPENDIX 2.E THE LMP AND THE LMP-BASED REVENUE CALCULATIONS BY 
USING BUSHNELL AND STOFT’S (1995) ANALYSIS FOR THE NETWORK 

WITHOUT INVESTMENT CASE 

We recall that a demand value is denoted by 𝐸($,y) at the state (𝑡, 𝑘). 
  
 𝑬(𝟐,𝟏) = 𝟓𝟗. 𝟐𝟐	𝑴𝑾 
 
Solution of the OPF problem: We first consider the cheapest generation center (generation 

center 2). If all 59.22 MW is dispatched from this center, then 𝐿T� = 39.48	𝑀𝑊, 𝐿)T =
−19.74	𝑀𝑊 and 𝐿)� = 19.74	𝑀𝑊. However, 𝐿T� > 𝐿T�. Thus, we have to increase the dispatch 
amount of generation center 1 and simultaneously decrease the dispatch amount of generation 
center 2. Let ∆𝐺) and ∆𝐺T be the changes in dispatches of generation centers 1 and 2, respectively. 
Thus, it should be ∆𝐺) + ∆𝐺T = 0 and  )

�
∆𝐺) +

T
�
(59.22 + ∆𝐺T) = 35. The solution of this set of 

equations is ∆𝐺) = 13.44 and ∆𝐺T = −13.44. Thus, 𝐺) = 13.44	𝑀𝑊 and 𝐺T = 45.78	𝑀𝑊. 
Since the power flows on the other lines resulting from this dispatch do not violate the capacity 
limits, we can say that this is the optimal solution. 

 
The LMP at center 1: In order to calculate the LMP at center 1, we increase the load amount 

by 1 MW at this center. After that, we first check the cheapest generation center to supply this 
additional load. If the dispatch amount of this center is increased by 1 MW, then T

�
 MW power 

flows from center 2 to center 1. In this case, 𝐿T� = 35.33	𝑀𝑊 which violates 𝐿T�. Thus, we check 
the second cheapest generation center in order to supply 1 MW additional load. Since remaining 
capacity of this center is sufficient for supplying, then this center is dispatched. The change in total 
system cost is $40/h and the LMP at center 1 is $40/MWh. 

 
The LMP at center 2: We increase load amount by 1 MW at center 2. The cheapest 

generation center should be checked first to supply 1 MW load. Since the remaining capacity of 
this center is sufficient for supplying, then this center is dispatched. The change in total system 
cost is $30/h and the LMP at this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center first. It is observed that if 1 MW load is supplied by this center, then 
𝐿T� = 35.66. Since 𝐿T� > 𝐿T�, we cannot dispatch generation center 2 on its own. Secondly, we 
have to check the first generation center to supply 1 MW load. If the dispatch of this center is 
increased by 1 MW, then 𝐿T� = 35.33, which also violates 𝐿T�. Then, it means that we cannot 
dispatch this generation center by its own. At this point, we find a combinational dispatch of the 
centers. Let ∆𝐺) and ∆𝐺T be the changes in dispatches of generation centers 1 and 2, respectively. 
Then, ∆𝐺) + ∆𝐺T = 1 and )

�
∆𝐺) +

T
�
∆𝐺T = 0 where the first equation represents that change in 

total dispatch should be equal to 1 MW additional demand and the second equation represents that 
power flow on the line connecting centers 2 and 3 must stay at 35 MW. If we solve this set of 
equations, we get ∆𝐺) = 2 and ∆𝐺T = −1. Thus, the change in total system cost is 2𝑀𝑊 ∙
$40 𝑀𝑊ℎ − 1𝑀𝑊 ∙ $30 𝑀𝑊ℎ = $50/ℎ and the LMP at this center is $50/MWh. 
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Network Revenue: In summary, at the end of all these calculations, the following values 
are obtained regarding the LMPs at each center, demand value and the dispatch amounts of the 
generation centers: 𝜋) = 40, 𝜋T = 30, 𝜋� = 50, 𝐷� = 59.22, 𝐺) = 13.44 and 𝐺T = 45.78.  By 
using Equation (2.1) and these values, network revenue denoted by 𝑁𝑅(T,)) in the main text is 
calculated as $1050/h. 

 
 𝑬(𝟐,𝟐) = 𝟒𝟓. 𝟔𝟔	𝑴𝑾 
 
Solution of the OPF problem: We first consider the cheapest generation center. If all 45.66 

MW is dispatched from this center, then 𝐿T� = 30.44	𝑀𝑊, 𝐿)T = −15.22	𝑀𝑊 and 𝐿)� =
15.22	𝑀𝑊. Since none of these power flows violates the capacity limits of the corresponding 
power lines, this is accepted as optimal solution. Thus, at optimality, 𝐺) = 0	𝑀𝑊 and 𝐺T =
45.66	𝑀𝑊. 

 
The LMP at center 1: We increase the load amount by 1 MW at center 1. After that, we 

first check the cheapest generation center to supply this additional load. If the dispatch amount of 
this center is increased by 1 MW, then )

�
 MW flows from center 2 through center 3 to center 1. 

Additionally, T
�
 MW power flows from center 2 to center 1 directly. In this case, 𝐿)T = −15.89, 

𝐿)� = 14.89 and 𝐿T� = 30.77. Since none of these values violates the capacity limits of the 
corresponding power lines, generation center 2 can be dispatched to supply the additional load at 
center 1. Thus, the change in total system cost is $30/h and the LMP at center 1 is $30/MWh. 

 
The LMP at center 2: We increase load amount by 1 MW at center 2. The cheapest 

generation center should be checked first to supply 1 MW load. Since the remaining capacity of 
this center is sufficient for supplying, then this center is dispatched. The change in total system 
cost is $30/h and the LMP at this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We first check 

the cheapest generation center. It is observed that if 1 MW load is supplied by this center, then 
𝐿T� = 31.11	𝑀𝑊, 𝐿)T = −15.55	𝑀𝑊 and 𝐿)� = 15.55. Since none of these violates the capacity 
limits of the corresponding power lines, generation center 2 can be dispatched to supply the 
additional load at center 3. Thus, the change in total system cost is $30/h and the LMP at this center 
is $30/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amounts of the 
generation centers: 𝜋) = 30, 𝜋T = 30, 𝜋� = 30, 𝐷� = 45.66, 𝐺) = 0 and 𝐺T = 45.66.  By using 
Equation (2.1) and these values, network revenue denoted by 𝑁𝑅(T,T) in the main text is calculated 
as $0/h. 

 
 𝑬(𝟏,𝟏) = 𝟓𝟐	𝑴𝑾 
 
Solution of the OPF problem: We first consider the cheapest generation center. If all 52 

MW is dispatched from this center, then 𝐿T� = 34.67	𝑀𝑊, 𝐿)T = −17.33	𝑀𝑊 and 𝐿)� =
17.33	𝑀𝑊. Since none of these power flows violates the capacity limits of the corresponding 
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power lines, this is accepted as optimal solution. Thus, at optimality, 𝐺) = 0	𝑀𝑊 and 𝐺T =
52	𝑀𝑊. 

 
The LMP at center 1: We increase the load amount by 1 MW at center 1. After that, we 

first check the cheapest generation center to supply this additional load. If the dispatch amount of 
this center is increased by 1 MW, then )

�
 MW flows from center 2 through center 3 to center 1. 

Additionally, T
�
 MW power flows from center 2 to center 1 directly. In this case, 𝐿)T = −18	𝑀𝑊, 

𝐿)� = 17	𝑀𝑊 and 𝐿T� = 35	𝑀𝑊. Since none of these values violates the capacity limits of the 
corresponding power lines, generation center 2 can be dispatched to supply the additional load at 
center 1. Thus, the change in total system cost is $30/h and the LMP at center 1 is $30/MWh. 

 
The LMP at center 2: We increase load amount by 1 MW at center 2. The cheapest 

generation center should be checked first to supply 1 MW load. Since the remaining capacity of 
this center is sufficient for supplying, then this center is dispatched. The change in total system 
cost is $30/h and the LMP at this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We first check 

the cheapest generation center. It is observed that if 1 MW load is supplied by this center, then T
�
 

MW additional power flows on the line from center 2 to center 3. Thus, 𝐿T� = 35.33	𝑀𝑊. Since 
𝐿T� > 𝐿T�, we cannot dispatch generation center 2 on its own. Secondly, we have to check the first 
generation center to supply 1 MW load. If the dispatch of this center is increased by 1 MW, then 
𝐿T� = 35	𝑀𝑊 ≤ 𝐿T�. Thus, additional load at center 3 can be supplied from generation center 1. 
The change in total system cost is $40/h and the LMP at this center is $40/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generation centers: 𝜋) = 30, 𝜋T = 30, 𝜋� = 40, 𝐷� = 52, 𝐺) = 0 and 𝐺T = 52.  By using 
Equation (2.1) and these values, network revenue denoted by 𝑁𝑅(),)) in the main text is calculated 
as $520/h. 
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APPENDIX 2.F THE OPF FORMULATION BY USING BUSHNELL AND STOFT’S 
(1995) ANALYSIS FOR THE NETWORK WITH INVESTMENT BETWEEN CENTERS 

1 AND 3 

Total susceptance of the power lines connecting centers 1 and 3 is doubled because they 
are connected parallel. Thus, it becomes 2𝑏. Let's consider the first generation center. We are able 
to write the following equations by using Ohm's law. 
 𝒱) − 𝒱� =

𝐿)�
𝑏)�

=
𝐿)T�
𝑏)T�

=
𝐿)�
2𝑏 =

𝐿)T�
𝑏
2

⟹ 𝐿)� = 4𝐿)T� (2F.1) 

 𝐿)T =
1
5𝐺),			𝐿)� =

4
5𝐺),			𝐿T� =

1
5𝐺) (2F.2) 

Let's now consider the second generation center. It is critical to find the total susceptance 
on the path from centers 2 to 1 to 3. We know that 

 1
𝑏T)�

=
1
𝑏T)

+
1
𝑏)�

=
1
𝑏 +

1
2𝑏 =

3
2𝑏 ⟹ 𝑏T)� =

2𝑏
3  (2F.3) 

Thus, 

 𝑉T − 𝑉� =
𝐿T�
𝑏T�

=
𝐿T)�
𝑏T)�

=
𝐿T�
𝑏 =

𝐿T)�
2𝑏
3

⇒ 2𝐿T� = 3𝐿T)� (2F.4) 

 𝐿)T = −
2
5𝐺T,			𝐿)� =

2
5𝐺T,			𝐿T� =

3
5𝐺T (2F.5) 

Therefore, net power flow equations can be written as follows: 

 𝐿)T =
1
5𝐺) −

2
5𝐺T, 𝐿)� =

4
5𝐺) +

2
5𝐺T	, 𝐿T� =

1
5𝐺) +

3
5𝐺T (2F.6) 

The rest of constraints are capacity limits of generators and thermal limits of power lines, 
given in Equations (2D.7) – (2D.11). We note that −40 ≤ 𝐿)� ≤ 40 because a 4 MW power line 
is added. Furthermore, an equation representing the equality between demand amount and total 
dispatch should be added. 
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APPENDIX 2.G THE LMP AND THE LMP-BASED REVENUE CALCULATIONS BY 
USING BUSHNELL AND STOFT’S (1995) ANALYSIS FOR THE NETWORK WITH 

INVESTMENT BETWEEN CENTERS 1 AND 3 

 𝑬 𝟐𝟏 = 𝟓𝟗. 𝟐𝟐	𝑴𝑾 
	
Solution of the OPF problem: We consider at first the cheapest generation center. If all 

59.22 MW is dispatched from this center, then 𝐿T� = 35.53	𝑀𝑊, 𝐿)T = −23.69	𝑀𝑊 and 𝐿)� =
23.69	𝑀𝑊. However, 𝐿T� > 𝐿T�. Thus, we have to increase the dispatch amount of generation 
center 1 and simultaneously decrease the dispatch amount of generation center 2. Let ∆𝐺) and ∆𝐺T 
be the change amount in dispatch of centers 1 and 2, respectively. Thus, it should be ∆𝐺) + ∆𝐺T =
0 and  )

¸
∆𝐺) +

�
¸
(59.22 + ∆𝐺T) = 35. The solution of this set of equations are ∆𝐺) = 1.33 and 

∆𝐺T = −1.33. Thus, 𝐺) = 1.33	𝑀𝑊 and 𝐺T = 57.89	𝑀𝑊. Since the power flows on the other 
lines resulting from the dispatch do not violate the capacity limits, we can say that this is the 
optimal solution. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, then T

¸
 MW additional power flows from centers 2 to 3, which means 

𝐿T� = 35.93 > 𝐿T�. Thus, we check the second cheapest generation center in order to supply 1 
MW additional load. Since remaining capacity of this generation center is sufficient for supplying, 
it is dispatched. The change in total system cost is $ 40/h, and thus, the LMP at center 1 is 
$40/MWh. 

 
The LMP at center 2: We increase load amount at center 2. The cheapest generation center 

should be checked at first to supply 1 MW load. Since the remaining capacity of this center is 
sufficient for supplying, it is dispatched. The change in total system cost is $ 30/h and the LMP at 
this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, then 
�
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 36.13 > 𝐿T�. It means that 

we cannot dispatch the generation center 2 on its own. Secondly, we have to check the first 
generation center to supply 1 MW load. If the dispatch of this center is increased by 1 MW, then 
)
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 35.73 > 𝐿T�. Hence, we 

cannot dispatch this center by its own. 
At this point, we find a combinational dispatch of the generation centers. Let ∆𝐺) and ∆𝐺T 

be the changes in dispatch of the centers 1 and 2, respectively. Then, ∆𝐺) + ∆𝐺T = 1 and )
¸
∆𝐺) +

�
¸
∆𝐺T = 0 should be satisfied. If we solve this set of equations, we get ∆𝐺) = 1.5 and ∆𝐺T = −0.5. 

Thus, the change in total system cost is 1.5𝑀𝑊 ∙ $40 𝑀𝑊ℎ − 0.5𝑀𝑊 ∙ $30 𝑀𝑊ℎ = $	45/ℎ 
and the LMP at this center is $45/MWh. 
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Network Revenue: In summary, at the end of all these calculations, the following values 
are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generation centers: 𝜋) = 40, 𝜋T = 30, 𝜋� = 45, 𝐷� = 59.22, 𝐺) = 1.33 and 𝐺T = 57.89.  By 
using Equation (2.1) and these values, network revenue denoted by 𝑁𝑅 T,)  in the main text are 
calculated as $875/h. 

 
 𝑬 𝟐,𝟐 = 𝟒𝟓. 𝟔𝟔	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center at first. If all 

45.66 MW is dispatched from this center, then 𝐿T� = 27.40	𝑀𝑊, 𝐿)T = −18.26	𝑀𝑊 and 𝐿)� =
18.26	𝑀𝑊. Since none of the power flows violates the capacity limits of the corresponding power 
lines, this is accepted as optimal solution. Thus, at optimality, 𝐺) = 0	𝑀𝑊 and 𝐺T = 45.66	𝑀𝑊. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, it can be observed that 𝐿T� = 27.80	𝑀𝑊, 𝐿)T = −18.86	𝑀𝑊 and 
𝐿)� = 17.86	𝑀𝑊. Since none of these violates the corresponding capacities, generation center 2 
can be dispatched to supply the additional load at center 1. The change in total system cost is $30/h, 
and thus, the LMP at center 1 is $30/MWh. 

 
The LMP at center 2: We increase load amount at center 2. The cheapest generation center 

should be checked at first to supply 1 MW load. Since the remaining capacity of this center is 
sufficient for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at 
this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, then 
𝐿T� = 28	𝑀𝑊, 𝐿)T = −18.66	𝑀𝑊 and 𝐿)� = 18.66	𝑀𝑊. Since none of these violates the 
corresponding capacities, generation center 2 can be dispatched to supply the additional load at 
center 1. The change in total system cost is $30/h, and thus, the LMP at center 1 is $30/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generators: 𝜋) = 30, 𝜋T = 30, 𝜋� = 30, 𝐷� = 45.66, 𝐺) = 0 and 𝐺T = 45.66.  By using Equation 
(2.1) and these values, network revenue denoted by 𝑁𝑅 T,T  in the main text are calculated as $0/h. 

 
 𝑬 𝟏,𝟏 = 𝟓𝟐	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center at first. If all 52 

MW is dispatched from this center, then 𝐿T� = 31.20	𝑀𝑊, 𝐿)T = −20.8	𝑀𝑊 and 𝐿)� =
20.8	𝑀𝑊. Since none of the power flows violates the capacity limits of the corresponding power 
lines, this is accepted as optimal solution. Thus, at optimality, 𝐺) = 0	𝑀𝑊 and 𝐺T = 52	𝑀𝑊. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, it can be observed that 𝐿T� = 31.60	𝑀𝑊, 𝐿)T = −21.4	𝑀𝑊 and 
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𝐿)� = 20.4	𝑀𝑊. Since none of these violates the capacity limits, generation center 2 can be 
dispatched to supply the additional load at center 1. The change in total system cost is $30/h, and 
thus, the LMP at center 1 is $30/MWh. 

 
The LMP at center 2: We increase load amount at center 2. The cheapest generation center 

should be checked at first to supply 1 MW load. Since the remaining capacity of this center is 
sufficient for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at 
this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, 𝐿T� =
31.80	𝑀𝑊, 𝐿)T = −21.20	𝑀𝑊 and 𝐿)� = 21.20	𝑀𝑊. None of these violates the capacity limits; 
thus, generation center 2 can be dispatched to supply the additional load at center 3. The change 
in total system cost is $30/h and the LMP at this center is $30/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generators: 𝜋) = 30, 𝜋T = 30, 𝜋� = 30, 𝐷� = 52, 𝐺) = 0 and 𝐺T = 52.  By using Equation (2.1) 
and these values, network revenue denoted by 𝑁𝑅 ),)  in the main text are calculated as $0/h. 
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APPENDIX 2.H THE OPF FORMULATION BY USING BUSHNELL AND STOFT’S 
(1995) ANALYSIS FOR THE NETWORK WITH INVESTMENT BETWEEN CENTERS 

1 AND 2 

Total susceptance of the power lines connecting centers 1 and 2 is doubled because they 
are connected parallel. Thus, 𝑏)T = 2𝑏. Let's consider the first generation center. It is critical to 
find the total susceptance on the path from centers 1 to 2 to 3. We derive that 

 1
𝑏)T�

=
1
𝑏)T

+
1
𝑏T�

=
1
2𝑏 +

1
𝑏 =

3
2𝑏 ⟹ 𝑏)T� =

2𝑏
3  (2H.1) 

Thus, 

 𝒱) − 𝒱� =
𝐿)�
𝑏)�

=
𝐿)T�
𝑏)T�

=
𝐿)�
𝑏 =

𝐿)T�
2𝑏
3

⇒ 2𝐿)� = 3𝐿)T� (2H.2) 

 𝐿)T =
2
5𝐺),			𝐿)� =

3
5𝐺),			𝐿T� =

2
5𝐺) (2H.3) 

We can write a similar set of equations for generation center 2. That is, 

 1
𝑏T)�

=
1
𝑏T)

+
1
𝑏)�

=
1
2𝑏 +

1
𝑏 =

3
2𝑏 ⟹ 𝑏T)� =

2𝑏
3  (2H.4) 

 𝑉T − 𝑉� =
𝐿T�
𝑏T�

=
𝐿T)�
𝑏T)�

=
𝐿T�
𝑏 =

𝐿T)�
2𝑏
3

⇒ 2𝐿T� = 3𝐿T)� (2H.5) 

 𝐿)T = −
2
5𝐺T,			𝐿)� =

2
5𝐺T,			𝐿T� =

3
5𝐺T (2H.6) 

Therefore, net power flow equations can be written as follows: 

 𝐿)T =
2
5𝐺) −

2
5𝐺T, 𝐿)� =

3
5𝐺) +

2
5𝐺T, 𝐿T� =

2
5𝐺) +

3
5𝐺T (2H.7) 

The rest of constraints are capacity limits of generation centers and thermal limits of power 
lines. We note that −34 ≤ 𝐿)T ≤ 34 because a 4 MW power line is added. Furthermore, an 
equation expressing the equality between demand amount and total dispatch should be added. 
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APPENDIX 2.I THE LMP AND THE LMP-BASED REVENUE CALCULATIONS BY 
USING BUSHNELL AND STOFT’S (1995) ANALYSIS FOR THE NETWORK WITH 

INVESTMENT BETWEEN CENTERS 1 AND 2 

 𝑬 𝟐,𝟏 = 𝟓𝟗. 𝟐𝟐	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center at first. If all 

59.22 MW is dispatched from this center, then 𝐿T� = 35.53	MW, 𝐿)T = −23.69	MW and 𝐿)� =
23.69	MW. However, 𝐿T� > 𝐿T�. Thus, we have to increase the dispatch amount of generation 
center 1 and simultaneously decrease the dispatch amount of generation center 2. Let ∆𝐺) and ∆𝐺T 
be the change amount in dispatch of centers 1 and 2, respectively. Thus, it should be ∆𝐺) + ∆𝐺T =
0 and T

¸
∆𝐺) +

�
¸
(59.22 + ∆𝐺T) = 35. The solution of this set of equations are ∆𝐺) = 2.66 and 

∆𝐺T = −2.66. Thus, 𝐺) = 2.66	𝑀𝑊 and 𝐺T = 56.56	𝑀𝑊. Since the power flows on the other 
lines resulting from the dispatch do not violate the capacity limits, we can say that this is the 
optimal solution. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, then )

¸
 MW additional power flows from centers 2 to 3, which means 

𝐿T� = 35.2 > 𝐿T�. Thus, we check the second cheapest generation center in order to supply 1 MW 
additional load. Since remaining capacity of this center is sufficient for supplying, then this 
generator is dispatched. The change in total system cost is $40/h, and thus, the LMP at center 1 is 
$40/MWh. 

 
The LMP at center 2: We increase load amount at center 2. The cheapest generation center 

should be checked to supply 1 MW load. Since the remaining capacity of this center is sufficient 
for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at this center 
is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, then 
�
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 35.60 > 𝐿T�. It means that 

we cannot dispatch the generation center 2 on its own. Secondly, we have to check the first 
generation center to supply 1 MW load. If the dispatch of this center is increased by 1 MW, then 
T
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 35.40 > 𝐿T�. Hence, we 

cannot dispatch this center by its own. 
At this point, we find a combinational dispatch of the generation centers. Let ∆𝐺) and ∆𝐺T 

be the changes in dispatch of the generation centers 1 and 2, respectively. Then, ∆𝐺) + ∆𝐺T = 1 
and T

¸
∆𝐺) +

�
¸
∆𝐺T = 0 should be satisfied. If we solve this set of equations, we get ∆𝐺) = 3 and 

∆𝐺T = −2. Thus, the change in total system cost is 3	MW ∙ $40 MWh − 2	MW ∙ $30 MWh =
$60/h and the LMP at this center is $60/MWh. 

 



 

	

74 

Network Revenue: In summary, at the end of all these calculations, the following values 
are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generation centers: 𝜋) = 40, 𝜋T = 30, 𝜋� = 60, 𝐷� = 59.22, 𝐺) = 2.66 and 𝐺T = 56.56.  By 
using Equation (2.1) and these values, network revenue denoted by 𝑁𝑅 T,)  in the main text are 
calculated as $1750/h. 

 
 𝑬 𝟐,𝟐 = 𝟒𝟓. 𝟔𝟔	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center at first. If all 

45.66 MW is dispatched from this center, then 𝐿T� = 27.40	𝑀𝑊, 𝐿)T = −18.26	𝑀𝑊 and 𝐿)� =
18.26	𝑀𝑊. Since none of the power flows violates the capacity limits of the corresponding power 
lines, this is accepted as optimal solution. Thus, at optimality, 𝐺) = 0	𝑀𝑊 and 𝐺T = 45.66	𝑀𝑊. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, it can be observed that 𝐿T� = 27.60	𝑀𝑊, 𝐿)T = −19.06	𝑀𝑊 and 
𝐿)� = 18.06	𝑀𝑊. Since none of these violates the corresponding capacities, generation center 2 
can be dispatched to supply the additional load at center 1. The change in total system cost is $30/h, 
and thus, the LMP at center 1 is $30/MWh. 

 
The LMP at center 2: We increase load amount at center 2. At first, the cheapest generation 

center should be checked to supply 1 MW load. Since the remaining capacity of this center is 
sufficient for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at 
this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, then 
𝐿T� = 28	𝑀𝑊, 𝐿)T = −18.66	𝑀𝑊 and 𝐿)� = 18.66	𝑀𝑊. Since none of these violates the 
corresponding capacities, generation center 2 can be dispatched to supply the additional load at 
center 1. The change in total system cost is $30/h, and thus, the LMP at center 3 is $30/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generators: 𝜋) = 30, 𝜋T = 30, 𝜋� = 30, 𝐷� = 45.66, 𝐺) = 0 and 𝐺T = 45.66.  By using Equation 
(2.1) and these values, network revenue denoted by NR T,T  in the main text are calculated as $0/h. 

 
 𝑬 𝟏,𝟏 = 𝟓𝟐	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center at first. If all 52 

MW is dispatched from this center, then 𝐿T� = 31.20	𝑀𝑊, 𝐿)T = −20.80	𝑀𝑊 and 𝐿)� =
20.80	𝑀𝑊. Since none of the power flows violates the capacity limits of the corresponding power 
lines, this is accepted as optimal solution. Thus, at optimality, 𝐺) = 0	𝑀𝑊 and 𝐺T = 52	𝑀𝑊. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center to supply this additional load. If the dispatch amount of this center is 
increased by 1 MW, it can be observed that 𝐿T� = 31.40	𝑀𝑊, 𝐿)T = −21.60	𝑀𝑊 and 𝐿)� =
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20.60	𝑀𝑊. Since none of these violates the capacity limits, generation center 2 can be dispatched 
to supply the additional load at center 1. The change in total system cost is $30/h, and thus, the 
LMP at center 1 is $30/MWh. 

