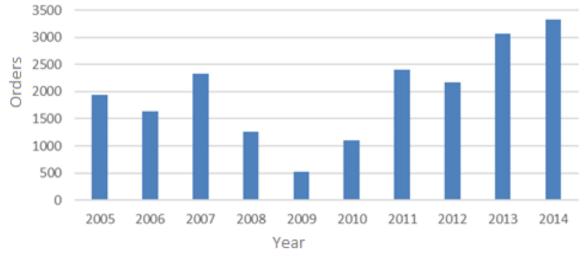
Probabilistic methods for long-term demand forecasting for aviation production planning

Minxiang Zhang, Cameron A. MacKenzie, Caroline Krejci, John Jackman, Guiping Hu Industrial & Manufacturing Systems Engineering Iowa State University

Charles Y. Hu, Gabriel A. Burnett, Adam A. Graunke Boeing Research & Technology 05/21/2017

Motivation



Historical order of global commercial airplanes

- Is painting capacity expansion necessary?
- How many hangars need to be built for Boeing?
- When to build?

Research Overview

Forecasting 737 Airplane

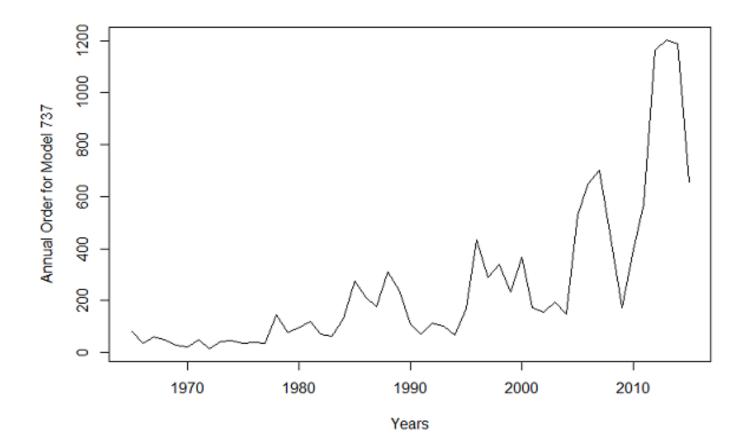
- Brownian motion with dependency
- Autoregressive Integrated Moving Average (ARIMA)

Forecasting 777 Airplane

- Geometric Brownian motion (GBM)
- Alternative GBM fitting
- Starting point adjustment