 
The LMP at center 2: We increase load amount at center 2. At first, the cheapest generation 

center should be checked to supply 1 MW load. Since the remaining capacity of this center is 
sufficient for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at 
this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, 𝐿T� =
31.80	𝑀𝑊, 𝐿)T = −21.20	𝑀𝑊 and 𝐿)� = 21.20	𝑀𝑊. None of these violates the capacity limits; 
thus, generation center 2 can be dispatched to supply the additional load at center 3. The change 
in total system cost is $30/h and the LMP at this center is $30/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generation centers: 𝜋) = 30, 𝜋T = 30, 𝜋� = 30, 𝐷� = 52, 𝐺) = 0 and 𝐺T = 52.  By using 
Equation (2.1) and these values, network revenue denoted by 𝑁𝑅 ),)  in the main text are calculated 
as $0/h. 
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APPENDIX 2.J THE OPF FORMULATION BY USING BUSHNELL AND STOFT’S 
(1995) ANALYSIS FOR THE NETWORK WITH INVESTMENT BETWEEN CENTERS 

2 AND 3 

Total susceptance of the power lines connecting centers 2 and 3 is doubled because they 
are connected parallel. Thus, 𝑏T� = 2𝑏. Let's consider the first generation center. It is critical to 
find the total susceptance on the path from centers 1 to 2 to 3. We know that 

 1
𝑏)T�

=
1
𝑏)T

+
1
𝑏T�

=
1
𝑏 +

1
2𝑏 =

3
2𝑏 ⟹ 𝑏)T� =

2𝑏
3  (2J.1) 

Thus, 
 

𝒱) − 𝒱� =
𝐿)�
𝑏)�

=
𝐿)T�
𝑏)T�

=
𝐿)�
𝑏 =

𝐿)T�
2𝑏
3

⇒ 2𝐿)� = 3𝐿)T� (2J.2) 

 
𝐿)T =

2
5𝐺),			𝐿)� =

3
5𝐺),			𝐿T� =

2
5𝐺) (2J.3) 

We can write a similar set of equations for generation center 2. That is, 

 𝒱T − 𝒱� =
𝐿T�
𝑏T�

=
𝐿T)�
𝑏T)�

=
𝐿T�
2𝑏 =

𝐿T)�
𝑏
2

⇒ 𝐿T� = 4𝐿T)� (2J.4) 

 𝐿)T = −
1
5𝐺T,			𝐿)� =

1
5𝐺T,			𝐿T� =

4
5𝐺T (2J.5) 

Therefore, net power flow equations can be written as follows: 

 𝐿)T =
2
5𝐺) −

1
5𝐺T, 𝐿)� =

3
5𝐺) +

1
5𝐺T, 𝐿T� =

2
5𝐺) +

4
5𝐺T (2J.6) 

The rest of constraints are capacity limits of generation centers and thermal limits of power 
lines. We note that −39 ≤ 𝐿T� ≤ 39 because a 4 MW power line is added. Furthermore, an 
equation expressing the equality between demand amount and total dispatch should be added. 
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APPENDIX 2.K THE LMP AND THE LMP-BASED REVENUE CALCULATIONS BY 
USING BUSHNELL AND STOFT’S (1995) ANALYSIS FOR THE NETWORK WITH 

INVESTMENT BETWEEN CENTERS 2 AND 3 

 𝑬 𝟐,𝟏 = 𝟓𝟗. 𝟐𝟐	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center. If all 59.22 MW 

is dispatched from this center, then 𝐿T� = 47.38	𝑀𝑊, 𝐿)T = −11.84	𝑀𝑊 and 𝐿)� = 11.84	𝑀𝑊. 
However, 𝐿T� > 𝐿T�. Thus, we have to increase the dispatch amount of generation center 1 and 
simultaneously decrease the dispatch amount of generation center 2. Let ∆𝐺) and ∆𝐺T be the 
change amount in dispatch of generation centers 1 and 2, respectively. Thus, it should be ∆𝐺) +
∆𝐺T = 0 and  T

¸
∆𝐺) +

½
¸
(59.22 + ∆𝐺T) = 35. The solution of this set of equations are ∆𝐺) =

30.94 and ∆𝐺T = −30.94. Thus, 𝐺) = 30.94	𝑀𝑊 and 𝐺T = 28.28	𝑀𝑊. Since the power flows 
on the other lines resulting from the dispatch do not violate the capacity limits, we can say that this 
is the optimal solution. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, then T

¸
 MW additional power flows from centers 2 to 3, which means 

𝐿T� = 35.4 > 𝐿T�. Thus, we check the second cheapest generation center in order to supply 1 MW 
additional load. Since remaining capacity of this center is sufficient for supplying, it is dispatched. 
The change in total system cost is $40/h, and thus, the LMP at center 1 is $40/MWh. 

 
The LMP at center 2: We increase load amount at center 2. The cheapest generation center 

should be checked to supply 1 MW load. Since the remaining capacity of this center is sufficient 
for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at this center 
is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, then 
½
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 35.80 > 𝐿T�. It means that 

we cannot dispatch the generation center 2 on its own. Secondly, we have to check the first 
generation center to supply 1 MW load. If the dispatch of this center is increased by 1 MW, then 
T
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 35.40 > 𝐿T�. Hence, we 

cannot dispatch this center by its own. 
At this point, we find a combinational dispatch of the generation centers. Let ∆𝐺) and ∆𝐺T 

be the changes in dispatch of the generation centers 1 and 2, respectively. Then, ∆𝐺) + ∆𝐺T = 1 
and T

¸
∆𝐺) +

½
¸
∆𝐺T = 0 should be satisfied. If we solve this set of equations, we get ∆𝐺) = 2 and 

∆𝐺T = −1. Thus, the change in total system cost is 2	𝑀𝑊 ∙ $40 𝑀𝑊ℎ − 1	𝑀𝑊 ∙ $30 𝑀𝑊ℎ =
$50/ℎ and the LMP at this center is $50/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
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generation centers: 𝜋) = 40, 𝜋T = 30, 𝜋� = 50, 𝐷� = 59.22, 𝐺) = 20.94 and 𝐺T = 38.28.  By 
using Equation (2.1) and these values, network revenue denoted by 𝑁𝑅 T,)  in the main text are 
calculated as $975/h. 

 
 𝑬 𝟐,𝟐 = 𝟒𝟓. 𝟔𝟔	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center. If all 45.66 MW 

is dispatched from this center, then 𝐿T� = 36.53	𝑀𝑊, 𝐿)T = −9.13	𝑀𝑊 and 𝐿)� = 9.13	𝑀𝑊. 
Since none of the power flows violates the capacity limits of the corresponding power lines, this 
is accepted as optimal solution. Thus, at optimality, 𝐺) = 0	𝑀𝑊 and 𝐺T = 45.66	𝑀𝑊. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, it can be observed that 𝐿T� = 36.93	𝑀𝑊, 𝐿)T = −9.73	𝑀𝑊 and 
𝐿)� = 8.73	𝑀𝑊. Since none of these violates the corresponding capacities, generation center 2 
can be dispatched to supply the additional load at center 1. The change in total system cost is $30/h, 
and thus, the LMP at center 1 is $ 30/MWh. 

 
The LMP at center 2: We increase load amount at center 2. The cheapest generation center 

should be checked at first to supply 1 MW load. Since the remaining capacity of this center is 
sufficient for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at 
this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, then 
𝐿T� = 37.33	𝑀𝑊, 𝐿)T = −9.33	𝑀𝑊 and 𝐿)� = 9.33	𝑀𝑊. Since none of these violates the 
corresponding capacities, generation center 2 can be dispatched to supply the additional load at 
center 1. The change in total system cost is $30/h, and thus, the LMP at center 1 is $30/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generation centers: 𝜋) = 30, 𝜋T = 30, 𝜋� = 30, 𝐷� = 45.66, 𝐺) = 0 and 𝐺T = 45.66.  By using 
Equation (2.1) and these values, network revenue denoted by 𝑁𝑅 T,T  in the main text are calculated 
as $0/h. 

 
 𝑬 𝟏,𝟏 = 𝟓𝟐	𝑴𝑾 
 
Solution of the OPF problem: We consider the cheapest generation center at first. If all 52 

MW is dispatched from this center, then 𝐿T� = 41.60	𝑀𝑊, 𝐿)T = −10.40	𝑀𝑊 and 𝐿)� =
10.40	𝑀𝑊. However, 𝐿T� > 𝐿T�. Thus, we have to increase the dispatch amount of generation 
center 1 and simultaneously decrease the dispatch amount of generation center 2. Let ∆𝐺) and ∆𝐺T 
be the change amount in dispatch of generation centers 1 and 2, respectively. Thus, it should be 
∆𝐺) + ∆𝐺T = 0 and  T

¸
∆𝐺) +

½
¸
(52 + ∆𝐺T) = 39. The solution of this set of equations are ∆𝐺) =

6.5 and ∆𝐺T = −6.5. Thus, 𝐺) = 6.5	𝑀𝑊 and 𝐺T = 45.5	𝑀𝑊. Since the power flows on the other 
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lines resulting from the dispatch do not violate the capacity limits, we can say that this is the 
optimal solution. 

 
The LMP at center 1: We increase the load amount at center 1. After that, we check the 

cheapest generation center at first to supply this additional load. If the dispatch amount of this 
center is increased by 1 MW, then T

¸
 MW additional power flows from centers 2 to 3, which means 

𝐿T� = 39.4 > 𝐿T�. Thus, we check the second cheapest generation center in order to supply 1 MW 
additional load. Since remaining capacity of this center is sufficient for supplying, it is dispatched. 
The change in total system cost is $40/h, and thus, the LMP at center 1 is $40/MWh. 

 
The LMP at center 2: We increase load amount at center 2. The cheapest generation center 

should be checked at first to supply 1 MW load. Since the remaining capacity of this center is 
sufficient for supplying, it is dispatched. The change in total system cost is $30/h and the LMP at 
this center is $30/MWh. 

 
The LMP at center 3: The load amount at this center is increased by 1 MW. We check the 

cheapest generation center at first. It is observed that if 1 MW load is supplied by this center, then 
½
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 39.80 > 𝐿T�. It means that 

we cannot dispatch the generation center 2 on its own. Secondly, we have to check the first 
generation center to supply 1 MW load. If the dispatch of this center is increased by 1 MW, then 
T
¸
 MW additional power flows from centers 2 to 3, which means 𝐿T� = 39.40 > 𝐿T�. Hence, we 

cannot dispatch this center by its own. 
At this point, we find a combinational dispatch of the generation centers. Let ∆𝐺) and ∆𝐺T 

be the changes in dispatch of the generation centers 1 and 2, respectively. Then, ∆𝐺) + ∆𝐺T = 1  
and T

¸
∆𝐺) +

½
¸
∆𝐺T = 0 should be satisfied. If we solve this set of equations, we get ∆𝐺) = 2 and 

∆𝐺T = −1. Thus, the change in total system cost is 2	𝑀𝑊 ∙ $40 𝑀𝑊ℎ − 1	𝑀𝑊 ∙ $30 𝑀𝑊ℎ =
$50/ℎ and the LMP at this center is $50/MWh. 

 
Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding the LMPs at each center, demand value and the dispatch amount of the 
generation centers: 𝜋) = 40, 𝜋T = 30, 𝜋� = 50, 𝐷� = 52, 𝐺) = 6.5 and 𝐺T = 45.5.  By using 
Equation (2.1) and these values, network revenue denoted by 𝑁𝑅 T,)  in the main text are calculated 
as $975/h. 
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CHAPTER 3. VALUATION OF JUMBOIZATION FOR MILITARY 
TRANSPORTATION SHIPS: A REAL OPTIONS APPROACH 

Introduction 

In recent years, a new trend has emerged in industrial practice of engineering design as 

well as in academic researches. Real options ‘in’ design have been called by some research 

practitioners (see, e.g., Wang 2005) to point out that initial design of a product can be accomplished 

in such a way that the user can modify the product design later with relatively less cost. In other 

words, while incurring an upfront cost in initial design, the user purchases an option to change the 

design in future with a relatively lower cost. There exist several real-life examples for this notion 

such as flexible building for parking (De Neufville et al. 2006) and communications satellite (De 

Weck et al. 2004). 

Ship design is one of the practical areas in which real options ‘in’ design can be addressed. 

Jumboization can be listed as one kind of modularity in ship design (see, e.g., Doerry 2014). 

Jumboization is defined as increasing the capacity of an existing ship by extending its length at a 

future date. When the decision maker (throughout this chapter, we talk about a single unit as the 

decision maker although ship design decisions are carried out by several people in reality) decides 

to execute it, ship’s hull is cut into two components, newly built mid-section is inserted and whole 

process ends with welding of separated hull sections. Jumboization fits to the definition of real 

options in engineering design because the decision maker needs to pay an upfront cost during 

initial design to have stronger hull structure by more advanced scantlings than initially required 

(Buxton and Stephenson 2001). Moreover, the decision maker has the right, but not obligation, to 

insert the mid-body to the ship. Therefore, upfront cost can be regarded as option premium, which 

is initially paid to have the option, and jumboization cost can be viewed as strike price in the 

language of financial options. 
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In this study, we attempt to evaluate jumboization operations in U.S. Navy ships with real 

options approach to determine the expected time of jumboization and its value as well as to provide 

a managerial guideline regarding the choice between fixed (the ship is not designed initially 

envisioning future jumboization investment) and flexible design (the ship is designed initially 

envisioning future jumboization investment). In the case of flexible design, jumboization can be 

conducted more easily and thus less costly. 

A careful investigation of jumboization practices in the U.S. Navy reveals that generally 

replenishment oilers have been jumboized, whose primary purpose is to transport fuel to U.S. Navy 

ships at sea. Therefore, we build our mathematical model upon replenishment oilers to evaluate 

jumboization operations. To the best of our knowledge, the U.S. Navy have jumboized 13 ships 

so far and these ships were not specifically designed initially for jumboization. Hence, Doerry 

(2014) arises research questions as to what would happen and would there be any cost saving if 

they were initially designed for jumboization. Moreover, he states that there is a need for 

analytically rigorous methods to evaluate the flexibilities in design of U.S. Navy ships, which 

motivates us to conduct this study. 

The rest of the chapter is organized as follows: The following section shows the relevant 

literature, which exemplifies jumboization of ships in public sector ships and types of modularity 

for U.S. Navy ships. After that, we present the mathematical model consisting of both analytical 

framework and reconciling discrete counterpart. It is followed by sensitivity analysis uncovering 

several managerial insights. We propose a managerial guideline in succeeding section concerning 

the choice between flexible versus fixed design. Then, in order to exhibit the key components of 

our framework, we solve a numerical example based on a real replenishment oiler. We discuss 
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possible generalizations of some assumptions that we make in the following section of numerical 

example. At the end, we conclude the chapter by summarizing the key results. 

Literature Review 

This study contributes to various streams of literature, some of which are reviewed below: 

Evaluation of jumboization has been conducted for public sector ships in recent years and there is 

still a growing number of research in this area. For instance, Bačkalov et al. (2014) study the 

economic feasibility of lengthening of inland vessels in Europe by focusing on two particular 

reference ships. It is proven that lengthening of larger ships is more attractive than smaller vessels 

because payback periods are shown to be relatively shorter for larger ships. Ericson and Lake 

(2014) determine a payback period by considering investment cost and additional income resulting 

from increased cargo capacity of an example ship. They reveal that lengthening brings about a 

reduction in required propelling power per cargo ton at a constant speed. Buxton and Stephenson 

(2001) conduct simulation analysis to evaluate different design strategies for a container ship. 

Flexible design is proven the most preferable in terms of net present values of the design strategies. 

Another simulation study is conducted by Knight and Singer (2012) to determine the value of 

jumboization in a container ship by modeling the freight rate as the underlying stochastic 

parameter. 

On the other hand, to the best of our knowledge, we have not seen any study evaluating the 

jumboization operations for U.S. Navy ships. Yet there are some researches highlighting real 

option applications to evaluate modularity concept for U.S. Navy ships. Gregor (2003) assesses 

flexibilities in naval ship design and procurement. The way of utilizing real options approach is 

demonstrated in a case study, which emphasizes other characteristics of modular design for the 

ships rather than jumboization. Page (2012) presents a case study based on a destroyer type ship 

and discusses the results regarding the financial benefits of modularity. Knight (2014) develops a 
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novel approach comprising of real options approach, utility theory and game theory in order to 

evaluate the design flexibilities in naval ship design. Case studies focusing on other aspects of 

modularity rather than jumboization of ships are solved to demonstrate how the proposed approach 

is conducted. 

In the next section, we present our modeling assumptions and analytical framework to 

evaluate the jumboization option on replenishment oilers. 

Mathematical Model 

The U.S. Navy possesses several replenishment oilers, which serve in different regions of 

seas and oceans. We therefore make simplifying assumptions to build the most fundamental model 

and facilitate the derivation of managerial insights. Our model is based on the following scenario 

and assumptions: Suppose the decision maker wants to purchase a new replenishment oiler. He/she 

is requested to choose between two design alternatives; fixed design or flexible design. 

Assumption 1: Demand for fuel (tons at a time, e.g. half a month as a unit time interval) by 

the ships in need of fuel replenishment (in literature, these ships are generally called the receiving 

ships or the customer ships. We will henceforth use the term ‘the receiving ships’ to point those 

ships) follows GBM process, which is mathematically stated as: 

 𝑑𝐷$ = 𝛼𝐷$𝑑𝑡 + 𝜎𝐷$𝑑𝑧 (3.1) 

where 𝑑𝑧 is a Brownian increment; i.e., 𝑑𝑧 = 𝜖 𝑑𝑡, 𝜖 ∼ 𝑁(0,1). In this case, 𝐸 𝑑𝑧 = 0 and 

𝑉𝑎𝑟 𝑑𝑧 = 𝑑𝑡. 

𝛼 (%/unit time) and 𝜎 (%/unit time) are defined as growth and volatility parameters of 

demand evolution. Note that the receiving ships call for fuel replenishment in each unit time, which 

can be set as a couple of days or a couple of years. 
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Demand, 𝐷$, is monitored by the decision maker to determine the jumboization investment. 

It is in line with the real practices followed by the U.S. Navy. In other words, if one examines the 

real examples of jumboization in U.S. Navy history, he/she observes that demand for fuel by the 

receiving ships has been an influential factor to decide on jumboizing the replenishment oilers. 

GBM part of this assumption needs statistical validation. Unfortunately, we lack data 

showing the demand amount transported by a particular replenishment oiler. Instead, we encounter 

annually published U.S. Navy reports (Shannon 2014 and other similar reports published in 

previous years) depicting the total amount of fuel transported by all replenishment oilers in a year. 

Therefore, we conduct statistical tests on this data set (see Appendix 3.A) by assuming that it is 

representative of data set of fuel amount transported by a single replenishment oiler. These tests 

reveal that GBM assumption is valid. 

There exist several studies in the literature assuming demand as uncertain parameter 

following GBM process. For instance, demand as number of passengers per year and per month 

are used by Pereira et al. (2006) and Marathe and Ryan (2005), respectively, in airline context. 

Assumption 2: We consider only one replenishment oiler to evaluate the jumboization 

operation conducted on it. 

The U.S. Navy has currently six fleets serving at the world seas. The complete list of these 

fleets can be given as follows (see, e.g., Wikipedia 2018a): 3rd fleet serves in eastern and northern 

Pacific Ocean; 4th fleet serves in Central and South America; 5th fleet serves in Persian Gulf, Red 

Sea and Arabian sea; 6th fleet serves in Europe and Africa; 7th fleet serves in western Pacific Ocean. 

Finally, 10th fleet serves as a leading role in cyber warfare program of the U.S. Navy, which does 

not have a specific location (Wikipedia 2018c). 
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Each fleet can be thought as an individual unit as they are separate and they have different 

missions and commanders. To the best of our knowledge, each replenishment oiler has been 

assigned to a specific fleet to transport the fuel and other supporting items to the ships in the fleet. 

Due to this separated property of the U.S. Navy, we focus on one of the fleets. Moreover, one can 

see that fleet regions can be separated into sub-regions with respect to port locations. Therefore, it 

is possible to take into account only one of these sub-regions and it can be assumed that only one 

replenishment oiler departs from a specified port. In this case, the problem turns into a smaller 

problem, which focus on only one replenishment oiler. Another supporting fact is that the reports 

published by The U.S. Navy’s Military Sealift Command do not reveal any real example of the 

situation that multiple replenishment oilers depart from a location and replenish the receiving ships 

at the same time (Shannon 2014 and other reports published by Military Sealift Command in 

different years). It implies that replenishment oilers operate individually at seas. 

In line with this assumption, Blackman (2012) creates a sub-region around Monterey port 

of California to run his model and he assumes that only one replenishment oiler departs from the 

port. Furthermore, there exist several studies in ship scheduling literature, which take into account 

only one ship. For instance, Besbes and Savin (2009) deal with single-vessel (belongs to either 

liner or tamper type) profit maximization problem under fuel cost uncertainty. Kim et al. (2012) 

minimize overall cost of a single ship related to bunkering decisions. 

Besides the replenishment oiler, our framework allows to consider multiple receiving ships 

under the condition that they are approximately at the same location while being replenished. 

Historical data of replenishment locations (Blackman 2012) supports that multiple receiving ships 

can be replenished within a very small region at sea. For instance, the receiving ships around 

Monterey port of California were replenished more than 100 times within 50 square miles over a 
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couple of weeks. Moreover, it is a fact that a replenishment oiler can often replenish two receiving 

ships simultaneously (see, e.g., Marconi 2012). 

Assumption 3: The port of the replenishment oiler and the location of the receiving ships 

do not change. In other words, the replenishment oiler makes round trip between two specified 

locations. The distance between the port and the location is denoted by 𝑋 in nautical miles (1 

nautical mile is equal to 1852 m). 

Note that the replenishment oiler travels in distance 𝑋 twice, while transporting the fuel to 

the receiving ships and returning to its port. 

As stated in the explanation of Assumption 2, it is a fact that replenishment of the receiving 

ships can happen within a very small area. Taking into account this fact, Blackman (2012) 

simulates and predicts future replenishment locations in eastern and northern Pacific. His 

simulation results show that replenishment locations change by less than 20 nautical miles. 

There exist several studies, which make a similar assumption in ship scheduling literature. 

For instance, Boros et al. (2008) take into account two shipping companies with different 

objectives as sides of a supply chain contract. The authors determine optimal cycle time of the 

vessels by assuming that the vessels operate between two specified ports. Another study conducted 

by Chen et al. (2007) show the solvability of special cases of bi-directional vessel routing as a 

linear program. They assume that ships operate between two specified locations (see also Lei et 

al. 2008; Koenigsberg and Lam 1976). 

Assumption 4: The replenishment oiler moves at a constant speed, denoted by 𝑆 in knots 

(1 knot is equal to 0.514 m/sn), in each round trip. It means that it moves with a fixed speed in 

transporting the fuel to the receiving ships and in returning to the port and this speed remains 

constant in the next round trips. 
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This assumption can be justified in two different aspects. First, the speed change of the 

replenishment oiler may have a dynamic aspect in one-way trip, but we simplify it by saying that 

there exists an average speed, calculated over one-way trip. Accepting average speed rather than 

dealing with dynamic nature of speed is a common trend in the literature. For instance, Raff (1983) 

says that travel distances divided by an average speed gives acceptable travel times for private 

sector ship transportation. Aydin et al. (2017) assume in their model that the speed of a ship does 

not change in a trip from one port to the next port and it is called as average speed (see also Ball 

et al. 1983; Besbes and Savin 2009; Kim et al. 2012). 

Second, our assumption implies that average speed remains constant through multiple 

round trips. This can be rationalized as follows: By Assumption 3, travel distances of the 

replenishment oiler do not change over the time horizon and by Assumption 1, we state calls for 

demand occur in each equal time periods. Furthermore, in reality, the engines of the replenishment 

oilers are installed with a maximum capacity to be able to carry maximum loads of the ships. 

Therefore, no matter how much load it carries, the replenishment oiler is able to keep the constant 

speed. Since it travels the same distance multiple times throughout the modeling horizon, the 

decision maker can choose an appropriate speed for their operational purposes. In line with this 

justification, Ronen (2011) is able to derive the optimal average speed for a fixed fleet by taking 

into account weekly demand occurrences in the ports, which facilitates the derivation procedure. 

Moreover, Fagerholt (1999) determines optimal fleet size and optimal route for each selected ship 

to transport cargos from a central depot to multiple off-shore locations. Main assumption of his 

study is that all the ships selected have a common speed and it does not change over time, which 

is claimed to be a case in many of the practical problems. He also emphasizes that the model does 



 

	

88 

not deal with temporal aspect of the problem as the model does not try to schedule all the ships by 

considering time windows (see also Hemmati et al. 2014 and Christiansen et al. 2007). 

Besides the above explanation, we note that dynamic aspect of speed change may not be 

incorporated into our mathematical model as it is not obvious to observe how the speed changes 

by time (e.g. undefined mathematical formulation). 

Note that (1852𝑋 0.514𝑆) 3600 ≈ 𝑋 𝑆 gives the number of hours needed for the 

replenishment oiler to transport the fuel to the receiving ships. Therefore, unit time duration should 

be larger than or equal to 2𝑋 𝑆. If it is strictly larger than 2𝑋 𝑆, it shows that the replenishment 

oiler completes its task and it stays at the port without functioning until another call for 

replenishment. 

For further discussions about Assumptions 3 and 4, interested readers can see our 

Discussion section. 

Assumption 5: Jumboization is the only option to be considered. Other managerial options 

such as mothballing, incremental increase of capacity, abandoning and purchasing of the 

replenishment oiler are not considered in this chapter. 

This assumption can be relaxed in a couple of ways. First, decommissioning of the 

replenishment oiler can be taken into consideration along with jumboization option, although we 

do not know in advance if such a model can be solvable in closed form. On the other hand, several 

numerical techniques proposed in the literature can be used to derive solutions. Second, purchasing 

of the replenishment oiler and its time might be turned into a managerial decision unlike its 

compulsory situation in this chapter. However, we do not consider these relaxations in this chapter 

because our primary focus is jumboization option and its expected time. 
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Assumption 6: The replenishment oiler is non-depreciating and thus, jumboization is an 

infinitely lived option. 

Although this assumption seems to be impractical, we require it because analytical 

framework results in closed-form solutions only if this assumption is made (Dixit and Pindyck 

1994). In this chapter, we present a discrete counterpart model of our framework to verify and 

validate our closed-form solutions. 

Assumption 7: Let 𝐼Â\Ã§ and 𝐼Â-§ÃÄ be the costs incurred during jumboization operations for 

flexible and fixed designs, respectively. It is assumed that 𝐼Â\Ã§ < 𝐼Â-§ÃÄ. 

This is intuitively true because the decision maker pays less for jumboization due to the 

fact that flexible design is already prepared for jumboization. Otherwise, flexible design would not 

have any competitive advantage, if we especially consider an additional upfront cost, which is 

incurred at the initial stage of ship building to have flexible design.  

Upfront cost for flexible design can arise from stronger hull structure by more advanced 

scantlings and this cost is denoted as 𝐼Å in this study. Buxton and Stephenson (2001) state that the 

hull of jumboized ship needs to have additional strengthening because it is subject to higher 

bending moments and shear forces. Bending moment is defined as the amount of bending applied 

to the hull by the external forces, measured in ton-meters (see, e.g., Bulk Carrier Guide 2010). It 

is basically caused by two different forces; weight on the hull (acting downwards) and buoyancy 

(acting upwards). If the weight distribution is higher than buoyancy in the mid-section of the hull, 

bending moment is called sagging. On the other hand, if the weight distribution is higher than 

buoyancy in the stern (backward part of the hull) and bow (forward part of the hull) sections, it is 

named as hogging. Besides weight and buoyancy, forces caused by waves can also result in 

bending moments (see, e.g., Marine Survey Practice 2013). As for shear force (measured in tons), 
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it is defined as the force applied at any point of the length of the ship, which tends to move one 

part of the hull to adjacent position vertically (see, e.g., Marine Survey Practice 2013). In other 

words, it is the tendency of breaking apart of the hull. It is basically caused by uneven load 

distribution and unbalanced vertical forces. Literature of ship design suggests to use higher 

strength steels to reduce bending moments and shear forces. If the decision maker decides using 

higher strength steels at initial design by paying upfront cost 𝐼Å, the effect of higher bending 

moments and shear forces, resulted from jumboization, can be balanced. 

In the subsequent subsections, we first introduce the benefit gained through jumboization, 

which serves as the objective maximized in our model. We then present the way of determining 

the value of jumboization option as well as its expected time by means of an analytical framework 

and a discrete model. 

Fuel Cost Saving Gained Through Jumboization 

In addition to capacity increase for cargo, the literature of mechanical design of the ships 

reveals that lengthening of a ship generally decreases the wave-making resistance of the ship (see, 

e.g., ABS 2017). Since resistance against the ship is directly proportional to fuel consumption 

amount (Ericson and Lake 2014), we state that jumboization generally leads to fuel cost saving. 

Note that we have addressed two different fuel types so far. Demand refers to cargo fuel, which is 

transported by the replenishment oiler to the receiving ships. Bunker fuel refers to the fuel, which 

is consumed to propel the replenishment oiler. To better reflect this difference, we use tons as the 

unit of cargo fuel and gallon as the unit of bunker fuel. 

Sen and Yang (1998) indicate that power (required to propel the replenishment oiler) and 

fuel consumption is proportional. In literature, there are several expressions for power, which 

approximate the real power required by a ship. In this study, we present the most elaborative and 

the most precise approximation. Table 3.1 shows notations and corresponding definitions of basic 
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design parameters of a ship. Other parameters used throughout the study and their definitions are 

given in the text. 

Table 3.1 Notations associated with ship design and their definitions 

Notations Definition Explanation 
ℒ Light ship 

mass 
Mass of the ship’s hull and other permanent items in the ship (tons) 

∆ Displacement Light ship mass plus the maximum amount of cargo that the ship 
can carry (tons). It means displacement refers to maximum tons that 
the ship can carry (see, e.g., Archives 2018). 

𝑃 Power The maximum power required to propel the replenishment oiler 
(kW) 

𝐿 Length Length of the replenishment oiler (m) 
ℬ Breadth Width of the replenishment oiler (m) 
𝔻 Draft Vertical distance between the waterline and the bottom of the hull 

(m) 
𝒟 Depth Vertical distance between the top and the bottom of the hull (m) 

 

One prominent approach to approximate the required power is called Admiralty method, 

which is an equation including Admiralty coefficient (Schneekluth and Bertram 1998). Admiralty 

coefficient is a constant for similar ships (Similar ships are those that have similar design 

parameters such as speed, length and mass). It is estimated for a newly designed ship by analyzing 

the parent ships’ data, which have very similar properties in aspects mentioned above. Admiralty 

coefficient gives the approximate relations between the ship’s speed, displacement and required 

power and this relation is stated as 

 
𝑃 =

∆T/�𝑆�

𝒜  (3.2) 

where 𝒜 is Admiralty coefficient (see, e.g., Man 2011). For example, higher 𝒜 means less power 

is required for a newly designed ship. Equation (3.2) derives from Bernoulli law and resistance 

against the ship (for derivation details, see Appendix 3.B). Schneekluth and Bertram (1998) give 
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𝒜 with a unit of ton2/3knot3/kW. Note that power expressed in Equation (3.2) represents the 

maximum power (it is often called installed power) required to propel the ship because 𝛥, by 

definition, is the maximum tons that a replenishment oiler can carry. 

Significant studies have been conducted so far to find more precise variants of Equation 

(3.2). Sen and Yang (1998) accomplish by defining a relation between 𝒜 and Froude number, 

denoted by 𝔽. Froude number is an important figure used to calculate the wave-making resistance 

of a partially submerged body. It is given as 

 𝔽 =
0.514𝑆
𝑔𝐿

 (3.3) 

where 𝑔 is gravitational constant (m/sn2). Higher Froude number means that the partially 

submerged object has higher wave-making resistance. It is discovered by Sen and Yang (1998) 

that the relation between 𝒜 and 𝔽 is linear. Thus, they write that 

 𝒜 = 𝑚 + 𝑛
0.514𝑆
𝑔𝐿

 (3.4) 

where 𝑚 > 0 and 𝑛 < 0 are coefficients. When Equation (3.4) is plugged into Equation (3.2), it 

gives 

 
𝑃 =

∆T/�𝑆�

𝑚 + 𝑛 0.514𝑆
𝑔𝐿

 (3.5) 

under the constraints 𝐿 ℬ ≥ 6, 𝐿 𝒟 ≤ 15 and 𝐿 𝔻 ≤ 19. These constraints stem from the 

mechanical principles. For instance, increasing the length causes higher chances to roll down. In 

addition to mechanical constraints, the topological barriers of routes require the ships not to excess 
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some levels in these dimensions. For instance, in the case of Panama Canal, the ships must have 

length less than 289 meters. In Canal St. Lorenz, this constraint turns out to be much tighter and 

the length should have less than 222 meters (Papanikolaou 2014). 

Equation (3.5) captures many of the realities. For example, at constant displacement, if 

length increases, the maximum power to propel the ship decreases. It supports the fact that longer 

hull creates less resistance and leads to less power requirement. 

Sen and Yang (1998) give the expressions for 𝑚 and 𝑛, as well. Their analysis results in 

 𝑚 = 4977𝐵T − 8105𝐵 + 4456 (3.6) 

 𝑛 = −10847𝐵T + 12817𝐵 − 6960 (3.7) 

where 𝐵 is block coefficient, which can be defined as follows: Imagine that a rectangular prism is 

built around the submerged part of the ship. The proportion of the real volume of this part to the 

volume of rectangular prism is defined as block coefficient (see, e.g., Man 2011). Block coefficient 

is said to increase as a result of jumboization (Ericson and Lake 2014).  

Sen and Yang (1998) state that the maximum daily consumption of bunker fuel is a linear 

function of 𝑃, i.e., 0.0046𝑃 + 0.2. Thus, the maximum amount of bunker fuel consumption in a 

one-way voyage can be written as 0.0046𝑃 + 0.2 24 𝑋 𝑆 . We note that the result of this 

calculation is fuel consumption in tons (see, e.g., Sen and Yang 1998). Therefore, there needs to 

be a conversion from tons to gallon by using density value of bunker fuel. In mathematical 

framework, we omit this conversion, but we show it in the numerical example. 

Amount of bunker fuel consumed per unit displacement (gallon/ton) in one-way voyage is 

written as 
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ℱ =

0.0046𝑃 + 0.2 𝑋
24𝑆𝛥  (3.8) 

Since 𝛥 includes both ℒ and 𝐷 (note that we drop the subscript 𝑡 from 𝐷$ because it is 

irrelevant in this discussion), separation of round trip voyages of the replenishment oiler turns out 

to be important. While it carries ℒ and 𝐷 to the receiving ships in one direction, it carries only ℒ 

while returning to the port. Hence, the fuel cost ($/unit time) is given as 

 ℱ𝐶 ℒ + 𝐷 + ℱ𝐶ℒ (3.9) 

where 𝐶 is cost of unit bunker fuel ($/gallon). Since jumboization changes Δ, ℒ, 𝐿 and 𝐵; ℱ and ℒ 

expressions in Equation (3.9) vary from pre-jumboization case to post-jumboization case. Let ℱ) 

and ℱT	have the same definitions as ℱ, but denote pre-jumboization and post-jumboization cases, 

respectively (Make the same definitions for ℒ as well). Note that since ℱ is a function of Δ, 𝐿 and 

𝐵, these parameters have also subscripts 1 and 2 to denote pre-jumboization and post jumboization 

cases, respectively. Therefore, fuel saving per unit time due to jumboization can be expressed as 

 ℱ)𝐶 ℒ) + 𝐷 − ℱT𝐶 ℒT + 𝐷 + ℱ)𝐶ℒ) − ℱT𝐶ℒT  (3.10) 

which is simplified as 

 2 ℱ)ℒ) − ℱTℒT 𝐶 + (ℱ) − ℱT)𝐶𝐷 (3.11) 

Note that the first part of expression (3.11) might be negative. On the other hand, ℱ) − ℱT 

should be positive so that whole expression can be positive for some large 𝐷. It emphasizes that 

there is a level for 𝐷, above which the expression is positive and jumboization is effective in 

bringing about the fuel cost saving. 
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Option Valuation for Jumboization in Analytical Framework 

Since jumboization is an option for the decision maker, it is exercised when financial 

benefits from jumboization start being justified. Hence, this problem can be treated as optimal 

stopping problem. In other words, there exists a 𝐷∗ (threshold demand level), above which the 

decision maker decides on jumboization and below which, he/she does not prefer jumboization. 

When the replenishment oiler is jumboized, the decision maker starts gaining all future fuel savings 

right after the jumboization. Assuming that jumboization is done at the level of 𝐷§ (note that 𝑥 

does not denote time, instead 𝐷§ is just a notation used to denote demand level at which 

jumboization is done), the value of project (project in this context is the jumboized replenishment 

oiler) is expressed as 

 
𝑉 𝐷§ = 𝐸 2 ℱ)ℒ) − ℱTℒT 𝐶 + ℱ) − ℱT 𝐶𝐷$ 𝑒QÎ$𝑑𝑡

Ï

Å
 (3.12) 

where 𝜌 (%/unit time) is risk-adjusted discount rate and it is exogenously specified. Note that 

lower bound of integral is accepted as 0, and it corresponds the demand level denoted by 𝐷§. It is 

assumed in real options context that 𝜌 > 𝛼 because otherwise, waiting longer for the investment 

always becomes better policy (Dixit and Pindyck 1994). Equation (3.12) can be simplified as 

 
𝑉 𝐷§ =

2 ℱ)ℒ) − ℱTℒT 𝐶
𝜌 + ℱ) − ℱT 𝐶𝐸 𝐷$𝑒QÎ$𝑑𝑡

Ï

Å
 (3.13) 

In order to calculate the integration in Equation (3.13), we need to change the order of 

integration and expectation. Some conditions should hold so as to change the order according to 

Fubini’s theorem (Klebaner 2005). Interested readers can review Appendices 3.C and 3.D to figure 
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out what the theorem is and how it works in our case. As a result, changing order of integration 

and expectation is viable and the solution is derived as 

 
𝑉 𝐷§ =

2 ℱ)ℒ) − ℱTℒT 𝐶
𝜌 +

ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝐷§ (3.14) 

Equation (3.14) can be interpreted as annual perpetuity. Since 2 ℱ)ℒ) − ℱTℒT 𝐶 does not 

grow by time, it is discounted with 𝜌. On the other hand, (ℱ) − ℱT)𝐶𝐷 in expression (3.11) grows 

with the rate of 𝛼 and discounted with the rate of 𝜌. Therefore, the net discount rate turns out to 

be 𝜌 − 𝛼 (Dixit and Pindyck 1994). 

The value of the option to jumboize the replenishment oiler, denoted by 𝐹 (note that ℱ is 

amount of bunker fuel consumed per unit displacement in one-way voyage, 𝐹 denotes the value of 

option to jumboize, and 𝔽 is Froude number), has a value. It evolves as 

 𝜌𝐹𝑑𝑡 = 𝐸[𝑑𝐹] (3.15) 

which means that the option gains capital appreciation before jumboization. It does not have a term 

related to fuel saving because fuel saving appears after jumboization. Since 𝐹 is a function of 𝐷, 

one can derive the explicit form of 𝑑𝐹 by applying Ito’s lemma. That is, 

 𝑑𝐹 = 𝛼𝐷𝐹Ò +
1
2𝜎

T𝐷T𝐹′′ 𝑑𝑡 + 𝜎𝐷𝐹′𝑑𝑧 (3.16) 

and 

 𝐸 𝑑𝐹 = 𝛼𝐷𝐹Ò +
1
2𝜎

T𝐷T𝐹′′ 𝑑𝑡 (3.17) 
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If Equation (3.17) is plugged into Equation (3.15) and 𝑑𝑡 terms cancel each other, one 

obtains 

 1
2𝜎

T𝐷T𝐹ÒÒ + 𝛼𝐷𝐹Ò − 𝜌𝐹 = 0 (3.18) 

Second-order homogenous differential equation has a general solution of 𝐹 𝐷 = 𝐴𝐷Ô. It 

can be written as a precise expression as 𝐹 𝐷 = 𝐴)𝐷Ô« + 𝐴T𝐷Ô¬ where 𝛽) > 1 and  𝛽T < 0 (see 

Appendix 3.E). In order to solve this equation, we need boundary conditions. One boundary 

condition is lim
E→Å

𝐹 𝐷 = 0. It is intuitively true because when demand level approaches to 0, the 

option to jumboize the replenishment oiler becomes ineffective. It results in 𝐹 𝐷 = 𝐴)𝐷Ô«. Other 

boundary conditions can be written for threshold demand value. At 𝐷∗, one can write that 

 𝐹 𝐷∗ = 𝑉(𝐷∗) − 𝐼 (3.19) 

 𝐹′ 𝐷∗ = 𝑉′(𝐷∗) (3.20) 

where 𝐼 (can be either 𝐼Â-§ÃÄ or 𝐼Â\Ã§) is the investment cost incurred during jumboization 

operations. Equation (3.19) is called as value-matching condition and it means that the decision 

maker gets benefits from jumboization via fuel saving in exchange of jumboization cost. Equation 

(3.20) is called smooth-pasting condition and it guarantees optimality at 𝐷∗. With these conditions, 

𝐷∗ and 𝐹(𝐷) can be obtained as (see Appendix 3.F) 

 
𝐷∗ = 𝐼 −

2 ℱ)ℒ) − ℱTℒT 𝐶
𝜌

𝛽)(𝜌 − 𝛼)
(𝛽) − 1)(ℱ) − ℱT)𝐶

 (3.21) 

 
𝐹 𝐷 =

ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝛽)

𝐷
Ô«

𝐼 −
2 ℱ)ℒ) − ℱTℒT 𝐶

𝜌
1

𝛽) − 1

)QÔ«

 (3.22) 
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It is noted that 𝐼 − T ℱ«ℒ«Qℱ¬ℒ¬ Ö
Î

> 0 should hold for obtaining 𝐷∗ > 0. As will be seen in 

numerical example, design parameter values of a real replenishment oiler satisfy ℱ)ℒ) − ℱTℒT <

0, which does not cause any problem in this respect. However, if numerical values cause ℱ)ℒ) −

ℱTℒT > 0 and if this results in 𝐷∗ < 0, we need to enforce 𝐼 − T ℱ«ℒ«Qℱ¬ℒ¬ Ö
Î

> 0 by adjusting 

numerical values. 

Given that 𝐷∗ has the form in Equation (3.21), expected time for demand process to pass 

from an arbitrary 𝐷Å (demand value at time 0) to 𝐷∗ (under the condition that 𝐷Å < 𝐷∗ because 𝐷 

has positive drift) is given by 

 𝜏 =
ln𝐷∗ − ln𝐷Å
𝛼 − 𝜎T/2  (3.23) 

Note that we need to assume 𝛼 − 𝜎T 2 > 0 for 𝜏 to be positive (see, e.g., Min et al. 2012). 

Discrete Counterpart of Continuous Model 

Closed-form solution of 𝐷∗ emerges as a result of Assumption 6, which states that option 

life for jumboization and service life of the replenishment oiler are infinite. A question might arise 

as to how reliable this solution is because the model with Assumption 6 deviates from reality. In 

this respect, we think that it might be beneficial and illuminating to create a discrete model in order 

to show that the solution resulting from the discrete model is close enough to the solution resulting 

from the analytical model. 

Discretization of uncertain parameter 

Several discrete approaches have been proposed so far to solve the real options problem. 

The binomial lattice approach, which is firstly developed by Cox et al. (1979), has become one of 

the prominent methods in this area. The basic idea of the binomial lattice is to approximate GBM 
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process with up and down movements with corresponding probabilities. It is proven that if up 

movement factor (𝑢), down movement factor (𝑑) and the movement probabilities are chosen as in 

Equations (3.24) - (3.26) (𝑝 for up movement and 1 − 𝑝 for down movement), the binomial lattice 

approximates GBM process well: 

 𝑢 = 𝑒O Ø$ (3.24) 

 𝑑 = 𝑒QO Ø$ (3.25) 

 
𝑝 =

1
2 +

1
2
𝛼 − 𝜎T/2

𝜎 𝛥𝑡 (3.26) 

To clarify, 𝐷Å can take two values at the next time point; either 𝑢𝐷Å with probability 𝑝 or 

𝑑𝐷Å with probability 1 − 𝑝. Note that this lattice is called recombining lattice because after two 

time points, 𝐷Å appears again as 𝑢 ∙ 𝑑 = 1. In demand lattice, we denote demand values with two 

subscripts; 𝑡 for time points and 𝑘 for states. 𝐷($,y) denotes demand value at time point 𝑡 and state 

𝑘. Time point 𝑡 represents the end of time period 𝑡 and state is just numbering of the nodes of the 

lattice starting from 1 at the uppermost node and incrementing by 1 through the bottommost node 

of the lattice for each 𝑡. Note that in Equations (3.24) - (3.26), 𝛥𝑡 denotes the length of one time 

period (as a fraction or a multiple of the length of unit time, which is specified in analytical 

framework) in the binomial lattice. 𝛥𝑡 can vary from a few days to several years. Note also that 

since the unit of 𝜎 is %/unit time, 𝛥𝑡 is equal to 1 if the length of 𝛥𝑡 is set equal to length of unit 

time. 

Real options evaluation requires to have risk-neutral probabilities of up and down 

movements instead of 𝑝 given in Equation (3.26). Risk-neutral probability of up movement is 

given as 
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 𝑞 =
1 + 𝑟𝛥𝑡 − 𝑑

𝑢 − 𝑑  (3.27) 

with the condition that 𝑑 < 1 + 𝑟𝛥𝑡 < 𝑢. Note that 𝑟 (%/unit time) is the risk-free interest rate (it 

is generally stated that 𝜌 − 𝑟 > 0 should hold because risk-adjusted discount rate involves a 

positive risk premium) and we multiply it with 𝛥𝑡 to find the accurate interest rate in 𝛥𝑡. 

Option valuation for jumboization in discrete model 

There are three steps in option valuation for jumboization. The first step, as already 

described above, is the creation of evolution of demand process. Having set a terminating time 

point, denoted as 𝑇 (years or a fraction of one year) and set 𝛥𝑡, number of time periods (found by 

𝑇 𝛥𝑡) and corresponding labeling of time points (starting from 0, which denotes the current time, 

and goes through 𝑇Ø$ = 𝑇 𝛥𝑡, which denotes the last time point) are determined. For instance, if 

𝑇 = 10 years and 𝛥𝑡 = 0.5 years are chosen, the number of periods turns out to be 20 and time 

points start from 0 and goes through 20. In this case, 𝐷()Ù,)) represents the demand value at time 

point 17 (at the end of 8.5 years) and state 1, which is the highest demand value for 𝑡 = 17 on this 

lattice. 

The second step is the creation of the lattice, which represents the evolution of the value of 

the replenishment oiler in the case that it has already been jumboized at time 0. In other words, 

fuel saving benefit is in place for each node of the lattice. Valuation proceeds in a backward 

manner. That is, values should be assigned first for all the nodes at time point 𝑇Ø$. At the end of 

modeling horizon, we assume that there is neither cost, nor a salvage value in order to keep 

consistency with the analytical model. Therefore, value 0 is assigned for all the nodes at time point 

𝑇Ø$. In mathematical terms, we denote it as 𝒱(�Ú�,y) = 0, ∀𝑘 ∈ 1, 𝑇Ø$ + 1  where 𝒱 $,y  denotes the 

value of the replenishment oiler at time point 𝑡 and state 𝑘 in the case that jumboization is in place. 
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Having assigned 𝒱(�Ú�,y) = 0, we go one time point back and determine the value for all the nodes 

at time point 𝑇Ø$ − 1. For all 𝑘, we calculate 

 
𝒱 �Ú�Q),y =

2 ℱ)ℒ) − ℱTℒT 𝐶 + ℱ) − ℱT 𝐶𝐷 �Ú�Q),y

1 + 𝑟𝛥𝑡  (3.28) 

We assume that all cash flow occurs at the end of 𝛥𝑡 in accordance with the traditional 

approach in engineering economist. Since node values at time point 𝑇Ø$ are all 0, we do not include 

risk-neutral expected value of the subsequent nodes in Equation (3.28). For an arbitrary 𝑡 < 𝑇Ø$ −

1, we make the same calculation as Equation (3.28) except we also include risk-neutral expected 

value of the subsequent nodes. In other words, 

 
𝒱 $,y =

2 ℱ)ℒ) − ℱTℒT 𝐶 + ℱ) − ℱT 𝐶𝐷 $,y

1 + 𝑟𝛥𝑡 +
𝒱 $d),y 𝑞 + 𝒱 $d),yd) 1 − 𝑞

1 + 𝑟𝛥𝑡  (3.29) 

The third step is to create a lattice, which shows the evolution of value of the replenishment 

oiler with jumboization option. In this lattice, the decision maker chooses either jumboizing the 

replenishment oiler or continuing with the non-jumboized situation. We start the procedure by 

assigning value 0 for all the nodes at time point 𝑇Ø$. Since this is the expiration date of jumboization 

option and the end of service life of the replenishment oiler, the decision maker does not choose 

making investment because there is not any future benefit. Mathematically, it is stated as 𝒱(�Ú�,y) =

0, ∀𝑘 ∈ 1, 𝑇Ø$ + 1  where 𝒱 $,y  denotes the value of the replenishment oiler at time point 𝑡 and 

state 𝑘 with jumboization option. For the time point 𝑇Ø$ − 1, 

 𝒱 �Ú�Q),y = max 𝒱 �Ú�Q),y − 𝐼; 0  (3.30) 
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Note that if 𝒱 �Ú�Q),y − 𝐼 > 0, then the decision maker invests. Otherwise, the 

replenishment oiler continues being in service without jumboization. The first part of the 

maximization of Equation (3.30) is interpreted as the immediate benefit from jumboization. The 

second part of it is called the continuation value and it is zero for 𝑇Ø$ − 1 because subsequent 

nodes at time 𝑇Ø$ have all value 0. For the time points 𝑡 < 𝑇Ø$ − 1, we calculate 

 
𝒱 $,y = max 𝒱 $,y − 𝐼;

𝒱 $d),y 𝑞 + 𝒱 $d),yd) 1 − 𝑞
1 + 𝑟𝛥𝑡  (3.31) 

and determine if the decision maker invests. The continuation value is now expressed as the risk-

neutral expected value of the subsequent nodes and discounted one period back. 

Determining threshold demand values in discrete model 

Our purpose in creating discrete model is to compare 𝐷∗ value of analytical model with 

𝐷∗(𝑡) values of the binomial model. Note that there is not a single 𝐷∗ value in the binomial model; 

instead, it changes by time. The reason is that the decision maker jumboizes the replenishment 

oiler at higher values of demand when the time approaches to the end of service life of the 

replenishment oiler. Therefore, it indicates that 𝐷∗(𝑡) is an increasing curve. The following list 

elaborates the way of calculating 𝐷∗(𝑡) (Ashuri et al. 2011): 

(i) Let 𝑡 = 0. Since threshold demand level is the level at which the decision maker is 

indifferent between making the investment or continuing with non-investment situation, we seek 

for 

 
𝒱 Å,) − 𝐼 ≅

𝒱 ),) 𝑞 + 𝒱 ),T 1 − 𝑞
1 + 𝑟𝛥𝑡  (3.32) 
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where left-hand side is the immediate benefit from the investment and right-hand size is the 

continuation value. To clarify, we solve the lattice model with three steps defined previously by 

changing 𝐷Å until we observe Equation (3.32) holds. 𝐷Å which satisfies the approximate equality 

stated in Equation (3.32) is determined as 𝐷∗(0). As an initial guess, 𝐷Å value, which is used for 

evaluation of jumboization option in the preceding section can be adopted again. If left-hand side 

of Equation (3.32) is larger than the right-hand side, then it is an indication for 𝐷∗ 0 < 𝐷Å. In this 

case, we decrease 𝐷Å and solve three steps again. If right-hand side of Equation (3.32) is larger 

than the left-hand side, then 𝐷∗ 0 > 𝐷Å. Thus, we increase 𝐷Å and solve three steps. 

(ii) Increment 𝑡 by 1 and create a partial demand lattice with one initial node at time point 

𝑡 and remaining nodes through time point 𝑇Ø$. Having created demand lattice, we repeat the above 

procedure defined in (i) and find 𝐷∗ 𝑡 . After finding 𝐷∗ 𝑡  for 𝑡, we increment again 𝑡 by 1 and 

repeat this procedure. We terminate it once we find 𝐷∗ 𝑇Ø$ − 1 . 

In the following section, we present the results of sensitivity analysis conducted on 𝐷∗, 

with respect to relevant parameters, to derive significant policy insights for the decision maker. 

Sensitivity Analysis and Managerial Insights 

The following propositions list the results of analysis by taking into account the most 

significant parameters: 

Proposition 1: ÞE
∗

Þℒ«
< 0	and	 ÞE

∗

Þℒ¬
> 0 

It is straightforward to see these results from Equation (3.21). If ℒ) is larger, 𝐷∗ decreases 

because the decision maker tends to gain more fuel saving and jumboizes the replenishment oiler 

earlier because of the fact that larger mass leads to more fuel cost. On the other hand, if ℒT is 

larger, then the decision maker waits for higher demand values to jumboize because larger mass 

after jumboization has less impact on fuel saving. 
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Proposition 2: ÞE
∗

Þß«
> 0	and	 ÞE

∗

Þß¬
< 0 

Since 𝐷∗ depends on 𝐿) and 𝐿T via ℱ) and ℱT, respectively; we reach the conclusion with 

chain rule. It can be obtained that ÞE
∗

Þℱ«
< 0, ÞE

∗

Þℱ¬
> 0, Þℱ«

Þß«
< 0 and Þℱ¬

Þß¬
< 0. Therefore, ÞE

∗

Þß«
=

ÞE∗

Þℱ«

Þℱ«
Þß«

> 0 and ÞE
∗

Þß¬
= ÞE∗

Þℱ¬

Þℱ¬
Þß¬

< 0. They indicate that the decision maker tends to jumboize the 

replenishment oiler later when its initial length is larger. The reason is that longer hull already 

provides fuel efficiency. On the other hand, the decision maker would like to jumboize the 

replenishment oiler earlier if its length after jumboization is larger because more fuel saving, which 

arises from longer hull structure, are expected to be adopted. 

Proposition 3: ÞE
∗

ÞØ«
> 0	and	 ÞE

∗

ÞØ¬
< 0 

𝐷∗ depends on 𝛥) and 𝛥T via ℱ) and ℱT, respectively. We can see that Þℱ«
ÞØ«

< 0 and Þℱ¬
ÞØ¬

<

0. Therefore, ÞE
∗

ÞØ«
= ÞE∗

Þℱ«

Þℱ«
ÞØ«

> 0 and ÞE
∗

ÞØ¬
= ÞE∗

Þℱ¬

Þℱ¬
ÞØ¬

< 0. These results show that the decision maker 

tends to jumboize the replenishment oiler later if its initial displacement is larger. The reason is 

that larger initial displacement results in less fuel consumption per ton displacement and thus 

jumboization does not seem to be immediate requirement. On the other hand, larger displacement 

after jumboization generates less fuel consumption per ton displacement and the decision maker 

tends to capitalize on it earlier. 

Proposition 4: ÞE
∗

ÞÖ
< 0	and	 ÞE

∗

Þà
> 0 

These results can be derived from 𝐷∗ expression, Equation (3.21). If unit fuel cost 

increases, the decision maker tends to jumboize the replenishment oiler earlier because he/she 

avoids being exposed to more fuel cost and makes use of jumboization. If jumboization cost 
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increases, then investment is delayed because the decision maker expects to observe higher 

demand values and to gain more fuel saving to compensate higher investment cost. 

Proposition 5: ÞE
∗

ÞO
> 0 

In order to determine the sensitivity of 𝐷∗ with respect to 𝜎, we need to investigate the 

sensitivity of 𝛽) with respect to 𝜎. It can be verified that ÞÔ«
ÞO

< 0 (see Appendix 3.G) and ÞE
∗

ÞÔ«
< 0 

(see Appendix 3.H). Thus, ÞE
∗

ÞO
= ÞE∗

ÞÔ«

ÞÔ«
ÞO

> 0. It indicates that when volatility of uncertainty 

increases, the decision maker tends to avoid making critical decisions which incur huge costs, and 

thus it causes delaying the jumboization operations. 

Proposition 6: ÞE
∗

Þá
< 0 

Interested readers can review Appendix 3.I for derivation details. This result indicates that 

if the replenishment oiler becomes more active, then the decision maker tends to jumboize it earlier 

because fuel saving benefit appears more in longer distances. 

In the next section, we provide a managerial guideline concerning the choice between 

flexible and fixed design, and we propose conditions under which flexible design becomes 

financially superior over fixed design. 

Choice Between Flexible and Fixed Designs 

The U.S. Navy does not necessarily need to adopt flexible design. Thus, a question arises 

as to under what condition flexible design is more preferable than fixed design. Upfront cost 

incurred for flexible design (𝐼Å) represents a critical part of the answer to this question.  

As the history of jumboization shows, a replenishment oiler with fixed design can also be 

jumboized. Thus, the replenishment oiler with fixed design has also option value, contingent upon 

the demand uncertainty. To compare flexible and fixed designs, option values at time 0 of both 
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(𝐹Â\Ã§ 𝐷Å  and 𝐹Â-§ÃÄ 𝐷Å  are option values of flexible and fixed designs, respectively, at time 0) 

should be taken into account. Flexible design should be preferred over fixed design in the case that 

the difference between 𝐹Â\Ã§ 𝐷Å  and 𝐹Â-§ÃÄ 𝐷Å  is larger than upfront cost. In other words, 

flexible design should be preferred if 

 𝐼Å < 𝐹Â\Ã§ 𝐷Å − 𝐹Â-§ÃÄ 𝐷Å  (3.33) 

or, 

 
𝐼Å <

ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝛽)

𝐷Å
Ô«

𝐼Â\Ã§ −
2 ℱ)ℒ) − ℱTℒT 𝐶

𝜌
1

𝛽) − 1

)QÔ«

−
ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝛽)

𝐷Å
Ô«

𝐼Â-§ÃÄ −
2 ℱ)ℒ) − ℱTℒT 𝐶

𝜌
1

𝛽) − 1

)QÔ«

 

(3.34) 

If we simplify, 

 
𝐼Å <

ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝛽)

𝐷Å
Ô« 1

𝛽) − 1

)QÔ«
𝐼Â\Ã§ −

2 ℱ)ℒ) − ℱTℒT 𝐶
𝜌

)QÔ«

− 𝐼Â-§ÃÄ −
2 ℱ)ℒ) − ℱTℒT 𝐶

𝜌

)QÔ«

 

(3.35) 

Right-hand side of inequality (3.35) can be defined as the upper bound for upfront cost. If 

𝐼Å is less than the upper bound, flexible design can be employed. Otherwise, the decision maker 

ought to adopt fixed design. 

Another guideline can be derived in a similar way by solving inequality (3.35) for 𝐷Å. 

Instead of tracking option values, the decision maker can track 𝐷Å and make decision accordingly. 
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In other words, if the decision maker is given 𝐼Å, 𝐼Â\Ã§ and 𝐼Â-§ÃÄ, he/she prefers flexible design 

under the condition that 

 

𝐼Å

𝐼Â\Ã§ −
2 ℱ)ℒ) − ℱTℒT 𝐶

𝜌
)QÔ«

− 𝐼Â-§ÃÄ −
2 ℱ)ℒ) − ℱTℒT 𝐶

𝜌
)QÔ«

)
Ô«

 

1
𝛽) − 1

Ô«Q)
Ô« 𝜌 − 𝛼 𝛽)

ℱ) − ℱT 𝐶
< 𝐷Å 

(3.36) 

In the following section, we demonstrate our mathematical model by solving a numerical 

example based on a real replenishment oiler. 

Numerical Example 

In Appendix 3.A, we give annual demand data ranging from 2004 to 2014. However, as 

stated in Assumption 1, it represents whole amount of fuel transported by all replenishment oilers 

in each year. We lack of a demand data set for a single replenishment oiler. Therefore, throughout 

this numerical example, we use hypothetical GBM parameters. 

Let’s assume that the receiving ships call for demand per 0.04 years (14.6 days). Suppose 

𝜎 = 0.03, 𝛼 = 0.05 and 𝜌 = 0.06 annually. Therefore, 𝜎 = 0.0012, 𝛼 = 0.002 and 𝜌 = 0.0024 

per 0.04 years. With these values, the conditions 𝛼 − 𝜎T 2 = 0.0019 > 0 and 𝜌 − 𝛼 = 0.0004 >

0 are satisfied and 𝛽) is calculated as 1.199 by using Equation (3E.4) of Appendix 3.E. 

Unlike the GBM parameters, we use as many real values as possible related to the 

replenishment oiler’s design parameters in this numerical example. For this purpose, we take the 

replenishment oiler USS Passumpsic as an example, which was jumboized in 1960s (Wikipedia 

2018b). It is stated in Wikipedia (2018b) that the its length was increased from 169 m to 196 m, 
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its light ship mass was increased from 7,423 tons to 12,840 tons and its displacement was increased 

from 25,500 tons to 34,350 tons. (see also NavSource Online 2016). Thus, the parameters are 

written as 𝛥) = 25,500 tons, 𝛥T = 34,350 tons, ℒ) = 7,423 tons, ℒT = 12,840 tons, 𝐿) = 169 

m and 𝐿T = 196 m. 

Wikipedia (2018b) expresses that its speed was 18.3 knots. In addition, we suppose that 

block coefficients of the replenishment oiler before and after jumboization are 𝐵) = 0.93 and 𝐵T =

0.94. Therefore, by using Equations (3.6) and (3.7), 

 𝑚) = 4,977 ∙ 0.93T − 8,105 ∙ 0.93 + 4,456 = 1,223 

 𝑛) = −10847 ∙ 0.93T + 12817 ∙ 0.93 − 6960 = −4,422 

 𝑚T = 4,977 ∙ 0.94T − 8,105 ∙ 0.94 + 4,456 = 1,235 

 𝑛T = −10847 ∙ 0.94T + 12817 ∙ 0.94 − 6960 = −4,496 

With these values, we use Equation (3.5) to calculate 

 
𝑃) =

25,500T/� ∙ 18.3�

1,223 − 4,422 ∙ 0.514 ∙ 18.3
9.8 ∙ 169

= 26,421	kW 

 
𝑃T =

34,350T/� ∙ 18.3�

1,235 − 4,496 ∙ 0.514 ∙ 18.3
9.8 ∙ 196

= 23,990	kW 

In Wikipedia (2018b), the installed power (or, the maximum power to propel the 

replenishment oiler) is given as 22,700 kW. Hence, it can be said that Equation (3.5) has good 

approximation. The maximum amounts of bunker fuel consumption in 0.04 year are given as 
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 0.0046 ∙ 26,421 + 0.2 2,800
24 ∙ 18.3 = 776	tons 

 0.0046 ∙ 23,990 + 0.2 2,800
24 ∙ 18.3 = 705	tons 

by assuming that the replenishment oiler traverses the distance 𝑋 = 2,800 nautical miles in one 

direction in each 0.04 year. Note that these values are in tons and are needed to convert to gallons 

by using density value of bunker fuel. The type of bunker fuel is given as Navy Special Fuel Oil 

(NSFO, the U.S. Navy later switched to Naval Distillate Fuel, F-76. For details, see Tosh et al. 

1992). Emergencies Science and Technology Division Environment Canada (2018) gives the 

density of NSFO as 0.9349 g/mL (or, 0.9349 kg/L). Since 1 oil barrel is equal to 159 liters (and 42 

gallons), density of bunker fuel is found as 0.1486 tons/barrel. Thus, we obtain the maximum 

consumptions of bunker fuel per 0.04 years in gallon as 

 776	
0.1486 ∙ 42 = 219,285	gallons 

 40,352	
0.1486 ∙ 42 = 199,137	gallons 

Finally, ℱ) and ℱT are obtained by exploiting Equation (3.8) as 

 ℱ) =
219,285
25,500 = 8.6	gallons/ton 

 ℱT =
199,137
34,350 = 5.8	gallons/ton 

These numerical results indicate that jumboization is useful to bring about fuel saving for 

some demand values because while the replenishment oiler consumes 8.6 gallons of bunker fuel 
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per ton displacement before jumboization, it consumes 5.8 gallons of it per ton displacement after 

jumboization. 

Remaining parameters are cost of bunker fuel and jumboization cost. Nyserda (2017) states 

that 𝐶 = 2.46 ($/gallon) (note that with these values, the value of maximum amount of cargo fuel 

carried is approximately given as $11.5M by stating that USS Passumpsic carries NSFO as well 

to replenish the receiving ships; see NavSource Online 2016) and Wildenberg (1996) gives 

jumboization cost as 𝐼 = $20,000,000 (we assume that it is 𝐼Â\Ã§ = $20,000,000). Therefore, by 

using Equation (3.21), we get 𝐷∗ = 14,537	tons/year. Moreover, with these numerical values, 

option value at time 0 is obtained by using Equation (3.22) as 𝐹Â\Ã§ 𝐷Å = $86,867,313 with the 

assumption 𝐷Å = 7,000 tons. On the other hand, if we assume 𝐼Â-§ÃÄ = $25,000,000, it provides 

𝐹Â-§ÃÄ 𝐷Å = $84,924,499. Therefore, upfront cost for flexible design should not exceed 

𝐹Â\Ã§ 𝐷Å − 𝐹Â-§ÃÄ 𝐷Å = $1,942,813. As for the other guideline regarding 𝐷Å, if 𝐼Å is given as 

$2,000,000, then initial demand value should not be less than 7,171 tons to prefer flexible design, 

derived by inequality (3.36). Given that 𝐷Å = 7,000 tons, expected time duration until 

jumboization is calculated by using Equation (3.23) as 𝜏 = 14.62	years. 

Having determined 𝐷∗ and stated relevant guidelines numerically regarding the choice 

between flexible and fixed designs, we want to verify that infinite life of option is not actually a 

deficiency for this problem. In the subsequent sections, we first demonstrate the binomial lattice 

calculations for 6 periods with each period equal to 0.04 years. After that, we present the result of 

the same problem, which is solved with a longer modeling horizon. 

Option Valuation in Binomial Lattice with 6 Periods 

We reiterate that 𝜎 = 0.0012 and 𝛼 = 0.002 per 0.04 years. Annual risk-free interest rate 

𝑟 is set as 0.02, which means 𝑟 = 0.0008 per 0.04 years. Thus, the condition 𝜌 − 𝑟 = 0.0016 > 0 
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is satisfied. In the previous section, we assume that 𝐷Å = 7,000 tons while calculating option 

values. In the binomial lattice calculations, for the purpose of demonstration, we adopt that 𝐷Å =

600,000 tons because we would like to show some nodes of the lattices in which jumboization 

investment appears. 𝐷Å = 7,000 tons is too low for 6 periods modeling horizon with 0.04 years 

granularity to see a lattice node in which investment is made. 

Since the unit of 𝜎 is %/0.04 years, 𝛥𝑡 = 1 is taken into account to calculate 𝑢 and 𝑑 

factors. By using Equations (3.24) and (3.25), we determine 𝑢 = 1.0012 and 𝑑 = 0.9988. The 

condition 𝑑 < 1 + 𝑟 < 𝑢 holds and risk-neutral probability for up movement is calculated by using 

Equation (3.27) as 𝑞 = 0.833. 

Since 𝛥𝑡 = 1 (0.04 years) and 𝑇 = 6, labels of time points start with 0 and goes through 6. 

Table 3.2 shows all lattices created in three steps. For all lattices, horizontal move towards right 

(from 𝑡 to 𝑡 + 1 with the same 𝑘) represents up movement for a node. On the other hand, the 

movement from 𝑡 to 𝑡 + 1 and from 𝑘 to 𝑘 + 1 represents down movement. Table 3.2(a) is demand 

evolution lattice. Table 3.2(b) presents the evolution of the replenishment oiler’s value in the case 

that it is already jumboized at time 0. Table 3.2(c) presents the evolution of replenishment oiler’s 

value, but with jumboization option. 

Throughout the numerical example, we will demonstrate some of the calculations in the 

binomial lattices. For easiness, we first present the calculations 2 ℱ)ℒ) − ℱTℒT 𝐶 = −52,172 

and ℱ) − ℱT 𝐶 = 6.89 because they are repeatedly used. 

For Table 3.2(b), the values at the terminating nodes are all 0. For 𝑡 = 5 and 𝑘 = 1, the 

value is calculated by using Equation (3.28) as 
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𝒱(¸,)) =

−52,172	 + 6.89 ∙ 603,611
1 + 0.0008 = $4,105,327  

For 𝑡 = 4 and 𝑘 = 1, the value is calculated by using Equation (3.29) as 

 
𝒱 ½,) =

−52,172 + 6.89 ∙ 602,887
1 + 0.0008

+
4,105,327 ∙ 0.833 + 4,095,361 ∙ 1 − 0.833

1 + 0.0008 = $8,200,725 

 

For Table 3.2(c), the nodes in bold are those in which the decision maker chooses to invest. 

For 𝑡 = 5 and 𝑘 = 1, the value is calculated by using Equation (3.30) as 

 𝒱 ¸,) = max 4,105,327 − 20,000,000; 0 = 0 

For 𝑡 = 3 and 𝑘 = 1, the value is calculated by using Equation (3.31) as 

 
𝒱 �,) = max 12,286,209 − 20,000,000;

0 ∙ 0.833 + 0 ∙ 1 − 0.833
1 + 0.0008 = 0  

Similarly, for 𝑡 = 1 and 𝑘 = 1, the value is calculated as 

 
𝒱 ),) = max 20,427,514 − 20,000,000;

0 ∙ 0.833 + 0 ∙ 1 − 0.833
1 + 0.0008

= $427,514 
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Table 3.2 Result of evaluation of jumboization option with the binomial lattices 

a) Growth of demand with respect to time (tons) 
𝑘 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 600,000 600,720 601,442 602,164 602,887 603,611 604,336 
2  599,280 600,000 600,720 601,442 602,164 602,887 
3   598,562 599,280 600,000 600,720 601,442 
4    597,844 598,562 599,280 600,000 
5     597,127 597,844 598,562 
6      596,411 597,127 
7       595,696 
        
b) Growth of replenishment oiler’s value with jumboization in place with respect to time ($) 
𝑘 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 24,483,369 20,427,514 16,361,800 12,286,209 8,200,725 4,105,327 0 
2  20,377,923 16,322,079 12,256,383 8,180,817 4,095,361 0 
3   16,282,454 12,226,629 8,160,956 4,085,419 0 
4    12,196,945 8,141,144 4,075,501 0 
5     8,121,379 4,065,607 0 
6      4,055,736 0 
7       0 
        
c) Growth of replenishment oiler’s value with jumboization option with respect to time ($) 
𝑘 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 4,483,369 427,514 0 0 0 0 0 
2  377,923 0 0 0 0 0 
3   0 0 0 0 0 
4    0 0 0 0 
5     0 0 0 
6      0 0 
7       0 

 

meaning that jumboization takes place in this node. For 𝑡 = 0 and 𝑘 = 1, the value is calculated 

as 
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𝒱 Å,) = max 24,483,369

− 20,000,000;
427,514 ∙ 0.833 + 377,923 ∙ 1 − 0.833

1 + 0.0008

= $4,483,369 

 

meaning that the investment takes place in this node as well. 

Determining 𝑫∗(𝒕) in Binomial Lattice Calculations 

Having completed option evaluation in the binomial lattices, we proceed to determine 

threshold demand levels in each 𝑡. We list below the results of calculations for each 𝑡 and make 

the relevant explanations. For each 𝑡 ∈ [0, 1, 2, 3, 4, 5], we terminate the iterations to seek for 

𝐷∗(𝑡) when the difference between left-hand side and right-hand side of Equation (3.32) is below 

1. 

For 𝑡 = 0, the lattices given in Table 3.3 turn out to be the final lattices in which the 

continuation value and the immediate benefit from jumboization at 𝑡 = 0 are sufficiently close to 

each other. For 𝑡 = 0 and 𝑘 = 1, the following values are calculated as the immediate benefit and 

the continuation value: 

𝒱 Å,) − 𝐼 = 20,000,000.0201 − 20,000,000 = 0.0201  

𝒱 ),) 𝑞 + 𝒱 ),T 1 − 𝑞
1 + 𝑟𝛥𝑡 =

0 ∙ 0.833 + 0 ∙ 1 − 0.833
1 + 0.0008 = 0  

It indicates that 𝐷∗ 0 = 491,511.83	tons/0.04 years. 

 

 



 

	

115 

Table 3.3 Result of the last iteration in which 𝐷∗(0) is found 

a) Growth of demand with respect to time (tons) 
𝑘 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 491,511.83 492,102 492,693 493,284 493,877 494,470 495,063 
2  490,922 491,512 492,102 492,693 493,284 493,877 
3   490,334 490,922 491,512 492,102 492,693 
4    489,746 490,334 490,922 491,512 
5     489,158 489,746 490,334 
6      488,572 489,158 
7       487,986 
        
b) Growth of replenishment oiler’s value with jumboization in place with respect to time ($) 
𝑘 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 20,000,000 16,686,887 13,365,705 10,036,441 6,699,078 3,353,602 0 
2  16,646,263 13,333,167 10,012,007 6,682,769 3,345,439 0 
3   13,300,706 9,987,633 6,666,500 3,337,294 0 
4    9,963,317 6,650,270 3,329,169 0 
5     6,634,079 3,321,064 0 
6      3,312,978 0 
7       0 
        
c) Growth of replenishment oiler’s value with jumboization option with respect to time ($) 
𝑘 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 0.0201 0 0 0 0 0 0 
2  0 0 0 0 0 0 
3   0 0 0 0 0 
4    0 0 0 0 
5     0 0 0 
6      0 0 
7       0 

 

The lattices given in Table 3.4 are the final lattices for 𝑡 = 1. In Table 3.4(c), for 𝑡 = 1 and 

𝑘 = 1, while the immediate benefit is calculated as 0.1239, the continuation value is 0. It results 

in 𝐷∗ 1 = 588,306.51	tons/0.04 years. 
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Table 3.4 Result of the last iteration in which 𝐷∗(1) is found 

a) Growth of demand with respect to time (tons) 
𝑘 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 588,306.51 589,013 589,720 590,428 591,137 591,847 
2  587,601 588,307 589,013 589,720 590,428 
3   586,896 587,601 588,307 589,013 
4    586,192 586,896 587,601 
5     585,489 586,192 
6      584,787 
       
b) Growth of replenishment oiler’s value with jumboization in place with respect to time ($) 
𝑘 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 20,000,000 16,019,378 12,029,085 8,029,102 4,019,413 0 
2  15,980,479 11,999,875 8,009,606 4,009,653 0 
3   11,970,735 7,990,156 3,999,917 0 
4    7,970,753 3,990,203 0 
5     3,980,514 0 
6      0 
       
c) Growth of replenishment oiler’s value with jumboization option with respect to time ($) 
𝑘 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 0.1239 0 0 0 0 0 
2  0 0 0 0 0 
3   0 0 0 0 
4    0 0 0 
5     0 0 
6      0 

 

For 𝑡 = 2, the iterations are terminated when the lattices showed in Table 3.5 are obtained. 

In Table 3.5(c), for 𝑡 = 2 and 𝑘 = 1, while the immediate benefit is calculated as 0.1639, the 

continuation value is 0. It results in 𝐷∗ 2 = 733,497.02	tons/0.04 years. 

For 𝑡 = 3, the lattices given in Table 3.6 turn out to be the final lattices when the iterations 

are terminated. In Table 3.6(c), for 𝑡 = 3 and 𝑘 = 1, the immediate benefit and the continuation 

value are calculated as 0.1735 and 0, respectively. It results in 𝐷∗ 3 =

975,479.19	tons/0.04 years. 
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Table 3.5 Result of the last iteration in which 𝐷∗(2) is found 

a) Growth of demand with respect to time (tons) 
𝑘 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 733,497.02 734,378 735,260 736,142 737,026 
2  732,617 733,497 734,378 735,260 
3   731,739 732,617 733,497 
4    730,861 731,739 
5     729,985 
      
b) Growth of replenishment oiler’s value with jumboization in place with respect to time ($) 
𝑘 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 20,000,000 15,018,136 10,024,196 5,018,158 0 
2  14,981,761 9,999,917 5,006,004 0 
3   9,975,696 4,993,879 0 
4    4,981,783 0 
5     0 
      
c) Growth of replenishment oiler’s value with jumboization option with respect to time ($) 
𝑘 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 0.1639 0 0 0 0 
2  0 0 0 0 
3   0 0 0 
4    0 0 
5     0 

 

For 𝑡 = 4, we terminate the iterations when the lattices presented in Table 3.7 are obtained. 

In Table 3.7(c), for 𝑡 = 4 and 𝑘 = 1, the immediate benefit and the continuation value are 

calculated as 0.0482 and 0, respectively. It gives 𝐷∗ 4 = 1,459,440.5	tons/0.04 years. 

Table 3.8 shows the final lattices when the iterations to seek for 𝐷∗ 5  are terminated. In 

Table 3.8(c), for 𝑡 = 5 and 𝑘 = 1, the immediate benefit and the continuation value are calculated 

as 0.0278 and 0, respectively. It shows 𝐷∗ 5 = 2,911,318	tons/year. 
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Table 3.6 Result of the last iteration in which 𝐷∗(3) is found 

a) Growth of demand with respect to time (tons) 
𝑘 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 975,479.19 976,650 977,823 978,997 
2  974,309 975,479 976,650 
3   973,141 974,309 
4    971,974 
     
b) Growth of replenishment oiler’s value with jumboization in place with respect to time ($) 
𝑘 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 20,000,000 13,349,426 6,682,769 0 
2  13,317,176 6,666,625 0 
3   6,650,519 0 
4    0 
     
c) Growth of replenishment oiler’s value with jumboization option with respect to time ($) 
𝑘 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 0.1735 0 0 0 
2  0 0 0 
3   0 0 
4    0 

 

Table 3.7 Result of the last iteration in which 𝐷∗(4) is found 

a) Growth of demand with respect to time (tons) 
𝑘 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 1,459,440.5 1,461,193 1,462,947 
2  1,457,690 1,459,441 
3   1,455,942 
    
b) Growth of replenishment oiler’s value with jumboization in place with respect to time ($) 
𝑘 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 20,000,000.0482 10,012,049 0 
2  9,987,924 0 
3   0 
    
c) Growth of replenishment oiler’s value with jumboization option with respect to time ($) 
𝑘 𝑡 = 4 𝑡 = 5 𝑡 = 6 
1 0.0482 0 0 
2  0 0 
3   0 
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Table 3.8 Result of the last iteration in which 𝐷∗(5) is found 

a) Growth of demand with respect to time (tons) 
𝑘 𝑡 = 5 𝑡 = 6 
1 2,911,318 2,914,814 
2  2,907,827 
   
b) Growth of replenishment oiler’s value with jumboization in place with respect to time ($) 
𝑘 𝑡 = 5 𝑡 = 6 
1 20,000,000.0278 0 
2  0 
   
c) Growth of replenishment oiler’s value with jumboization option with respect to time ($) 
𝑘 𝑡 = 5 𝑡 = 6 
1 0.0278 0 
2  0 

 

When all parameter values are kept the same except 𝑇 = 14 years (𝑇Ø$ = 350 periods), the 

results depicted in Figure 3.1 are obtained. For each 𝑡, we terminate the iterations to seek for 𝐷∗(𝑡) 

when the difference between left-hand side and right-hand side of Equation (3.32) is below 0.01. 

As can be seen in Figure 3.1, 𝐷∗ 0 = 14,900	tons/0.04 years. Since 𝐷∗ and 𝐷∗ 0  are close to 

each other, we justify that infiniteness assumption of option life and service life of the 

replenishment oiler is not deficient because as the results show, even 14 years is close to infinity. 

 

Figure 3.1 𝐷∗ 𝑡  values when 𝑇 is 14 years (Right picture zooms in data points of the left picture 
until 1.4 years) 
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Discussions on Assumptions 3 and 4 for Possible Generalizations 

In Assumption 3, we state that the replenishment oiler makes round trip between its port 

and the location of the receiving ships. Therefore, we assume that the replenishment oiler always 

moves between two specified ports. As can be derived from our mathematical framework, the 

existence of two specified ports is not necessary. The replenishment oiler can depart from a port 

to replenish the receiving ships in one location, and then it can return to a different port. When a 

different set of receiving ships, which is at a different location, calls for replenishment, the 

replenishment oiler moves towards these ships to fulfill the task. However, the distance between 

ports and the locations should still be 𝑋. Since equality of distance between all ports and locations 

do not reflect the reality, we do not consider it in this study. 

Assumption 4 states that the replenishment oiler does not change its speed throughout the 

modeling horizon. It can be generalized to the case of four different speeds. The replenishment 

oiler can reduce its speed after jumboization for the purpose of fuel saving (Lewis et al. 1977). 

Moreover, it can reduce the speed while transporting the fuel to the receiving ships for the purpose 

of fuel saving again. Thus, this combination results in four different speeds. Although our 

framework allows to adopt this generalization, we do not prefer it because there exists an ambiguity 

regarding who determines the speed of the replenishment oiler. 

Concluding Remarks and Future Researches 

In this chapter, we show how to quantify the value of jumboization option for U.S. Navy 

transportation ships by particularly focusing on replenishment oilers. Having modeled that 

jumboization brings about fuel cost saving, we derive expected time of jumboization investment 

and its value contingent upon the uncertain demand factor. It is shown that analytical framework 

with infinite life of replenishment oiler assumption and its discrete counterpart model give very 

close results, which signifies that this assumption is not an inadequacy for the model. A managerial 
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guideline is discovered regarding the choice between flexible and fixed designs and it points out 

that relatively low demand values at the initial stage of design should be accepted as signal to adopt 

fixed design. Future studies of this chapter could involve the abandonment and purchasing options 

of the replenishment oiler. Moreover, another uncertain factor and its corresponding stochastic 

process could be taken into account to build the underlying framework. 
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APPENDIX 3.A STATISTICAL VALIDATION OF GBM ASSUMPTION 

Table 3.A.1 collects relevant data, which is given in Shannon (2014) and similar reports 
published before 2014. 

Table 3.A.1 Amount of fuel transported by replenishment oilers 

Year Transported Fuel 
Amount Year Transported Fuel 

Amount Year Transported Fuel 
Amount 

2004 428,000,000 2008 549,181,418 2012 555,753,996 
2005 466,000,000 2009 710,041,752 2013 523,530,000 
2006 579,312,543 2010 1,154,792,960 2014 459,529,812 
2007 581,899,405 2011 583,602,984   

 

Line graph of the given data set is depicted in Figure 3.A.1: 

	

Figure 3.A.1 Line graph of amount of fuel transported by replenishment oilers  

To test if a given data set fits GBM process, we need to convert the data set to the 
corresponding successive log ratios. Let 𝜃ä = ln𝜙ä − ln𝜙äQ) where 𝜙ä is the fuel amount 
transported for year 𝑦, 2005 ≤ 𝑦 ≤ 2014. Table 3.A.2 presents the result of the conversion. 

Table 3.A.2 Log ratios  

𝑦 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 
𝜃ä 0.085 0.218 0.004 -0.058 0.257 0.486 -0.682 -0.049 -0.060 -0.130 

 

Having obtained log ratios, two properties should be checked (see, e.g., Marathe and Ryan 
2005): (i) set of 𝜃ä is normally distributed and (ii) 𝜃äd) is independent of 𝜃ä. In statistical theory, 
there are several methods to test the normality of a given data set. Drawing the histogram and QQ 
plot are among the easiest methods. Figure 3.A.2 shows the histogram and QQ plot of 𝜃ä. QQ plot 
compares the quantiles of the sample and theoretical quantiles of normal distribution. If those 



 

	

127 

points lie over 𝑦 = 𝑥 line, it means that two distributions are the same. If those points lie over a 
linear line, it is interpreted that distributions are linearly related (Linearly related means two 
distributions are the same, but they have different parameters). Since interpreting histogram and 
QQ plot may not be accurate to reach a conclusion, we need to proceed to statistical tests. 

 

	

Figure 3.A.2 Histogram and QQ plot of log ratios 

In literature, there exist several statistical tests to check the normality. Shapiro-Wilk test 
for normality and Andersen-Darling test for normality are among the most frequently utilized tests. 
Both tests use the following hypotheses: 

 
• 𝐻Å: The observed distribution fits the normal distribution 
• 𝐻æ: The observed distribution does not fit the normal distribution 
 
Shapiro-Wilk test for normality results in test statistic 0.9061 and p-value 0.2576. Since p-

value is greater than significance level (set as 0.05), we do not have enough evidence to reject the 
null hypotheses. Similarly, Andersen-Darling test for normality gives test statistic 0.4897 and p-
value 0.1685. Since p-value is larger than significance level, we cannot reject the null hypotheses. 
Both test results allow us to claim that set of 𝜃ä fits the normal distribution. 

Testing if a given data set represents independent increment can be succeeded with Chi-
square test for independence (see, e.g., Marathe and Ryan 2005 and Ross 2011) with the following 
hypotheses: 

 
• 𝐻Å: The observed distribution has the independent increments 
• 𝐻æ: The observed distribution does not have the independent increments 
 
The basic idea of this test is to create possible states for each year and observe if there is a 

dependency between the successive states. It is known that GBM process implies independent 
increments, which means the state of year 𝑦 + 1 should be independent of the state of year 𝑦. In 
other words, if the process is in state 𝑖 in year 𝑦, there should be equal probability of being in any 
state 𝑗 in year 𝑦 + 1. To test this property, we create two-way table, whose rows and columns 
include the defined states. For this purpose, we create the following five states: 
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• 𝜃ä ≤ −0.1 ⇒ state 1 (years 2011, 2014) 
• −0.1 < 𝜃ä ≤ −0.05 ⇒ state 2 (years 2008, 2013) 
• −0.05 < 𝜃ä ≤ 0.05 ⇒ state 3 (years 2007, 2012) 
• 0.05<𝜃ä ≤ 0.25 ⇒ state 	4 (years 2005, 2006) 
• 0.25 < 𝜃ä ⇒ state 5 (years 2009, 2010) 
 
Critical point in defining these states is that each state should have approximately equal 

number of years. The years given in parentheses show those which fall in the relevant states. 
Having determined the states, two-way table, Table 3.A.3, is created by enumerating how many 
times state 𝑗 is followed by state 𝑖. 

Table 3.A.3 States 

States 1 2 3 4 5 
1 0 0 1 0 0 
2 1 0 0 0 1 
3 0 2 0 0 0 
4 0 0 1 1 0 
5 1 0 0 0 1 

 

Each cell (denoted by 𝑂-. where 𝑖 is index for rows and 𝑗 is index for columns) in above 
table represents the number of times state 𝑖 is followed by state 𝑗.  The next step is to determine 
the expected values for each cell. Expected value for a cell is determined as 

 
𝐸-. =

𝑅𝑜𝑤- ∙ 𝐶𝑜𝑙𝑢𝑚𝑛.
𝑁  (3A.1) 

where 𝑅𝑜𝑤- is the sum of values in row 𝑖 of two-way table, 𝐶𝑜𝑙𝑢𝑚𝑛. is the sum of the values 
in column 𝑗 of two-way table and 𝑁 is the sum of all values in two-way table. Table 3.A.4 presents 
the expected values for each cell. 

Table 3.A.4 Expected values for each cell 

States 1 2 3 4 5 
1 0.222 0.222 0.222 0.111 0.222 
2 0.444 0.444 0.444 0.222 0.444 
3 0.444 0.444 0.444 0.222 0.444 
4 0.444 0.444 0.444 0.222 0.444 
5 0.444 0.444 0.444 0.222 0.444 

 

In the final step, Chi-square test statistic is calculated as 
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𝜒T =

𝐸-. − 𝑂-.
T

𝐸-.-.

 (3A.2) 

and it is given as 20.25. We need to compare it with the critical value. Degrees of freedom in Chi-
square test is found by the (number of rows - 1) multiplied by (number of columns - 1) in two-way 
table, and it gives 16 in our case. With significance level of 0.05 and degrees of freedom 16, critical 
test value is found as 7.96. Moreover, p-value is found as 0.209. Since p-value is greater than 0.05, 
we do not have enough evidence to reject the null hypothesis. 

As a result, it can be said that fuel amount data follows GBM process. 
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APPENDIX 3.B ADMIRALTY METHOD 

Resistance against a ship at sea may be written as 

 𝑅 ∝ 𝜚𝑊𝑆ì (3B.1) 

where 𝜚 is the density of seawater (kg/m3), 𝑊 is the wetted surface area of the ship (m2) and 𝑆 is 
the speed of the ship (knot), as defined in Table 3.1 (We note that when 𝛾 = 2, the resistance unit 
turns out to be Newton). 𝑊 is proportional to 𝛥T � because displacement of a ship is in fact the 
mass of seawater displaced and 𝛥T �gives the wetted surface area by assuming that density of 
seawater is only 1. Therefore, for a constant density, 

 𝑅 ∝ 𝛥T �𝑆ì (3B.2) 

We know that power can be expressed as 𝑃 ∝ 𝑅𝑆 or 𝑃 ∝ 𝛥T �𝑆ìd). Thus, 

 
𝑃 =

𝛥T �𝑆ìd)

a coefficient
 (3B.3) 

For most merchant ship, 𝛾 is taken to be 2. Hence, Equation (3B.3) becomes 

 
𝑃 =

𝛥T �𝑆�

𝒜  (3B.4) 

where 𝒜 is Admiralty coefficient, as defined in Equation (3.2) (Stokoe 2003 and HubPages 2010). 
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APPENDIX 3.C FUBINI’S THEOREM 

Fubini’s theorem states that 

 
𝐸 𝐷$𝑒QÎ$𝑑𝑡

Ï

Å
= 𝐸[𝐷$𝑒QÎ$]𝑑𝑡

Ï

Å
,						if	 𝐸 𝐷$𝑒QÎ$ 𝑑𝑡

Ï

Å
< ∞ (3C.1) 

It is clear that 𝐷$𝑒QÎ$ ≥ 0 because of the GBM properties. Thus, 

 
𝐸 𝐷$𝑒QÎ$ 𝑑𝑡

Ï

Å
= 𝐸[𝐷$]𝑒QÎ$𝑑𝑡

Ï

Å
          (3C.2) 

By Appendix 3.D, we know the solution of 𝐷$. Therefore, to find 𝐸[𝐷$], write as 

 
𝐸 𝐷$ = 𝐸 𝐷Å𝑒

ïQO
¬

T $dOð� = 𝐷Å𝑒
ïQO

¬

T $𝐸 𝑒Oð�  (3C.3) 

We know that 𝑧$~𝑁(0, 𝑡) and moment generating function of any normally distributed 
random variable 𝑋~𝑁(𝜇, 𝜎T) is given by 

 
𝐸 𝑒òá = 𝑒óòd

ò¬O¬
T  (3C.4) 

Therefore, 

 𝐸 𝐷$ = 𝐷Å𝑒ï$ (3C.5) 

Since jumboization is done when demand is at the level of 𝐷§, 𝐷Å can be replaced with 𝐷§. 
Thus, 𝐸 𝐷$ = 𝐷§𝑒ï$. As a result, we can write 

 
𝐸 𝐷$𝑒QÎ$ 𝑑𝑡

Ï

Å
= 𝐷§

𝑒 ïQÎ $

𝛼 − 𝜌
Å

Ï

=
𝐷§
𝜌 − 𝛼 < ∞ (3C.6) 

Hence, change of orders of integral and expectation operators is allowed. 
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APPENDIX 3.D SOLUTION OF 𝑫𝒕 

Let’s rewrite the differential form of 𝐷$, stated in Equation (3.1), as follows: 

 𝑑𝐷$
𝐷$

= 𝛼𝑑𝑡 + 𝜎𝑑𝑧 (3D.1) 

Integrating both sides leads to 

 𝑑𝐷$
𝐷$

$

Å

= 𝛼𝑡 + 𝜎𝑧$ (3D.2) 

ÄE�
E�

 seems an ordinary differential of 𝐷$, but 𝐷$ is itself in Ito representation. Therefore, we 
need to apply Ito’s formula as ordinary differentiation does not work. Let’s take ln 𝐷$ function. 
Thus, 

 
𝑑 ln𝐷$ =

1
𝐷$
𝑑𝐷$ +

1
2 −

1
𝐷$T

𝑑𝐷$ T (3D.3) 

We need to find the expression for 𝑑𝐷$ T. Write it as 

 𝑑𝐷$ T = 𝛼T𝐷$T 𝑑𝑡 T + 𝜎T𝐷$T 𝑑𝑧 T + 2𝛼𝜎𝐷$T𝑑𝑧𝑑𝑡 (3D.4) 

The first term has 𝑑𝑡 T, the second term has 𝑑𝑡 and the third term has 𝑑𝑡
ô
¬ because 𝑑𝑧 =

𝜖 𝑑𝑡. In this case, 𝑑𝑡 T and 𝑑𝑡
ô
¬ can be eliminated because they go to 0 faster than 𝑑𝑡 when 

𝑑𝑡 → 0. Thus, 𝑑𝐷$ T = 𝜎T𝐷$T𝑑𝑡. When this expression is plugged into Equation (3D.3), it is 
obtained 

 𝑑𝐷$
𝐷$

= 𝑑 ln𝐷$ +
𝜎T

2 𝑑𝑡 (3D.5) 

Therefore, Equation (3D.2) can be written as 

 
𝑑 ln𝐷$ +

𝜎T

2 𝑑𝑡
$

Å

= 𝑑 ln𝐷$ +
𝜎T𝑡
2

$

Å

= 𝛼𝑡 + 𝜎𝑧$ (3D.6) 

It can be simplified as 

 
ln
𝐷$
𝐷Å

= 𝛼 −
𝜎T

2 𝑡 + 𝜎𝑧$ (3D.7) 

and we get 
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𝐷$ = 𝐷Å𝑒

ïQO
¬

T $dOð� (3D.8) 
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APPENDIX 3.E SOLVING 𝑭(𝑫) 

Let’s plug the solution 𝐹 𝐷 = 𝐴𝐷Ô into Equation (3.18). By using the derivatives 
𝐹Ò 𝐷 = 𝐴𝛽𝐷ÔQ)  and 𝐹Ò′ 𝐷 = 𝐴𝛽 𝛽 − 1 𝐷ÔQT, it can be written as 

 1
2𝜎

T𝐴𝛽 𝛽 − 1 𝐷Ô + 𝛼𝐴𝛽𝐷Ô − 𝜌𝐴𝐷Ô = 0 (3E.1) 

With simplification, it is obtained 

 𝐴𝐷Ô
1
2𝜎

T𝛽 𝛽 − 1 + 𝛼𝛽 − 𝜌 = 0 (3E.2) 

Since 𝐴 ≠ 0 and 𝐷Ô ≠ 0, it is written 

 1
2𝜎

T𝛽T + 𝛼 −
1
2𝜎

T 𝛽 − 𝜌 = 0 (3E.3) 

This is a second-order polynomial function. Therefore, one can get two distinct solutions 
as 

 
𝛽),T =

1
2 −

𝛼
𝜎T ±

1
2 −

𝛼
𝜎T

T

+
2𝜌
𝜎T (3E.4) 

It is verified in Dixit and Pindyck (1994) that 𝛽) > 1 and 𝛽T < 0. 
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APPENDIX 3.F FINDING 𝑫∗ AND 𝑭 𝑫  

Equations (3.19) and (3.20) are written as 
 

𝐴)𝐷∗
Ô« =

2 ℱ)ℒ) − ℱTℒT 𝐶
𝜌 +

ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝐷∗ − 𝐼 (3F.1) 

 
𝐴)𝛽)𝐷∗

Ô«Q) =
ℱ) − ℱT 𝐶
𝜌 − 𝛼  (3F.2) 

From Equation (3F.2), 

 
𝐴) =

ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝛽)

𝐷∗)QÔ« (3F.3) 

When Equation (3F.3) is plugged into Equation (3F.1) and it is simplified, one obtains 

 
𝐷∗ = 𝐼 −

2 ℱ)ℒ) − ℱTℒT 𝐶
𝜌

𝛽)(𝜌 − 𝛼)
(𝛽) − 1)(ℱ) − ℱT)𝐶

 (3F.4) 

By Equation (3F.4), 𝐹 𝐷  is derived as 

 
𝐹 𝐷 =

ℱ) − ℱT 𝐶
𝜌 − 𝛼 𝛽)

𝐷
Ô«

𝐼 −
2 ℱ)ℒ) − ℱTℒT 𝐶

𝜌
1

𝛽) − 1

)QÔ«

 (3F.5) 
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APPENDIX 3.G FINDING 𝝏𝜷𝟏
𝝏𝝈

 

Let’s write 𝛽) as 

 
𝛽) =

1
2 −

𝛼
𝜎T +

1
4 −

𝛼
𝜎T +

𝛼T

𝜎½ +
2𝜌
𝜎T =

1
2 −

𝛼
𝜎T +

1
4 −

𝛼
𝜎T +

𝛼T

𝜎½ +
2𝜌
𝜎T

)/T

 (3G.1) 

Then, 

 
𝜕𝛽)
𝜕𝜎 =

2𝛼
𝜎� +

2𝛼
𝜎� −

4𝛼T
𝜎¸ − 4𝜌𝜎�

2 1
4 −

𝛼
𝜎T +

𝛼T
𝜎½ +

2𝜌
𝜎T

 (3G.2) 

If Tï
Oô
− ½ï¬

Oú
− ½Î

Oô
> 0 (or 𝛼 𝜎T − 2𝛼 − 2𝜌𝜎T > 0), then right-hand side of Equation 

(3G.2) turns out to be positive. However, due to the technical assumption 𝛼 − 𝜎T 2 > 0, we can 
conclude that 𝛼 𝜎T − 2𝛼 − 2𝜌𝜎T < 0. Therefore, we need to expand the right-hand side of 
Equation (3G.2). It can be written as 

 
𝜕𝛽)
𝜕𝜎 =

4𝛼 1
4 −

𝛼
𝜎T +

𝛼T
𝜎½ +

2𝜌
𝜎T + 2𝛼 − 4𝛼

T

𝜎T − 4𝜌

2𝜎� 1
4 −

𝛼
𝜎T +

𝛼T
𝜎½ +

2𝜌
𝜎T

 (3G.3) 

Since the denominator is positive, it suffices to check the sign of numerator. Let 
 

𝑥 = 4𝛼
1
4 −

𝛼
𝜎T +

𝛼T

𝜎½ +
2𝜌
𝜎T (3G.4) 

 
𝑦 = 2𝛼 −

4𝛼T

𝜎T − 4𝜌  (3G.5) 

We know that 𝑥 > 0 and 𝑦 < 0. If we show that 𝑥T − 𝑦T = 𝑥 − 𝑦 𝑥 + 𝑦 > 0, then we 
prove 𝑥 + 𝑦 > 0. Thus, 
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4𝛼

1
4 −

𝛼
𝜎T +

𝛼T

𝜎½ +
2𝜌
𝜎T

T

− 2𝛼 −
4𝛼T

𝜎T − 4𝜌
T

= 16𝛼T
1
4 −

𝛼
𝜎T +

𝛼T

𝜎½ +
2𝜌
𝜎T − 4𝛼T +

16𝛼�

𝜎T −
32𝛼T𝜌
𝜎T + 16𝛼𝜌

−
16𝛼½

𝜎½ − 16𝜌T

= 4𝛼T −
16𝛼�

𝜎T +
16𝛼½

𝜎½ +
32𝛼T𝜌
𝜎T − 4𝛼T +

16𝛼�

𝜎T −
32𝛼T𝜌
𝜎T

+ 16𝛼𝜌 −
16𝛼½

𝜎½ − 16𝜌T = 16𝜌 𝛼 − 𝜌 < 0 

(3G.6) 

Since 𝑥 − 𝑦 𝑥 + 𝑦 < 0, we say that 𝑥 + 𝑦 < 0. Therefore, ÞÔ«
ÞO

< 0. 
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APPENDIX 3.H FINDING 𝝏𝑫
∗

𝝏𝜷𝟏
 

Let’s rewrite 𝐷∗ in the form of 

 

𝐷∗ =
𝐼 − 2 ℱ)ℒ) − ℱTℒT 𝐶𝜌

(𝜌 − 𝛼)
(ℱ) − ℱT)𝐶

𝛽)
(𝛽) − 1)

 (3H.1) 

Therefore, 

 
𝜕𝐷∗

𝜕𝛽)
=
− 𝐼 − 2 ℱ)ℒ) − ℱTℒT 𝐶𝜌

𝜌 − 𝛼
ℱ) − ℱT 𝐶

𝛽) − 1 T  (3H.2) 

Since we assume that 𝐼 − T ℱ«ℒ«Qℱ¬ℒ¬ Ö
Î

> 0, we conclude ÞE
∗

ÞÔ«
< 0. 
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APPENDIX 3.I FINDING 𝝏𝑫
∗

𝝏𝑿
 

Let’s rewrite 𝐷∗ in the form of 

 
𝐷∗ =

𝐼𝛽) 𝜌 − 𝛼
𝛽) − 1 𝐶

1
ℱ) − ℱT

−
2𝛽) 𝜌 − 𝛼
𝜌 𝛽) − 1

ℱ)ℒ) − ℱTℒT
ℱ) − ℱT

 (3I.1) 

Then, 

 
𝜕𝐷∗

𝜕𝑋 =
𝐼𝛽) 𝜌 − 𝛼
𝛽) − 1 𝐶

𝜕 1
ℱ) − ℱT
𝜕𝑋 −

2𝛽) 𝜌 − 𝛼
𝜌 𝛽) − 1

𝜕 ℱ)ℒ) − ℱTℒTℱ) − ℱT
𝜕𝑋  (3I.2) 

We know that )
ℱ«Qℱ¬

 is written as 

 1
ℱ) − ℱT

=
1

𝑋 0.0046𝑃) + 0.2
24𝛥)𝑆

− 0.0046𝑃T + 0.224𝛥T𝑆
=
1
𝑐𝑋 (3I.3) 

where 𝑐 is just a constant. Therefore, 

 𝜕 1
ℱ) − ℱT
𝜕𝑋 = −

1
𝑐𝑋T = −

1
0.0046𝑃) + 0.2

24𝛥)𝑆
− 0.0046𝑃T + 0.224𝛥T𝑆

𝑋T

= −
1

ℱ) − ℱT 𝑋
 

(3I.4) 

It can be inferred from Equation (3I.4) that 
Þ «
ℱ«üℱ¬
Þá

< 0. Let’s write 

 
ℱ)ℒ) − ℱTℒT
ℱ) − ℱT

=
𝑋 0.0046𝑃) + 0.2

24𝛥)𝑆
ℒ) −

0.0046𝑃T + 0.2
24𝛥T𝑆

ℒT

𝑋 0.0046𝑃) + 0.2
24𝛥)𝑆

− 0.0046𝑃T + 0.224𝛥T𝑆
 (3I.5) 

Hence, ℱ«ℒ«Qℱ¬ℒ¬
ℱ«Qℱ¬

 is independent of 𝑋 and 
Þℱ«ℒ«üℱ¬ℒ¬ℱ«üℱ¬

Þá
= 0. Therefore, 

 
𝜕𝐷∗

𝜕𝑋 =
𝐼𝛽) 𝜌 − 𝛼
𝛽) − 1 𝐶

𝜕 1
ℱ) − ℱT
𝜕𝑋 < 0 (3I.6) 
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CHAPTER 4. A NEW LATTICE METHOD FOR JUMP-DIFFUSION PROCESS 
APPLIED TO TRANSMISSION EXPANSION INVESTMENTS UNDER DEMAND AND 

DISTRIBUTED GENERATION (DG) UNCERTAINTIES 

Introduction 

After deregulation in electricity market in U.S., decision makers of transmission companies 

(we will use decision maker and transmission owner interchangeably) face critical uncertainties 

when they make investments because they do not have a prior information regarding decisions 

made by generation and distribution companies as well as communities. Demand for electricity is 

one of severe uncertainties because it continuously fluctuates even in a very small time interval 

(see, e.g., U.S. Department of Energy 2016). In addition, DGs have been installed in recent years 

with various sizes ranging from a couple of megawatts to tens of megawatts to meet local demand 

of electricity (see U.S. Energy Information Administration 2017 for a summary data listing various 

DG technologies preferred by utilities and societies as well as capacities installed in each year 

from 2006 to 2015). 

Transmission investments (by transmission investments, we mean expansion investments) 

should be planned more strategically if DG is an alternative way to meet local demand. 

Professionals in electricity markets have already initiated discussions to evaluate the impact of 

DGs on costs and benefits of transmission investments. It is stated that transmission investments 

could be made more strategically if the rate of future adoption of DGs is estimated correctly 

(Biddle et al. 2014). Transmission investments might be delayed if DGs are installed because they 

meet a portion of local demand. It is a crucial uncertainty for transmission owners because they do 

not have prior information of DG installations. The research question arises as to in which way 

DG uncertainties (by DG uncertainty, we mean both installation and removal uncertainties of DGs) 

have effects on existing transmission network and future transmission investments. Our purpose 
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in this study is to show how the value of a transmission investment is quantified under demand 

and DG uncertainties and to answer the research question by using real options approach. We 

assume that transmission owners use hybrid merchant/regulated investment approach, meaning 

that they have strategic flexibilities in making decisions such as delaying investments (see Pringles 

et al. 2014 for an example of work which adopt hybrid merchant/regulated investment approach 

for transmission expansion investments). 

In literature, there exist some studies researching transmission investments with DG 

installation in transmission networks. However, rather than considering it as an uncertainty, they 

accept DG is a tool to acquire flexibility when decision makers attempt to expand the network. For 

instance, Buzarquis et al. (2010) quantify the value of deferring option gained by installing DGs 

from the point of view of distribution network owners. Luo et al. (2014) reveal how effective DGs 

are to defer transmission investments for a case study in Australia (see also Gil and Joos 2006; 

Piccolo and Siano 2009; Zhao et al. 2011). We emphasize that our study distinguishes itself from 

literature because we assume DG is an uncertainty for transmission owners. 

Investment evaluation problems modeled with real options methodology can be solved 

with three different approaches. One can build an analytical model in order to obtain closed-form 

solutions. This approach is worthwhile as results and managerial insights do not depend on 

numerical values of parameters. However, handling with an analytically tractable model often 

requires to make many unrealistic and restrictive assumptions. Monte Carlo simulations have been 

proposed as an alternative especially for evaluating American options. It gives researchers great 

number of modeling flexibilities such as the ability of handling with jump and diffusion processes 

without enforcing a sequence between them. One the other hand, Monte Carlo simulation has a 

significant drawback from computational perspective. For instance, Longstaff and Schwartz 
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(2001) run 50,000 paths to obtain an average value of American options for each of different 

stochastic processes that they were interested in modeling of underlying stock prices. Lastly, lattice 

methods can be adopted because it is often said in the literature that they are able to save a great 

deal of computation time when compared to Monte Carlo simulation and get more accurate results 

(Areal et al. 2008). With lattice methods, however, one may not be sure about stability of results 

and managerial insights because they depend on (sensitive to) the numerical values of the set of 

parameters. 

This chapter is structured as follows: In the following section, we show how a lattice model 

is constructed combining GBM and compound Poisson processes and we present a new lattice 

model, which requires much less computation time. We also present how we quantify the value of 

transmission investments. After that, we demonstrate our framework on a hypothetical example. 

The last section concludes the chapter by summarizing key points of the study and important 

managerial insights. Technical details of our framework are presented in appendices. 

Mathematical Model 

As stated before, transmission owners encounter demand and DG uncertainties when they 

invest. In literature for transmission investments planning, there exist several studies which assume 

that demand growth fits to GBM process (see, e.g., Loureiro et al. 2015 and Pringles et al. 2014). 

Besides those, there are also studies which statistically verify that real demand data fit to GBM 

process (see, e.g., Marathe and Ryan 2005). Since there are likely many consumption centers in a 

transmission network, we assume that each has demand growth modeled with GBM. Since 

installation or removal of a DG in a consumption center changes demand for electricity met by 

transmission lines, smooth path of demand (an infinitesimal change in an infinitesimal time 

interval, GBM) may abnormally jump to a higher or a lower level (a larger randomly occurring 

change). Since DG capacities are random as well, we make an assumption that DG uncertainties 
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can be modeled with compound Poisson process. It is a tradition in the literature that these types 

of events, which happen rarely (that is why they are sometimes called rare events) are modeled 

with jump processes with the assumption that arrivals of events fit to Poisson arrival process (see, 

e.g., Martzoukos and Trigeorgis 2002). 

We take advantage of lattice framework to model demand growth because finding a closed-

form solution is impractical. There exist studies in financial option pricing literature which device 

lattice counterparts of jump-diffusion process (the process incorporating GBM and compound 

Poisson processes). Among others, we build our framework on the lattice model proposed by 

Hilliard and Schwartz (2005), with an extension on it. The authors propose discretization of jump 

and diffusion processes on two separate grids. They have matched the local moments of jump 

process with discrete branches. Note that the model proposed by Hilliard and Schwartz (2005) 

adopts one diffusion process and we extend it to multiple diffusion processes as each consumption 

center in a transmission network has its own demand modeled with GBM with different parameters 

(see also Amin 1993, Martzoukos and Trigeorgis 2002 and Dai et al. 2010 for other lattice models 

for jump-diffusion process). We also propose a new lattice model, which saves a great deal of 

computation time. 

In this study, we focus on the following scenario: Suppose that there is a transmission 

network with centers (let 𝑁 denote the set of centers in the network, and let 𝑁E and 𝑁F  denote the 

set of consumption and generation centers, respectively) and power lines between centers (let 𝑀 

denote the set of power lines). Since existing power lines will not likely have sufficient capacity 

to meet future demand, the decision maker intends to expand the transmission network by 

installing power lines. However, he/she faces demand and DG uncertainties in consumption 

centers. 



 

	

144 

In the next sections, we first elaborate the way of lattice construction with a single diffusion 

process proposed by Hilliard and Schwartz (2005). Then, we explain how to combine multiple 

diffusion processes and their jumps in a lattice model. After that, we present how we reduce the 

computational complexity of the lattice model. At the end, we elaborate how to quantify the value 

of transmission investments. 

Lattice Model of Jump-Diffusion Process for a Single Consumption Center 

Hilliard and Schwartz (2005) give the risk-neutral form of jump-diffusion process as 

 𝑑𝐷$
𝐷$

= 𝑟 − 𝜆𝜅 𝑑𝑡 + 𝜎𝑑𝑧$ + 𝜅 − 1 𝑑𝑠$ (4.1) 

where 𝐷$ (MW) is demand at time point 𝑡, 𝑟 (%/unit time) is risk-free interest rate, 𝜎 (%/unit time) 

is volatility of demand evolution, 𝑑𝑧$ is the increment of Wiener process (i.e., 𝑑𝑧$ = 𝜖 𝑑𝑡 where 

𝜖~𝑁(0,1)), and 𝑑𝑠$ is the increment of jump process. If a jump occurs, 𝑑𝑠$ takes value of 1; 

otherwise it is equal to 0. The number of DG events (installations or removals) are controlled by 

compound Poisson process with arrival rate 𝜆 (the number of events per unit time). 𝜅 (%) denotes 

jump magnitude defined as percentage change in 𝐷$ if a jump occurs. 𝜅 is generally assumed log-

normally distributed with parameters (𝛾, 𝛿T) because the model is particularly tractable in this case 

(see, e.g., Merton 1976). 𝜅 = E 𝜅 − 1 where E 𝜅  is the expected value of 𝜅, which is equal to 

𝑒ìd
«
¬]

¬
. It is further assumed that jump process is independent of diffusion process. For more 

explanations regarding Equation (4.1), please see Appendix 4.A. 

Solution of Equation (4.1) is given as (see Appendix 4.B for details and Appendices 4.C 

and 4.D for supporting materials) 
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𝐷$ = 𝐷Å𝑒

!Q"#QO
¬

T $dOð� 𝜅$

%�

$`)

 (4.2) 

Hilliard and Schwartz (2005) handle with Equation (4.2) by discretizing jump and diffusion 

processes on separate grids (bivariate tree). Equation (4.2) can be written as 

 𝒟$ = ln
𝐷$
𝐷Å

= 𝑋$ + 𝑌$ (4.3) 

where 𝑋$ = 𝑟 − 𝜆𝜅 − O¬

T
𝑡 + 𝜎𝑧$ and 𝑌$ = ln 𝜅$

%�
$`) . In the bivariate tree, both 𝑋$ and 𝑌$ are 

normally distributed. Then, 

 𝒟$d)d = 𝒟$ + 𝜎 ∆𝑡 + 𝑏ℎ (4.4) 

 𝒟$d)Q = 𝒟$ − 𝜎 ∆𝑡 + 𝑏ℎ (4.5) 

𝒟$ reaches the levels of 𝒟$d)d  or 𝒟$d)Q  at the end of ∆𝑡 time interval. Interested readers can 

check Figure 4.1, which shows the evolution of demand process represented in Equations (4.4) 

and (4.5). Note that we show diffusion and jump processes separately in Figure 4.1 although it is 

not a requirement. We draw them separately for expositional convenience as well as due to the 

fact that we do not know which process moves first. Note also that we use multiplicative model in 

Figure 4.1 instead of additive model of Equations (4.4) and (4.5) because we desire to illustrate 

the evolution of demand, not its natural logarithm. ∆𝑡 is the length of a period in the lattice (period 

𝑡 is defined as from time point 𝑡 to time point 𝑡 + 1). ±𝜎 ∆𝑡 represents up and down movements 

of diffusion process in the conventional binomial lattice, proposed by Cox et al. (1979). For jump 

process, 𝑏 takes values on {0,±1,±2,…	, ±𝑚}, meaning that the process is discretized on 2𝑚 + 1 

points. Jump process is typically map onto an odd number of points because middle node 
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represents the case of no jump. Remaining jump nodes are symmetrical around the center node. 

The difference between successive jump nodes in the vertical order is denoted by ℎ and it is 

expressed as ℎ = 𝛼 𝛾T + 𝛿T (𝛼 is a scale parameter. Hilliard and Schwartz (2005) state that the 

best simulation results are obtained when 𝛼 = 1). The risk-neutral probability of up movement of 

diffusion process (+𝜎 ∆𝑡) is given as 

 
𝑝 =

1
2 +

1
2

𝑟 − 𝜆𝜅 − 𝜎
T

2
𝜎 ∆𝑡 (4.6) 

Probabilities of jump branches, denoted by 𝑞(𝑏), are found by matching 2𝑚 moments of 

jump process. In other words, 

 
𝑏ℎ )

*

+`Q*

𝑞 𝑏 = 𝐸 ln 𝜅$

%∆�

$`Å

)

= 𝜇) (4.7) 

	

Figure 4.1 Demand evolution lattice for m=1 

where 𝜇) is 𝑔$� moment of jump process and 𝑔 = 0,1, … ,2𝑚 . Equation (4.7) is simplified as 
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 𝑞 −𝑚
𝑞 − 𝑚 − 1

⋮
𝑞 0
⋮

𝑞 𝑚 − 1
𝑞 𝑚

=

1 1 ⋯ 1 ⋯ 1 1
−𝑚 ) − 𝑚 − 1 ) ⋯ 0 ⋯ 𝑚 − 1 ) 𝑚)

−𝑚 T − 𝑚 − 1 T ⋯ 0 ⋯ 𝑚 − 1 T 𝑚T

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
−𝑚 T* − 𝑚 − 1 T* ⋯ 0 ⋯ 𝑚 − 1 T* 𝑚T*

Q)

	

1
𝜇) ℎ
𝜇T ℎT
⋮

𝜇T* ℎT*

 

(4.8) 

Finding 𝜇) for 𝑔 ≥ 1 is not straightforward. Hence, it is stated that when ∆𝑡 is sufficiently 

small, 𝜇) can be approximated by cumulants 𝒦); that is, 𝜇) ≅ 𝒦) (See Appendix 4.E for details). 

Hilliard and Schwartz (2005) propose discretization of jump-diffusion process with fixed 

jump magnitude as well. In this case, ln 𝜅 is a constant being equal to 𝛾 (𝛿 = 0, 𝜅 = 𝑒ì, 𝜅 = 𝑒ì −

1, and ℎ = 𝛾 since 𝛿 = 0). Equations (4.4) and (4.5) are adjusted by neglecting 𝑏 (because there 

is one jump branch) and by replacing ℎ with 𝛾 (see Figure 4.2). That is, 

 𝐷$d) = 𝐷$𝑒O ∆$𝑒ì (4.9) 

	

Figure 4.2 Demand evolution lattice for fixed jump size 
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Lattice Model of Jump-Diffusion Process for Multiple Consumption Centers 

In literature, there exist many studies which put effort to discretize multiple diffusion 

processes by lattices. We build our framework on lattice model proposed by Wang and Min (2006). 

They create a lattice framework modeling the evolution of multiple diffusion processes to evaluate 

interrelated power generation projects.  

Let 𝑖 denote a consumption center in a transmission network and let 𝐷$- denote demand of 

this center at time 𝑡. 𝐷$- evolves following Equation (4.1) with parameters 𝜎-, 𝜅-, 𝜅-, and 𝜆-. 

Probabilities of branches when it is discretized, 𝑝- and 𝑞- ∙ , have the same expressions given in 

Equations (4.6) and (4.8) with parameters ℎ- and 𝜇-. 

Since there exist 𝑁E  consumption centers in the network, diffusion part of demand lattice 

turns into a 2 ?@ -branch lattice. Wang and Min (2006) show joint risk-neutral probability of an 

arbitrary branch 𝑙 of diffusion process as 

 
𝑝\ = 𝑝-Ò

?@

-`)

+
1

2 ?@
𝑦-.𝜌-.

?@

.`-d)

?@

-`)

 (4.10) 

where 𝜌-. is correlation coefficient between 𝐷$- and 𝐷$
. and 𝑙 = 1,2, … , 2 ?@ . 𝑝-Ò and 𝑦-. are given 

as 

 𝑝-Ò =
𝑝-, if process	𝑖	moves upward in branch	𝑙

1 − 𝑝-, if process	𝑖	moves downward in branch	𝑙 (4.11) 

 𝑦-. =
1, if processes 𝑖 and 𝑗 move in the same direction in branch	𝑙

−1, if processes	𝑖	and	𝑗 move in the opposite direction in branch	𝑙 (4.12) 

If there exist two diffusion processes, demands 𝐷$- and 𝐷$
. turn out to be 

(𝐷$-𝑒O^ ∆$, 𝐷$
.𝑒O/ ∆$), (𝐷$-𝑒O^ ∆$, 𝐷$

.𝑒QO/ ∆$), (𝐷$-𝑒QO^ ∆$, 𝐷$
.𝑒O/ ∆$), and (𝐷$-𝑒QO^ ∆$, 𝐷$

.𝑒QO/ ∆$) 
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at the end of a period. If 𝐷$- and 𝐷$
. are not correlated, risk-neutral probabilities of branches are the 

multiplication of individual probabilities; 𝑝-𝑝., 𝑝- 1 − 𝑝. , 1 − 𝑝- 𝑝., and 1 − 𝑝- 1 − 𝑝. . 

Otherwise, these probabilities are written as 𝑝-𝑝. + 𝜌-. 4, 𝑝- 1 − 𝑝. − 𝜌-. 4, 1 − 𝑝- 𝑝. −

𝜌-. 4, and 1 − 𝑝- 1 − 𝑝. + 𝜌-. 4 to take into account correlation. 

A branch for diffusion process, which models the evolution of demand growth in multiple 

consumption centers, is followed by branches of jump processes, each of which pertains to a 

demand growth in a single consumption center. Since jump events are assumed to be independent, 

branch probabilities of jump processes are multiplication of individual jump probabilities. Each 

diffusion branch is followed by 2𝑚 + 1 ?@  jump branches (see Figure 4.3 for random jump 

magnitude and Figure 4.4 for fixed jump magnitude). 

We denote a vector of demands in the lattice with 𝐸 $,y  where 𝑡 denotes time points and 𝑘 

denotes states of the lattice. Value of 𝑘 starts from 1 from the uppermost node and increments by 

1 through the bottommost node for each 𝑡. We use 𝓅 to denote joint probabilities of diffusion and 

jump branches. For instance, in Figure 4.3, probability of 𝐷$-, 𝐷$
.  to reach 

𝐷$-𝑒O^ 1$𝑒�^, 𝐷$
.𝑒QO/ 1$𝑒�/  is 𝓅 = 𝑝-𝑝. + 𝜌 4 𝑞- 1 𝑞. 1 . In Figure 4.3 and Figure 4.4, we 

only show the jump branches emanating from the second diffusion branch for the sake of 

expositional convenience. 

A New Lattice Model Reducing Computational Complexity 

Note that above-proposed lattice model is computationally expensive. For even with two 

consumption centers and fixed jump magnitude (as in Figure 4.4), the number of nodes after one 

period turns out to be 16. It is obvious that the number of nodes after a large number of periods 

leads to a situation which cannot be managed from computational perspective. Therefore, we 
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propose the following idea of reducing computational complexity of the model. Instead of allowing 

jump events (drawing jump branches) to happen at every period, we can let them happen at every 

𝑣 periods. We claim that given a small value of 𝜆 (let’s define it as the average number of events 

per year), probability distributions of the terminal nodes obtained with the lattice model previously 

described and with this improvement idea approximate each other. Approximating probability 

distributions of the terminal nodes is a common approach in the literature. For instance, binomial 

lattice of Cox et al. (1979) proves that probability distribution of terminal nodes approximates the 

corresponding binomial distribution (see, e.g., Cudina 2018). 

	

Figure 4.3 Demand evolution lattice for two consumption centers with 𝑚 = 1 

	

Figure 4.4 Demand evolution lattice for two consumption centers with fixed jump magnitude 



 

	

151 

To show how the approximation works, let’s consider two lattice models: One (say, model 

1) allows jump event to occur every time period (as described in the preceding section) and the 

other one (say, model 2) allows jump event to happen at every 𝑣 periods. Let’s only focus on the 

initial parts of both lattice models (by initial parts, we mean lattice models starting with time point 

0 and spanning through time point 𝑣 + 1). If it is shown that probability distributions of the 

terminal nodes of both partial lattice models approximate to each other, we do not need to pay 

attention to the rest of the models (after time point 𝑣 + 1) because a new partial lattice, which has 

the same structure starts at time point 𝑣 + 1. 

For simplicity, we consider a single diffusion process and a fixed jump magnitude. In 

model 1, demand values at the terminal nodes (at time point 𝑣 + 1) have a general expression of 

𝐷Å 𝑒O ∆$
w
𝑒QO ∆$

Ä
𝑒ì §, meaning that there exist 𝑢 times up movement and 𝑑 times down 

movement of diffusion process as well as jump event happens 𝑥 times in 𝑣 periods. The probability 

of this node can be calculated as 3
w

3
§ 𝑝

w 1 − 𝑝 Ä 𝜆 𝕟 § 1 − 𝜆 𝕟 3Q§ where 𝕟 is the number 

of periods in a year in the lattice model. With this model, we have the following observations: 

If 𝑥 ≥ 2, 𝜆 𝕟 § → 0. Hence, whole probability expression defined above approaches to 

0. 

If 𝑥 = 1, which means only one jump event happens in 𝑣 periods, the probability 

expression turns into 3
w 𝑣𝑝

w 1 − 𝑝 Ä 𝜆 𝕟 1 − 𝜆 𝕟 3Q). Note that 𝜆 is small enough, 

1 − 𝜆 𝕟 3Q) → 1, and thus the probability expression can be rewritten as 3
w 𝑝

w 1 −

𝑝 Ä 𝜆 𝕟 𝑣. 
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If 𝑥 = 0, which means no jump event happens in 𝑣 periods, the probability expression turns 

into 3
w 𝑝

w 1 − 𝑝 Ä 1 − 𝜆 𝕟 3. Notice again that 𝜆 is small enough, 1 − 𝜆 𝕟 3 → 1, and thus 

the probability expression approaches to 3
w 𝑝

w 1 − 𝑝 Ä. 

Let’s consider model 2, which gives rise to a computational relaxation. Remember that in 

this model, there is no jump branch in periods prior to period 𝑣 and there is a jump branch in period 

𝑣. Note that up until period 𝑣, the lattice model is actually nothing more than well-known binomial 

lattice proposed by Cox et al. (1979). Therefore, probabilities of up and down movements of 

diffusion process do not consist of an arrival rate expression, 𝜆. Since we assume that 𝜆 is 

sufficiently small, we are able to use probability expression given in Equation (4.6) by neglecting 

𝜆. Note that 𝜆 = 0 leads to risk-neutral probability of up movement as originally defined in Cox 

et al. (1979). With this consideration, demand values at the terminal nodes (at time point 𝑣 + 1) 

have general expressions of 𝐷Å 𝑒O ∆$
w
𝑒QO ∆$

Ä
𝑒ì and 𝐷Å 𝑒O ∆$

w
𝑒QO ∆$

Ä
 depending on 

whether jump event occurs or not. The probabilities of these values are given as follows 

respectively: 

3
w 𝑝

w 1 − 𝑝 Ä 𝜆 𝕟 𝑣, where 𝜆 𝕟 is the probability of jump event to occur in a period 

and 𝜆 𝕟 𝑣 is the probability of jump event to occur in 𝑣 periods. 

3
w 𝑝

w 1 − 𝑝 Ä 1 − 𝜆 𝕟 𝑣 . Notice that 𝜆 is small enough, we can write 1 −

𝜆 𝕟 𝑣 → 1, and the probability expression approaches to 3
w 𝑝

w 1 − 𝑝 Ä. 

Notice that the probability expression of model 1 when 𝑥 = 1 approaches to the probability 

expression of model 2 when a jump event occurs at the last period. Similarly, the probability 

expression of model 1 when 𝑥 = 0 approaches to the probability expression of model 2 when a 

jump event does not occur at the last period. Therefore, we claim that one can use model 2 instead 
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of computationally expensive method as resulting probability distributions approach to each other 

and thus, resulting values of transmission networks will approach to each other. We remind that 

this relaxation works provided that the number of periods in the lattice models are sufficiently high 

and arrival rates of jump events are sufficiently small. 

It is reasonable to accept model 2 in DG context because installation or removal of DGs 

are not events that happen frequently. It implies that arrival rates of these events are relatively 

small. 

Quantification of Values of Transmission Investments 

Hybrid merchant/regulated investment approach allows transmission owners to gain 

revenue from two major sources in the case of an expansion investment. Transmission owners gain 

from market participants such as distribution utilities and power generators (see, e.g., California 

ISO 2014a and 2014b for an example of transmission access charge in California). Owners 

additionally make money through Financial Transmission Rights, values of which are based on 

differences between LMPs in centers of the network. In light of this separation, we quantify values 

of transmission investments by modeling their revenues with LMP differences in the network 

(LMP-based revenues). In the case of an investment, we allow a supplementary revenue for 

transmission owners.  

Our framework is conducted for each investment alternative (addition of a power line 

between two arbitrary centers) separately. We first consider the base case (the case that there is no 

investment in the network) and each demand vector in demand lattice is used to compute NPV of 

the network as state variable. Hence, a new lattice demonstrating the evolution of network value 

is created for the base case. We then proceed to evaluate each investment alternative. Since an 

investment can be postponed by the decision maker, we take into account different time points of 

investment (choices) separately. Choice 𝑡 corresponds to the investment made at time point 𝑡 for 



 

	

154 

the selected investment alternative. For each choice, a different lattice showing the evolution of 

network value is created. 

LMP is local price of electricity ($/MWh) and computed by solving OPF problem. LMP-

based revenue of the network, denoted by 𝑅 ($/hour), is calculated by 

 𝑅 = 𝜋-𝐷-
-∈?@

− 𝜋.𝐺.
.∈?B

 (4.13) 

where 𝜋- denotes LMP in center 𝑖 and 𝐺. (MW) denotes dispatched amount of generation center 𝑗 

at optimality of OPF problem. OPF problem is stated as 

 min 𝑤-𝐺-
-∈?B

 (4.14) 

 𝐺- − 𝐷- = ℬ-. 𝜃- − 𝜃.
.∈?,.�-

,					∀𝑖 ∈ 𝑁 (4.15) 

 

ℬ-. =

−𝒷-., if	𝑖 ≠ 𝑗

𝒷-.

?

.∈?,-�.

, otherwise
 (4.16) 

 −𝐿-. ≤ ℬ-. 𝜃- − 𝜃. ≤ 𝐿-.,				∀ 𝑖, 𝑗 ∈ 𝑀 (4.17) 

 0 ≤ 𝐺- ≤ 𝐺�,					∀𝑖 ∈ 𝑁 (4.18) 

where 𝑤- ($/MWh) is generation cost of generation center 𝑖, ℬ-. is an element consisting of actual 

susceptance values (unit is Siemens; susceptance is defined as measure of easiness of power flow 

on a line), 𝒷-. is susceptance value of the power line between centers 𝑖 and 𝑗, 𝜃- is voltage angle 

in center 𝑖 (unit is Radians; voltage angle is defined as an angle created by time shift in sinusoidal 
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function of voltage), 𝐿-. (MW) is capacity of the power line between centers 𝑖 and 𝑗, and 𝐺� (MW) 

is capacity of generation center 𝑖 (For details of OPF problem, see, e.g., McCalley 2007 and Kocuk 

et al. 2016). 

LMP in center 𝑖 is obtained as follows. OPF problem is solved with given demand values 

and objective function value is recorded. Then, the problem is resolved with demand value 

increased by 1 MW in center 𝑖. The new objective function value minus its previously recorded 

value gives LMP in center 𝑖. 

Note that the way we compute LMP is called layman’s definition and it is practically used 

in electricity markets (California ISO 2005). LMP can be also calculated as shadow prices (value 

of Lagrange multipliers) of Equation (4.15) (see, e.g., Liu et al. 2009). However, these approaches 

may not give rise to the same set of values of LMPs. The reason is that shadow prices, by definition, 

are calculated with the infinitesimal change on demand values (Albouy 2018). It is obvious that 

an increase of 1 MW is not an infinitesimal change. In order to reconcile, we recalculate LMPs by 

using layman’s definition, but with increasing demand values by a small amount such as 0.1 MW. 

We find that two sets of LMPs, calculated by layman’s definition and Lagrange multipliers, are 

equal in this case. 

Quantification of transmission network value for base case 

Valuation starts with terminal nodes of the lattice. We assume that the network is removed 

at the end of modeling horizon (𝑡 = 𝑇) and this operation incurs a decommissioning cost. Hence, 

it implies that the value of the network at time point 𝑇 is just the negative of decommissioning 

cost, denoted by 𝒞 ($). At time point 𝑇 − 1, discounted total profit is calculated for ∆𝑡 length of 

time (years or a fraction of a year) by making the assumptions that profit is realized at the end of 
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each time period and demand does not change during ∆𝑡. In other words, discounted total profit 

gained in Δ𝑡 duration is 

 
𝑃 �Q),y =

8760 𝑅 �Q),y − ℂ Δ𝑡
1 + 𝑟  (4.19) 

where 𝑅 �Q),y  is network revenue calculated with Equation (4.13) and ℂ ($/hour) is operation and 

maintenance cost. NPV of the network at time point 𝑇 − 1 ($) is finally defined as 

 𝑉 �Q),y = 𝑃 �Q),y −
𝒞

1 + 𝑟 (4.20) 

by taking into account the discounted decommissioning cost of the network. For the rest of 

intermediate nodes (𝑡 < 𝑇 − 1), discounted risk-neutral expected value of the successor nodes is 

added after calculating the profit with Equation (4.19). In other words, 

 

𝑉 $,y = 𝑃 $,y + 𝓅\𝑉 $d),y
\∈� �,�
y∈� �,�

8

1 + 𝑟 (4.21) 

where 𝑆 $,y  denotes set of branches emanating from 𝑡, 𝑘  and 𝑆 $,y
Ò  denotes set of successor states 

of 𝑡, 𝑘 . 𝑉 ),) , obtained through recursive computation in Equation (4.21), is accepted as network 

value for base case. 

Quantification of transmission network value with an investment 

In the case of an investment, there are 𝑇 choices for timing, and thus different NPV lattices 

are created for each by employing Equations (4.19), (4.20), and (4.21). When an investment is 
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carried out at the beginning of period 𝑡, a supplementary revenue 𝐹 ($) and investment cost 𝐼 ($) 

are incorporated. If the investment is made at time point 𝑇 − 1, then 

 𝑉 �Q),y = 𝐹 − 𝐼 + 𝑃 �Q),y −
𝒞

1 + 𝑟 (4.22) 

If the investment is made at an arbitrary time point 𝑡 < 𝑇 − 1, then 

 

𝑉 $,y = 𝐹 − 𝐼 + 𝑃 $,y + 𝓅\𝑉 $d),y
\∈� �,�
y∈� �,�

8

1 + 𝑟 (4.23) 

For Choice 𝑡, we calculate value of investment by subtracting 𝑉 ),)  (calculated for base 

case) from 𝑉 ),)  (calculated for the network with the investment made at time point 𝑡). If this 

difference is negative, value of investment is regarded as 0. 

Numerical Example 

In this section, the framework we develop is demonstrated on a simple numerical example. 

Let’s assume that there exist three centers in the network (see Figure 4.5), each connected to 

another with a single power line. There are two generation centers (centers 1 and 2) and two 

consumption centers (centers 1 and 3). Parameters of generation centers and power lines are given 

in Figure 4.5. Initial demand values in centers 1 and 3 are 30 MW and 35 MW, respectively. We 

assume that susceptance of power lines are equal (𝒷)T = 𝒷)� = 𝒷)T = 1). We also assume that 

DGs have fixed sizes for the sake of simplification and they may be installed in consumption 

centers 1 and 3 with probabilities 𝜆)Δ𝑡 = 𝜆�Δ𝑡 = 0.5. Note that we just consider the installation 

of DGs, not their removals, to simply the problem in order to obtain fundamental managerial 

insights. Table 4.1 lists other hypothetical parameters of the numerical example. Note that in Table 
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4.1, whereas the first values for ℂ and 𝒞 represent base case, the second values are in place with 

an investment situation. 

	

Figure 4.5 A hypothetical three-center network 

Table 4.1 Parameters of the numerical example 

Parameter Value Parameter Value 
𝜎) 0.15/year 𝜆) 0.5/year 
𝜎� 0.13/year 𝛾) -0.15 
∆𝑡 1 year 𝜆� 0.5/year 
𝑇 2 years 𝛾� -0.15 
𝑟 0.05/year 𝜌 0.1 

ℂ $40/hour 𝒞 $250,000 
$50/hour $300,000 

𝐼 $15,000,000 𝐹 $17,000,000 
 

No Uncertainty Regarding DGs 

In this section, we assume that there does not exist any uncertainty of DG installations or 

removals (see Figure 4.6). For investments, we assume that added power line has 4 MW capacity 

and it has the same susceptance as the existing power lines. Table 4.2 shows LMP-based revenues 

for different demand values. Throughout this numerical example, we use Matlab (fmincon 

function) to solve OPF problems and calculate the values of transmission networks. 
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Figure 4.6 Demand evolution lattice for a year when DG uncertainty does not exist (the numbers 
shown on branches are the risk-neutral probabilities) 

Table 4.2 LMP-based revenues, no uncertainty regarding DG 

𝑡, 𝑘  𝑅 $,y  for Base Case 𝑅 $,y  for Investments Between Centers 
1 and 2 1 and 3 2 and 3 

2,1  964.19 425 500 975 
2,2  450 425 500 251.98 
2,3  964.19 425 500 975 
2,4  0 0 0 0 
1,1  450 425 500 975 

 

Note that there exist two choices for timing of investments: At the beginning of the first 

year (Choice 1) and at the beginning of the second year (Choice 2). Table 4.3 lists 𝑉 ),)  values for 

base case and for investments with different investment times. 

Table 4.3 𝑉 ),) and values of investments for base case and for investments, no uncertainty 
regarding DG 

Investments Choices 𝑉 ),)  Values of Investments 
Base Case - $8,608,074 - 

Between Centers 1 and 2 1 $7,326,242 0 
2 $7,522,909 0 

Between Centers 1 and 3 1 $8,457,796 0 
2 $8,028,844 0 

Between Centers 2 and 3 1 $14,539,154 $5,931,080 
2 $10,147,344 $1,539,270 
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DG in Consumption Center 1 

In this section, we analyze the case that a DG has a chance to be installed in consumption 

center 1 (see Figure 4.7). In Figure 4.7, state variables (separated by comma) are demand values 

in centers 1 and 3, respectively. Whereas the numbers on the left-hand side branches represent 

risk-neutral probabilities with correlation taken into account, the numbers on the right-hand side 

branches are probabilities of DG installations or of no installation. 

	

Figure 4.7 Demand evolution lattice for a year when DG has a chance to be installed in 
consumption center 1 

Table 4.4 gives LMP-based revenues for different demand values. Table 4.5 lists 𝑉 ),)  

values for base case and for investments with different choices. 

DG in Consumption Center 3 

In this section, we analyze the situation in which a DG installation may be realized in 

consumption center 3 (see Figure 4.8). 
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Table 4.4 LMP-based revenues, DG in consumption center 1 

𝑡, 𝑘  𝑅 $,y  for Base Case 𝑅 $,y  for Investments Between Centers 
1 and 2 1 and 3 2 and 3 

2,1  964.19 425 500 975 
2,2  964.19 425 500 975 
2,3  450 425 500 251.98 
2,4  450 425 500 0 
2,5  964.19 425 500 975 
2,6  0 204.22 0 975 
2,7  0 0 0 0 
2,8  0 0 0 0 
1,1  450 425 500 975 

Table 4.5 𝑉 ),)  and values of investments for base case and for investments, DG in consumption 
center 1 

Investments Choices 𝑉 ),)  Values of Investments 
Base Case - $8,637,724 - 

Between Centers 1 and 2 1 $7,535,125 0 
2 $7,731,792 0 

Between Centers 1 and 3 1 $8,640,544 $2,820 
2 $8,211,592 0 

Between Centers 2 and 3 1 $14,429,043 $5,791,319 
2 $10,037,233 $1,399,509 

 

	

Figure 4.8 Demand evolution lattice for a year when a DG has a chance to be installed in 
consumption center 3 
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Table 4.6 reports LMP-based revenues for different demands shown in the lattice. 𝑉 ),)  

values for base case and for investments with different timings are listed in Table 4.7. 

Table 4.6 LMP-based revenues, DG in consumption center 3 

𝑡, 𝑘  𝑅 $,y  for Base Case 𝑅 $,y  for Investments Between Centers 
1 and 2 1 and 3 2 and 3 

2,1  964.19 425 500 975 
2,2  450 425 500 975 
2,3  450 425 500 251.98 
2,4  450 425 500 0 
2,5  964.19 425 500 975 
2,6  0 425 0 0 
2,7  0 0 0 0 
2,8  0 0 0 0 
1,1  450 425 500 975 

 

Table 4.7 𝑉 ),)  and values of investments for base case and for investments 

Investments Choices 𝑉 ),)  Values of Investments 
Base Case - $7,589,197 - 

Between Centers 1 and 2 1 $7,660,553 $71,356 
2 $7,857,219 $268,022 

Between Centers 1 and 3 1 $8,215,456 $626,259 
2 $7,786,503 $197,306 

Between Centers 2 and 3 1 $15,017,430 $7,428,233 
2 $10,625,621 $3,036,424 

 

Discussions 

𝑉 ),)  values for base cases in three situations (no uncertainty regarding DGs, DG in 

consumption center 1 and DG in consumption center 3) lead to a significant managerial insight. It 

is observed that 𝑉 ),)  value computed with DG in consumption center 1 is not less than 𝑉 ),)  value 

computed with no uncertainty regarding DGs. It would be expected to see that installation of a DG 

most likely undervalues transmission lines because the community with a DG is partly in need of 
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the lines. Our results contradict this expectation and emphasize that center 1 is not an ‘influential’ 

center to determine the dispatch amounts of generation centers. The reason is that whenever 

demand increases in this center, additional demand is met by its own generation plant. Center 3, 

on the other hand, does not have any generation plant and a demand increase highly impacts 

dispatch amounts of generation centers. Therefore, though a DG is installed and demand decreases 

in center 1, the network still produces high level of revenues because of high demand in center 3. 

This result is also supported by observation that 𝑉 ),)  value computed with DG in consumption 

center 3 is significantly less than 𝑉 ),)  value computed with no uncertainty regarding DGs. This 

discussion indicates decision makers should not always think that a DG decreases revenue gained 

by transmission lines. Instead, they should pay attention if the center in which a DG is installed is 

an influential center to determine dispatch amounts of generation centers.  

It is also observed that the investment between centers 1 and 2 is delayed to the beginning 

of the second year. The new line decreases LMP-based revenues. Therefore, the decision maker 

intends to gain more revenue by not adding a power line at the beginning of the first year. In the 

cases that no uncertainty exists regarding DGs and a DG might be installed in consumption center 

1, the investment is worthless at both time points. On the other hand, the investment is valuable in 

the case that a DG might be installed in consumption center 3. The fundamental reason is that 𝑉 ),)  

value for base case with a DG installation in consumption center 3 is significantly less than other 

𝑉 ),)  values for base cases. Hence, the investment capitalizes on lower 𝑉 ),)  value and makes 

profit. 

Investment between centers 1 and 3 is made at the beginning of the first year as LMP-based 

revenues turn out to be higher throughout the first year when the investment is made. Similar to 

the investment between centers 1 and 2, the investment between centers 1 and 3 is worthless in the 



 

	

164 

cases that there does not exist any uncertainty regarding DGs and a DG might be installed in 

consumption center 1. It is worth to make it if a DG might be installed in consumption center 3 

because 𝑉 ),)  value for base case is lower and the decision maker capitalizes on it. 

Investment between centers 2 and 3 is more profitable when it is made at the beginning of 

the first year because of higher LMP-based revenues resulting from the investment. Similar to 

other investments, the decision maker capitalizes on lower 𝑉 ),)  value when a DG might be 

installed in consumption center 3. 

Conclusion 

In this study, we propose a real options framework to quantify values of transmission 

investments under demand and DG uncertainties. We model the uncertain parameters with GBM 

and compound Poisson processes, and make use of lattice approach to discretize them. We propose 

an idea to reduce computational complexity stemming from combinations of jump and diffusion 

processes in a single lattice model. Key components of the proposed framework are demonstrated 

on a hypothetical numerical example based on three-center transmission network. The results 

indicate decision makers should not have a priori judgement that transmission network value 

decreases in the case a DG is installed. Instead, they should pay attention to locations of 

installations. If installation locations are not influential to determine dispatch amounts of 

generation centers, installations of DGs may not have effect on value of transmission lines. Future 

studies could involve two paths. First, correlation between GBM and compound Poisson processes 

could be taken into account because when demand for electricity increases, there may be higher 

chance of DG installations. Second, correlation between multiple compound Poisson processes 

could be considered because a community may prefer a DG if a neighbor community installs it 

due to the fact that they may have the same intention. 
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APPENDIX 4.A MORE EXPLANATIONS ABOUT EQUATION (4.1) 

Note that the coefficient of 𝑑𝑠$ in Equation (4.1) is 𝜅 − 1 because the model has 
multiplicative property: In other words, when a jump occurs, E�QE�ü

E�ü
= 𝜅 − 1 where 𝐷$ü =

lim
æ→$ü

𝐷(𝑎) denotes the demand just before a jump event occurs. Thus, 𝐷$ = 𝜅𝐷$ü. Note that by 
restricting 𝜅 to be a positive value, we ensure that 𝐷$ never takes negative values. 

Note also that the coefficient of 𝑑𝑡 in Equation (4.1) involves −𝜆𝜅 because martingale 
property should be maintained. In other words, 𝜅 − 1 𝑑𝑠$ is regarded as an extra term, which 
increases or decreases the process. Therefore, it should be balanced with a component in the 
coefficient of 𝑑𝑡. In other words, 

 𝐸 𝜅 − 1 𝑑𝑠$ = 𝐸 𝜅 − 1 𝐸 𝑑𝑠$  

																																= 𝐸 𝜅 − 1 𝐸 𝑑𝑠$  

																																= 𝑒ìd
)
T]

¬
− 1 𝜆𝑑𝑡 

(4A.1) 

𝐸 𝑑𝑠$  equals to 𝜆𝑑𝑡 because 𝑑𝑠$ is 1 with probability 𝜆𝑑𝑡 and 0 with probability 1 − 𝜆𝑑𝑡. 
Therefore, it should be obvious that the term −𝜆𝜅 should be added. 
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APPENDIX 4.B SOLUTION OF EQUATION (4.1) 

In order to solve Equation (4.1), let’s rewrite it as follows: 

 𝑑𝐷$ = 𝐷$ 𝑟 − 𝜆𝜅 𝑑𝑡 + 𝐷$𝜎𝑑𝑧$ + 𝐷$ 𝜅 − 1 𝑑𝑠$ (4B.1) 

Suppose 𝑓 𝐷$ = ln𝐷$. Then 𝑓Ò(𝐷$) = 1 𝐷$ and 𝑓ÒÒ 𝐷$ = −1 𝐷$T. If we apply Ito’s 
lemma for jump-diffusion process (see Appendices 4.C and 4.D), we get 

 𝑑 ln𝐷$ =
1
𝐷$
𝐷$ 𝑟 − 𝜆𝜅 −

1
2𝐷$T

𝐷$T𝜎T 𝑑𝑡 +
1
𝐷$
𝐷$𝜎𝑑𝑧$

+ ln 𝐷$ + 𝜅 − 1 𝐷$ − ln𝐷$ 𝑑𝑠$ 
(4B.2) 

and 

 𝑑 ln𝐷$ = 𝑟 − 𝜆𝜅 −
𝜎T

2 𝑑𝑡 + 𝜎𝑑𝑧$ + ln 𝜅 𝑑𝑠$ (4B.3) 

If we integrate both sides, 

 𝑑 ln𝐷æ

$

Å

= 𝑟 − 𝜆𝜅 −
𝜎T

2 𝑑𝑎
$

Å

+ 𝜎𝑑𝑧æ

$

Å

+ ln 𝜅 𝑑𝑠æ

$

Å

 (4B.4) 

and 

 ln 𝐷$ − ln𝐷Å = 𝑟 − 𝜆𝜅 −
𝜎T

2 𝑡 + 𝜎𝑧$ + ln 𝜅$

%�

$`)

 (4B.5) 

where we assume 𝑧Å = 0. The last term follows from the fact that integral from 0 to 𝑡 
means the sum of the jump events. Therefore, 

 𝐷$ = 𝐷Å𝑒
!Q"#QO

¬

T $dOð�d 9: #;
<�
;=«  (4B.6) 

and 

 𝐷$ = 𝐷Å𝑒
!Q"#QO

¬

T $dOð� 𝜅$

%�

$`)

 (4B.7) 
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APPENDIX 4.C ITO’S LEMMA AND GBM 

Let 𝑧$ be a Brownian motion at time 𝑡. Then the instantaneous change in an arbitrary 
function 𝑓 of 𝑧$ is calculated as (see, e.g., Klebaner 2005): 

 𝑑𝑓 𝑧$ = 𝑓Ò 𝑧$ 𝑑𝑧$ +
1
2 𝑓′′(𝑧$)𝑑𝑡 

(4C.1) 

Ito’s lemma can also be written for a general Ito process. 𝐷$ is said to be an Ito process if 

 𝑑𝐷$ =𝓂(𝐷$, 𝑡)𝑑𝑡 + 𝜎(𝐷$, 𝑡)𝑑𝑧$ (4C.2) 

where 𝓂(𝐷$, 𝑡) and 𝜎(𝐷$, 𝑡) are drift and volatility parameters (Dixit and Pindyck 1994). Ito’s 
lemma is given for an arbitrary function 𝑓 as 

 𝑑𝑓 𝐷$ = 𝑓Ò 𝐷$ 𝑑𝐷$ +
1
2𝑓

ÒÒ 𝐷$ 𝑑 𝐷, 𝐷 $ (4C.3) 

where 𝑑 𝐷,𝐷 $ is the quadratic variation of Ito process, which is defined as: 

 
𝑑 𝐷,𝐷 $ = 𝜎T(𝐷æ, 𝑎)𝑑𝑎

$

Å

= 𝜎T 𝐷$, 𝑡  (4C.4) 

Therefore, 

 𝑑𝑓 𝐷$ = 𝑓Ò 𝐷$ 𝑑𝐷$ +
1
2𝑓

ÒÒ 𝐷$ 𝜎T(𝐷$, 𝑡)𝑑𝑡 (4C.5) 

If we plug 𝑑𝐷$, we get 

 𝑑𝑓 𝐷$ = 𝑓Ò 𝐷$ 𝓂(𝐷$, 𝑡)𝑑𝑡 + 𝜎(𝐷$, 𝑡)𝑑𝑧$
+
1
2 𝑓

ÒÒ 𝐷$ 𝜎T(𝐷$, 𝑡)𝑑𝑡 

																							= 𝑓Ò 𝐷$ 𝓂(𝐷$, 𝑡) +
1
2 𝑓

ÒÒ 𝐷$ 𝜎T(𝐷$, 𝑡) 𝑑𝑡
+ 𝑓Ò 𝐷$ 𝜎(𝐷$, 𝑡)𝑑𝑧$ 

(4C.6) 

Let’s assume that 𝐷$ follows GBM; that is, 

 𝑑𝐷$ =𝓂𝐷$𝑑𝑡 + 𝜎𝐷$𝑑𝑧$ (4C.7) 

Note that 𝓂(𝐷$, 𝑡) and 𝜎(𝐷$, 𝑡) in a general Ito process take the form of 𝓂𝐷$ and 𝜎𝐷$ in 
GBM. Suppose 𝑓 𝐷$ = ln𝐷$. Hence, 𝑓′ 𝐷$ = 1/𝐷$ and 𝑓ÒÒ 𝐷$ = −1/𝐷$T, and 
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𝑑𝑓 𝐷$ =

1
𝐷$
𝓂𝐷$ −

1
2𝐷$T

𝜎T𝐷$T 𝑑𝑡 +
1
𝐷$
𝜎𝐷$𝑑𝑧$

= 𝓂 −
1
2𝜎

T 𝑑𝑡 + 𝜎𝑑𝑧$ 
(4C.8) 

If we integrate both sides, 

 
𝑑 ln𝐷æ

$

Å

= 𝓂 −
1
2𝜎

T 𝑑𝑎
$

Å

+ 𝜎𝑑𝑧æ

$

Å

 (4C.9) 

and 

 𝐷$ = 𝐷Å𝑒
𝓂Q)TO

¬ $dOð� (4C.10) 

If we take the expectation of both sides, we get 

 𝐸 𝐷$ = 𝐷Å𝑒
𝓂Q)TO

¬ $𝐸[𝑒Oð�] (4C.11) 

It is known that 𝑧$~𝑁 0, 𝑡  and 𝜎𝑧$~𝑁 0, 𝜎T𝑡 . Hence, 

 𝐸 𝑒Oð� = 𝑒Åd
)
TO

¬$ (4C.12) 

Finally, 

 𝐸 𝐷$ = 𝐷Å𝑒
𝓂Q)TO

¬ $𝑒
)
TO

¬$ = 𝐷Å𝑒𝓂$ (4C.13) 

Risk-neutrality implies that expected value of the process at time 𝑡 is equal to initial value. 
Moreover, when time-value is a significant factor, discounted value of the process should be taken 
into account. Thus, for the above process, 

 𝐸[𝐷$]𝑒Q!$ = 𝐷Å (4C.14) 

should hold to maintain the martingale property, or risk-neutrality property. It can be concluded 
that if 𝓂 is replaced with 𝑟 in GBM, its risk-neutral form is obtained. 
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APPENDIX 4.D JUMP PROCESS AND ITO’S LEMMA 

Ito’s lemma can be applied as well for jump-diffusion process (see, e.g., Birkbeck 2013). 
Let 𝒩$ be a Poisson counting process. Particularly, 

 𝑑𝒩$ =𝒩$dÄ$ −𝒩$ (4D.1) 

In this process, 𝑑𝒩$ takes non-negative integer values. Since it is Poisson distributed, we 
can write 

 
𝑃 𝑑𝒩$ = 𝓀 = 𝑒Q"Ä$

𝜆𝑑𝑡 𝓀

𝓀!  (4D.2) 

Since 𝑑𝑡 is very small, probability approaches to 0 when 𝓀 ≥ 2. Therefore, for 0 and 1, 
𝑃 𝑑𝒩$ = 0 = 𝑒Q"Ä$ and 𝑃 𝑑𝒩$ = 1 = 𝑒Q"Ä$𝜆𝑑𝑡. If Taylor’s expansion of the exponential is 
applied, we get 

 𝑑𝒩$ =
0, with probability	1 − 𝜆𝑑𝑡
1, with probability	𝜆𝑑𝑡  (4D.3) 

If we consider an arbitrary function 𝑓, 

 𝑑𝑓 𝒩$ = 𝑓 𝒩$dÄ$ − 𝑓 𝒩$  (4D.4) 

or 

 𝑑𝑓 𝒩$ = 𝑓 𝒩$ + 𝑑𝒩$ − 𝑓 𝒩$  (4D.5) 

Considering the probabilities of 𝑑𝒩$, we write 

 𝑑𝑓 𝒩$ =
0, with probability	1 − 𝜆𝑑𝑡

𝑓 𝒩$ + 1 − 𝑓 𝒩$ , with probability	𝜆𝑑𝑡  (4D.6) 

Since 𝑑𝑓 𝒩$  and 𝑑𝒩$ have two consequences with the same probabilities, they are 
incorporated into a single equation as 

 𝑑𝑓 𝒩$ = 𝑓 𝒩$ + 1 − 𝑓 𝒩$ 𝑑𝒩$ (4D.7) 

This process can be generalized to the random jump magnitude. Let 𝒳$ be a process 
jumping at the same time with Poisson counting process, but the magnitude of the jump is a random 
variable 𝐽$. Therefore, 

 𝑑𝒳$ = 𝐽$𝑑𝒩$ (4D.8) 

and, 
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 𝑑𝑓 𝒳$ =
0, with probability 1 − 𝜆𝑑𝑡

𝑓 𝒳$ + 𝐽$ − 𝑓(𝒳$), with probability	𝜆𝑑𝑡  (4D.9) 

It can be expressed in a single equation as 

 𝑑𝑓 𝒳$ = 𝑓 𝒳$ + 𝐽$ − 𝑓(𝒳$) 𝑑𝒩$ (4D.10) 

Up to this point, 𝑑𝒳$ has had only jumps. In other words, the change in 𝑑𝒳$ between two 
jumps has been 0. In jump-diffusion process, however, the change in 𝑑𝒳$ between two jump 
events is different than 0 because of the effects of drift and volatility parameters. Mathematically 
speaking, 𝒳$ is said to follow jump-diffusion process if it has the following stochastic differential 
equation 

 𝑑𝒳$ =𝓂(𝒳$, 𝑡)𝑑𝑡 + 𝜎(𝒳$, 𝑡)𝑑𝑧$ + 𝐽$𝑑𝒩$ (4D.11) 

Ito’s lemma for this process with an arbitrary function 𝑓 is expressed as 

 𝑑𝑓 𝒳$ = 𝑓Ò 𝒳$ 𝓂(𝒳$, 𝑡) +
1
2 𝑓

ÒÒ 𝒳$ 𝜎T(𝒳$, 𝑡) 𝑑𝑡
+ 𝑓Ò 𝒳$ 𝜎 𝒳$, 𝑡 𝑑𝑧$ + 𝑓 𝒳$ + 𝐽$ − 𝑓(𝒳$) 𝑑𝒩$ 

(4D.12) 
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APPENDIX 4.E CALCULATING CUMULANTS 

For a compound Poisson random variable 𝒴 = 𝕏𝒾ℕ
𝒾`)  where ℕ is Poisson distributed 

random variable with parameter 𝜆ℕ and 𝕏𝒾’s are independent and identically distributed random 
variables, the moment generation function ℳ𝒴 𝑡  is given as (see, e.g., Ma 2010) 

 ℳ𝒴 𝑡 = 𝑒" ℳ𝕏 $ Q)  (4E.1) 

Cumulant generating function of 𝒴 denoted by Ψ𝒴(𝑡) is calculated as the logarithm of the 
corresponding moment generating function. That is, 

 Ψ𝒴 𝑡 = 𝜆 ℳ𝕏 𝑡 − 1  (4E.2) 

In log-normal jump distribution, 𝕏 is a normally distributed random variable. Thus, by 

using the fact that moment generating function of 𝕏 is 𝑒J$d
K¬�¬

¬  where 𝜂 and 𝛽 are mean and 
standard deviation of 𝕏, one can write 

 
Ψ𝒴 𝑡 = 𝜆 𝑒J$d

Ô¬$¬
T − 1  (4E.3) 

Cumulants are calculated by taking the sequential derivatives of  Ψ𝒴 𝑡  with respect to 𝑡 
and by setting 𝑡 equal to zero. In other words, the first cumulant 𝒦) is 

 
𝒦) =

𝑑Ψ𝒴 𝑡
𝑑𝑡 $`Å

= 𝜆𝜂 (4E.4) 

Similarly, 𝒦T is 

 
𝒦T =

𝑑TΨ𝒴 𝑡
𝑑𝑡T $`Å

= 𝜆(𝜂T + 𝛽T) (4E.5) 

The rest of the cumulants can be computed in the same way. Note that we need the first 
2𝑚 cumulants if we discretize the jump distribution with 2𝑚 + 1 branches. Moreover, since we 
account for the number of events in ∆𝑡 time interval, the parameter of compound Poisson process 
turns out to be 𝜆∆𝑡. That is why, 𝜆 is replaced with 𝜆∆𝑡 in the above calculations. 

The reason why 𝜇𝒾 ≈ 𝒦𝒾 when ∆𝑡 is sufficiently small should also be given. For 𝒾 = 1, 
one can say that 𝜇) = 𝜆∆𝑡. This result can be reached by summing up several normally distributed 
random variables and taking the expectation of the sum. For 𝒾 ≥ 2, it is known that 𝜇𝒾 = 𝒦𝒾 +
𝑂(∆𝑡T) where 𝑂(∆𝑡T) includes the multiplication 𝒦𝒿’s when 𝒿 < 𝒾. Thus, ∆𝑡 ≫ ∆𝑡T, ∆𝑡

ô
¬, ∆𝑡� … 

if ∆𝑡 is chosen sufficiently small. Therefore, it can be concluded that 𝜇𝒾 = 𝒦𝒾 for all 𝒾 ≥ 1 (see, 
e.g., Kendall 1945) 

Switching from moment to cumulant in this context is useful because ℳ𝒴 𝑡  is a function 
of exponential to the power of another exponential. Therefore, taking the derivative of ℳ𝒴 𝑡  with 
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respect to 𝑡 becomes a tedious job. Instead, taking advantage of the cumulant (another distribution 
characteristic alternative to the moment) is very advantageous because of its logarithm property. 
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CHAPTER 5. OVERALL DISSERTATION APPENDIX 

In this chapter, we address various issues raised during my prelim exam and our discussions 

with fellows. 

Equality of Susceptance Values While Power-Carrying Capacities Differ 

This subsection refers to an issue which appears in Chapter 2 and Chapter 4. In numerical 

examples of both of these chapters, we assume that existing power lines in the network have the 

same susceptance values, but their power-carrying capacities differ. We further assume that the 

power lines which will be installed in the network have the same susceptance values as existing 

power lines, but their capacities are again different. 

We verify that Bushnell and Stoft (1995) make the same assumptions implicitly. They 

assume that the power lines, existing and to be added, share a common susceptance value. 

Note that there exist two different capacity definitions. One is called thermal limit of a 

power line. It indicates that a power line has its own physical properties and if an excess amount 

of power flows on that line, it is likely be physically damaged. Therefore, power transmission 

companies (or other related bodies) set a maximum limit of power flow, which is generally less 

than thermal limit for security reasons. In this discussion, we mean thermal limit by power line 

capacities. We verify that thermal limit of a power line, in reality, is limited to so-called Surge 

Impedance Loading. It is stated in Power Delivery Consultants, Inc. (2013) that Surge Impedance 

Loading is the proportion of end bus voltage to characteristic impedance of a power line. It is 

further stated that characteristic impedances of sufficiently long power lines are approximately 

equal to each other, and thus, Surge Impedance Loading uniquely depends on end bus voltages. 

To summarize, we verify that our assumptions regarding the equality of susceptance values 

do not harm the models. 
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Different Approaches to Calculation of LMPs 

This subsection addresses different approaches used in calculating LMPs. There are two 

classical ways of obtaining LMPs in a given transmission network. First approach is using the 

values of Lagrange multipliers of the constraints in an OPF problem representing the power flow 

balance in centers. The second way (so-called layman’s definition) adopts a re-optimization 

approach, which means that LMP of a given center, say 𝑖, is the difference between objective 

function values of OPF problem, solved with original demand value in center 𝑖 and with a demand 

in this center increased by 1 MW (California ISO 2005). We adopt the second approach to calculate 

LMPs in Chapter 2 and Chapter 4 because it is a practical way utilized in California electricity 

market. Moreover, we think that it is more intuitive and easier to explain what LMP is and how it 

is calculated. 

It is obvious that these approaches may give rise different sets of LMPs for a given set of 

demand values in a transmission network. The reason lies in the definition of a Lagrange 

multiplier. Lagrange multiplier of a constraint is the amount of change in the objective function 

value of an optimization problem when the right-hand side of the constraint is increased 

infinitesimally. It is clear that 1 MW increase in layman’s definition is not infinitesimal. To 

observe it better, we conduct a simple study to compare LMPs obtained by two approaches and try 

to see if an infinitesimal change adopted in layman’s definition would give rise to same LMPs 

obtained by Lagrange multipliers. 

We refer to the demand values given in Table 2.2 and recalculate LMPs with two 

approaches. In Table 5.1, (i) indicates that LMPs are calculated by layman’s definition, (ii) 

indicates that LMPs are calculated by layman’s definition, but with 0.01 MW increases in nodal 

balance constraints, and (iii) indicates that LMPs are calculated as values of Lagrange multipliers 
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of the nodal balance constraints. We remind that 𝜋- denotes LMP in center 𝑖 of the transmission 

network, taken as a case in numerical example of Chapter 2. Table 5.1 reflects that the only 

difference between results of layman’s definition (i) and Lagrange multipliers (iii) is LMP in center 

3 for a demand value of 52 MW. Note that when we implement layman’s definition with 0.01 MW 

increase (ii), all sets of LMPs turn out to be the same. 

Table 5.1 Values of LMPs calculated with different approaches 

Demand value at 
center 3 (MW) 

(i)  (ii)  (iii) 

𝜋) 𝜋T 𝜋�  𝜋) 𝜋T 𝜋�  𝜋) 𝜋T 𝜋� 
59.22 40 30 50  40 30 50  40 30 50 
45.66 30 30 30  30 30 30  30 30 30 

52 30 30 40  30 30 30  30 30 30 
 

An Alternative Performance Measure (Based on Fuel Cost Saving) for Jumboization 

In this section, we revisit Chapter 3 and try to solve jumboization investment problem by 

removing two critical assumptions made previously (Assumptions 3 and 4). We remind that the 

replenishment oiler makes a round-trip voyage between two constant locations (Assumption 3), 

and it moves at a constant speed during voyages (Assumption 4). In this section, we think that if 

the previous model functions with a constant distance restriction, then it should also work 

regardless of the magnitude of the distance. It implies that we can think of an infinitesimal distance 

between locations without enforcing a numerical value beforehand. Another change we adopt in 

this section is to consider fuel cost saving per unit demand, instead of per unit displacement 

because light ship materials (hull structure, permanent materials on the ship, etc.) comprise of an 

auxiliary system, which only exists because of the requirement of transporting fuel to U.S. Navy 

ships at sea. 
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It is stated in Chapter 3 that 0.0046𝑃 + 0.2 is the maximum amount of daily consumption 

of bunker fuel for a ship given that 𝑃 is the maximum power required to move the ship with full 

cargo. In this section, we directly calculate the amount of bunker fuel consumed by the ship per 

unit demand as 0.0046𝑃 + 0.2 𝐷$ (we remind that 𝐷$ is the amount of fuel demanded by an 

U.S. Navy ship at sea) and fuel cost saving gained by jumboization as 

 0.0046𝑃) + 0.2
𝐷$

−
0.0046𝑃T + 0.2

𝐷$
 (5.1) 

where 𝑃) and 𝑃T denote the maximum power required before and after jumboization. Value of the 

project (in this case, value of the project is the lengthened form of the replenishment oiler) is 

calculated as the expected value of all future fuel cost savings discounted with factor, 𝜌. In other 

words, value of the project, 𝑉 𝐷§ , is 

 
𝑉 𝐷§ = 𝐸

0.0046 𝑃) − 𝑃T + 0.2
𝐷$

𝑒QÎ$𝑑𝑡
Ï

Å
 (5.2) 

where 𝐷§ is assumed to be the demand level at which jumboization is done (note that 𝑥 does not 

denote a time point) and lower bound of integral represents the time of jumboization. Equation 

(5.2) is simplied as 

 
𝑉 𝐷§ = 0.0046 𝑃) − 𝑃T + 0.2 𝐸

1
𝐷$
𝑒QÎ$𝑑𝑡

Ï

Å
 (5.3) 

In order to calculate expected value of the integral in Equation (5.3), we need to verify if 

we can change the order of expectation and integration operators. Fubini’s theorem (Klebaner 

2005) states that the change of order is viable if 
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𝐸

1
𝐷$
𝑒QÎ$

Ï

Å
< ∞ (5.4) 

Therefore, expected value of reciprocal of a GBM process should be known. We can write 

(by using the facts )
E�
𝑒QÎ$ > 0 and 𝐸 )

E�
𝑒QÎ$ = 𝐸 )

E�
𝑒QÎ$) 

 
𝐸

1
𝐷$

= 𝐸
1

𝐷Å𝑒
ïQO

¬

T $𝑒Oð�
 (5.5) 

because we know the solution of 𝐷$ (see Appendix 3.D). Note that 𝑧$ is a Brownian increment. 

Hence, Equation (5.5) is simplified as 

 𝐸
1
𝐷$

=
1

𝐷Å𝑒
ïQO

¬

T $
𝐸 𝑒QOð�  (5.6) 

It is known that negative of a GBM process is itself. Therefore, it can be simply claimed 

𝑒QOð� = 𝑒Oð�. We know that 𝐸 𝑒Oð� = 𝑒
O¬�
¬  and thus, 

 
𝐸

1
𝐷$

=
𝑒
O¬$
T

𝐷Å𝑒
ïQO

¬

T $
 (5.7) 

Therefore, 

 
𝐸

1
𝐷$

=
𝑒 O¬Qï $

𝐷Å
 (5.8) 

Since jumboization is done when demand is at the level of 𝐷§, we can replace 𝐷§ with 𝐷Å 

in Equation (5.8). If we plug Equation (5.8) into inequality (5.4), we get 
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 𝑒 O¬QïQÎ $

𝐷§

Ï

Å
< ∞ (5.9) 

Integral part of inequality (5.9) is solved as 

 𝑒 O¬QïQÎ $

𝐷§

Ï

Å
=

1
𝐷§ 𝛼 + 𝜌 − 𝜎T

 (5.10) 

Because of our technical assumption 𝛼 − O¬

T
> 0 (see Equation (3.23)), we can write 𝜎T <

2𝛼. Another technical assumption indicates 𝜌 > 𝛼 (see Equation (3.12)). Therefore, we say that 

𝛼 + 𝜌 − 𝜎T > 0. It verifies that Fubini’s theorem is applicable because )
EP ïdÎQO¬

< ∞. Hence, 

change of order of integration and expectation operators can be performed in Equation (5.3). 

Finally, Equation (5.3) is written as 

 
𝑉 𝐷§ =

0.0046 𝑃) − 𝑃T + 0.2
𝐷§ 𝛼 + 𝜌 − 𝜎T

 (5.11) 

By using the same value-matching and smooth-pasting conditions (Equations (3.19) and 

(3.20)), we can obtain 

 
𝐷∗ =

𝛽) − 1 0.0046 𝑃) − 𝑃T + 0.2
𝛼 + 𝜌 − 𝜎T 𝛽)𝐼

 (5.12) 

Note that 𝐷∗ > 0 because 𝛽) > 1, 𝑃) − 𝑃T > 0 as jumboization leads to fuel cost saving 

resulting from less power required to move the ship, 𝛼 + 𝜌 − 𝜎T > 0 as shown above and 𝐼 > 0 

as obvious. 

Equation (5.12) is inherently an interesting finding because jumboization cost, which may 

be in the order 10 million dollars is in the denominator. It shows that 𝐷∗ is a positive number, but 
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very close to zero. Although it does not seem to be a valuable finding, it is not surprising and it is 

in line of the expectation because underlying performance measure is fuel cost saving per unit 

demand. If demand is high, fuel cost saving per unit demand will be naturally low. Hence, 

threshold demand level to jumboize the ship is very close to zero to maximize fuel cost saving per 

unit demand. 

Note that two sets of parameters in Equation (5.12) have units depending on two different 

time intervals. Whereas 𝛼, 𝜌, and 𝜎 are related to time intervals for demand realizations, 𝑃) and 

𝑃T are related to time intervals for voyages of the replenishment oiler. For instance, if demand by 

the receiving ship is realized at every two weeks, units of 𝛼, 𝜌, and 𝜎 should be percent per two 

weeks. On the other hand, it does not necessarily mean that the replenishment oiler will spend 

whole two weeks in voyages. It can carry the fuel to the receiving ship and go back to its original 

port in, say, two days. In this case, 0.0046 𝑃) − 𝑃T + 0.2 should be multiplied with two because 

0.0046 𝑃) − 𝑃T + 0.2 has unit of gallon per day. As a summary, one should be cautious in using 

Equation (5.12) because of various units depending on different time intervals. 

Alternative Performance Measures for Jumboization 

In this section, we list alternative performance measures other than fuel cost saving. Since 

jumboization in the U.S. Navy is a type of non-profit investments, there must be other performance 

measures or motivations for the decision makers in the U.S. Navy who decide on jumboization. 

We need to state that we have an extreme lack of historical facts about jumboization in the U.S. 

Navy. All we know is that a few of replenishment oilers were jumboized at different times in the 

past. However, we do not know how they decided (we know that they wanted to increase the 

capacity of the ships, but nothing more than this) and we are not aware of financial aspects 
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(investment cost, etc.) of all these operations. Therefore, we draw inferences whenever we 

encounter a narrative regarding jumboization investments in the U.S. Navy. 

First of all, we admit the performance measure based on fuel cost saving sounds like it is a 

secondary objective of jumboization investments, or a natural output of these investments. As 

stated previously, the decrease in wave-making resistance leads to less power required to move the 

ship with the same amount of cargo and thus, less fuel amount consumed by the ships. However, 

it would not be completely correct to think that the decision makers in the U.S. Navy jumboized 

the replenishment oilers just for the sake of fuel cost saving. We adopt this performance measure 

in Chapter 3 because fuel cost saving is the unique and clearest measure that can be converted to 

monetary values. 

However, we later on come across a website (Finnlines 2017) which introduces 

jumboization operations in a transportation company located in Finland. According to it, Finnlines 

jumboizes its four large vessels in 2017 in order to reduce energy consumption per unit transported 

cargo. It strengthens our idea that fuel cost saving can be taken into account as a performance 

measure for jumboization investments. 

We can also list other performance measures different than fuel cost saving. IT1me (2015) 

indicates that the U.S. Navy jumboized eight of oilers to increase their individual capacities to 

180,000 barrels. The decision makers in the U.S. Navy considered that this amount would be 

sufficient to support a supercarrier and its jet air wing's fuel needs. Furthermore, Wildenberg 

(1996) states that the U.S. Navy had only a few oilers which had large enough capacities to fill an 

empty fast combat ship in 1960s. They were motivated by this need and they jumboized five of 

oilers. We interpret these narratives in the way that if jumboization was not in place, the 

replenishment oilers would have to travel more frequently to meet the fuel demand. Therefore, by 
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lengthening of replenishment oilers, the number of voyages required and the total amount of time 

spent in travels would be decreased. Hence, time saving could be an important performance 

measure for jumboization in the U.S. Navy. We find a similar study which considers improvement 

in time saving as a performance measure in infrastructure context (McConnell 2007). It states that 

there is a special (managed) line on Katy Freeway in Houston, Texas. This line used to be a 

HOV2+, which means vehicles with 2 passengers or more can use it. Later on, in order to increase 

the capacity of Katy Freeway (capacity of road is basically measured by the number of vehicles 

passing a point in an hour under normal road and traffic conditions), this line was converted to 

HOT3+ under Quick Ride program in 2007. It implies that managed line started being used by 

vehicles with 3 passengers or more, but vehicles with 2 passengers was again able to use it by 

paying a $2 fee. In this way, the capacity of Katy Freeway was increased and an amount of fund 

was collected. However, the performance of this program was measured with time saving per 

passenger. It turned out that Quick Ride program was able to give rise 14 miles per hour larger 

speed on average. In order to convert this measure to a monetary unit, the reduction in fuel 

consumption of the cars were taken into account based on the reduction in time spent on the road 

and the increase in speed. We find a match between Quick Ride program and jumboization 

investment. As in Quick Ride program, capacities of the replenishment oilers are increased and a 

great deal of travel time are saved. As a bottom line, we convey that jumboization problem could 

be modeled with the consideration that expansion of capacity decrease the number of voyages and 

amount of time spent during voyages. 

Jumboization investments in the U.S. Navy can also be modeled in the way that 

enlargement of a replenishment oiler defers purchasing of a new replenishment oiler. Moreover, 

another motivation for jumboization would be to avoid the risk of unserved demand. 
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Risk-Averse Decision Makers 

Note that the frameworks we developed in main chapters of this dissertation are for risk-

neutral decision makers. For instance, the probabilities of branches in lattice models which are 

used in backward recursion relations are risk-neutral probabilities. If decision makers are risk-

averse, these frameworks are not applicable, which can be regarded as a limitation of our 

frameworks. Instead of using lattice models, one can use other decision analysis frameworks such 

as decision tree and utility theory under the consideration that decision makers are risk-averse. 

Another point is that the U.S. Navy is too large organization to follow risk-averse approach 

in decision making. It implies that risk faced by the U.S. Navy can easily be diversified in many 

investments so that they do not have to be risk-averse in a single decision. 

𝑳𝒊𝒋 in OPF Problems 

In this subsection, we will address an issue arisen for mathematical formulations of OPF 

problems. Particularly, in Equation (2A.4) of Chapter 2 and in Equation (4.17) of Chapter 4, the 

amount of power, denoted by 𝐿-., flowing on a power line between centers 𝑖 and 𝑗 is not a decision 

variable. Instead, it is calculated depending on the values of decision variables 𝜃- and 𝜃., which 

denote voltage angles in centers 𝑖 and 𝑗. One can see that 𝐿-. is also accepted as a decision variable 

in some formulations of OPF problem. Indeed, this is not a requirement as it becomes a redundant 

decision variable. 

Variance in Electricity Generation of DGs 

Note that the framework we developed in Chapter 4 inherently assumes that a DG always 

produces electricity at its capacity when it is installed. In this chapter, we do not consider the 

variance in the amount of electricity generated by DGs. Our main focus is to model the uncertainty 

stemming from random installations or removals of DGs. 
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Different Stochastic Processes to Model the Evolution of Demand for Fuel 

Note that in Chapter 3, we assume that demand for fuel by the receiving ships follows 

GBM process. We conduct statistical tests on a unique dataset (recall that we do not have available 

data of demand amount transported by a single replenishment oiler; rather we have an aggregated 

dataset in which we can see total amount of fuel transported by all replenishment oilers in a year) 

and verify that the assumption is valid in this context. 

A question might arise as to what would happen if a different stochastic process is used to 

model the evolution of demand. It is known that the advantage of utilizing GBM process is its 

analytically tractable property. That is, it often leads to closed-form solutions, which facilitate to 

derive strong managerial insights. Beware that other stochastic processes such as Ornstein–

Uhlenbeck process do not lead to closed-form solutions. In this case, numerical approaches such 

lattice frameworks or Monte Carlo simulations should be followed. Depending on a single process, 

GBM, can be counted as a weakness of our framework. 

A Numerical Study on Computationally Efficient Lattice Framework Proposed in 
Chapter 4 

In this subsection, we aim to demonstrate the efficiency of the lattice framework we 

proposed in Chapter 4. Recall that model 1 is the lattice model in which branches representing 

jump movements are drawn in each period. On the other hand, model 2 is the lattice model in 

which jump branches are drawn at every 𝑣 periods. Our claim is model 2 approximates to model 

1 given that 𝜆, arrival rate of jump events, is sufficiently small. Hence, model 2 can be used instead 

of model 1 because we claim that value of investment at present time will approximate to each 

other in both models. 

Let’s revisit the numerical example solved in Chapter 4. All problem parameters are kept 

constant except the values of 𝜆) and 𝜆� are changed to 0.2 per year. Table 5.2 summarizes the 
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results of computational study. Recall that 𝑉 ),)  denotes the value of transmission network at 

present time. We use Matlab to create both lattice models and conduct backward induction. We 

use fmincon function in Matlab to solve OPF problems. 

Table 5.2 Comparisons of Network Values and Computational Times of Models 1 and 2 

𝑇 
Model 1  Model 2 

𝑉 ),)  for base 
case ($) 

Computation 
Time (seconds) 

 𝑉 ),)  for base 
case ($) 

Computation 
Time (seconds) 

5 22,161,777 7910  22,097,376 107 
4 17,572,582 436  17,449,836 27 
3 12,620,269 27  12,490,514 7 
2 8,248,654 2  8,248,654 2 

 

As can be seen in Table 5.2, our proposed framework is able to obtain nearly the same 

transmission network values by saving a great deal of computation time. 

 

 

 

 



 

	

188 

REFERENCES 

Bushnell, J. and Stoft, S. (1995) Transmission and generation investment in a competitive electric 
power industry. Working Paper, University of California Energy Institute, Berkeley, California. 
 
California ISO. (2005) Locational marginal pricing (LMP): Basics of nodal price calculation. 
Available at http://www.caiso.com/docs/2004/02/13/200402131607358643.pdf (Accessed on 
March 27, 2018) 
 
Finnlines. (2017) Jumboization for energy efficiency. Available at 
https://www.finnlines.com/company/our-stories/jumboisation-energy-efficiency (Accessed on 
March 27, 2018) 
 
IT1me. (2015) Cimarron class fleet oiler. Available at 
http://www.it1me.com/learn?s=Cimarron_class_fleet_oiler (Accessed on March 27, 2018) 
 
Klebaner, F. C. (2005) Introduction to stochastic calculus with applications. Imperial College 
Press, London, UK. 
 
McConnell, J. B. (2007) A life-cycle flexibility framework for designing, evaluating and managing 
"complex" real options: Case studies in urban transportation and aircraft systems. PhD thesis, 
Massachusetts Institute of Technology. 
 
Power Delivery Consultants, Inc. (2013) What limits power flow through an overhead 
transmission line? Available at http://www.pdc-cables.com/oh_limits_powerflow.pdf (Accessed 
on March 27, 2018) 
 
Wildenberg, T. (1996) Gray steel and black oil: Fast tankers and replenishment at sea in the U.S. 
Navy, 1912-1995. Naval Institute Press, Annapolis, MD. 



 

	

189 

CHAPTER 6. GENERAL CONCLUSION 

In this dissertation, modeling aspects of specific problems arising in electric power 

transmission and fuel transportation areas are emphasized. The way of how economic decision 

making subject to real-life physical constraints can be followed is shown. In electric power 

transmission, these constraints are accepted as Kirchhoff current and voltage laws. As for fuel 

transportation in the navy, the relationships between speed, power, length and mass of the vehicle 

are considered as constraints. 

In Chapter 2, for an electric power transmission problem, it is considered that the decision 

maker has the option to expand the network at any time through the modeling horizon. We show 

how physical laws of electricity can be utilized for determining local electricity prices, which 

determine the future revenue of a transmission investment. We also reflect that linear and much 

simpler OPF equations can be employed under certain conditions. This study reveals that the 

proportion of susceptance of a transmission line to its power carrying capacity affects the value of 

investment.  

In Chapter 3, for a fuel transportation problem, it is accepted that the decision maker has 

the option to lengthen the transportation ship while it is in service. The value of lengthening the 

ship is quantified and a managerial guideline is provided regarding the choice between flexible 

and fixed designs. It reveals that relatively low level of transportation requirement at time zero is 

a signal for the decision maker to adopt the fixed design. 

Due to lack of discrete disruptions in uncertain paths in Chapters 2 and 3, we study 

transmission expansion problem in Chapter 4 by considering both demand and DG installation 

uncertainties. The way of modeling those uncertainties in a unifying lattice model is shown. 

Because the computational complexity of the proposed model is significant, we propose an 
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improvement idea to reduce the computation time. We use physical laws of electricity flow to 

determine the electricity prices at centers of transmission network. This study uncovers a 

significant managerial insight that installations of DGs do not necessarily lead to a reduction in 

the value of transmission network. The locations of installations play a key role to determine if a 

reduction happens. If an installed DG is in a consumption center which has a significant 

contribution to the calculation of LMPs (most probably due to inexistence of other generation 

units), the installation likely decreases the value of transmission network. If DG is installed in a 

consumption center which already possesses a generation unit, it is not likely to observe that DG 

undervalues transmission network. 

Discrete disruptions exist in transportation requirements for fuel as well. For instance, if 

the U.S. Navy participates a training or a real war at sea (it happened in 2011 for Libya operations), 

the ships require much more fuel and this increases massively the amount of fuel transported by 

transportation vehicles. Therefore, the study presented in Chapter 4 can be extended in the way 

that fuel transportation requirement follows smooth changes as well as abrupt changes at random 

times. 

This dissertation is created around three commonalities. Main chapters, Chapter 2, Chapter 

3, and Chapter 4, all share the following aspects. First, the type of real option that we consider is 

expansion option. We consider that transmission networks can be expanded by adding a power 

line between two centers and the capacity of a ship can be expanded by extending its length by 

inserting a new mid-section. Secondly, the problems we study arise in the same industry, which is 

energy transportation sector. Electric power transferred by transmission lines and fuel carried by 

replenishment oilers are special types of energy commodities. Lastly, we use the same approach 
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to model decision making frameworks in main chapters. We use real options (stochastic optimal 

control) to quantify the values of investments and values of options. 

As a summary, this dissertation handles with an important problem in investment 

valuations. In real life, investment valuations are performed under critical physical constraints and 

significant uncertainties. To address this issue, we study transmission expansion planning and ship 

design problems in which Kirchoff laws and the relations between ship design parameters arise as 

physical constraints, respectively. Furthermore, we address both smooth changes and discrete 

disruptions in underlying uncertain parameters. We hope that this dissertation enlightens many 

aspects of questionable problems and leads to more plentiful studies. 


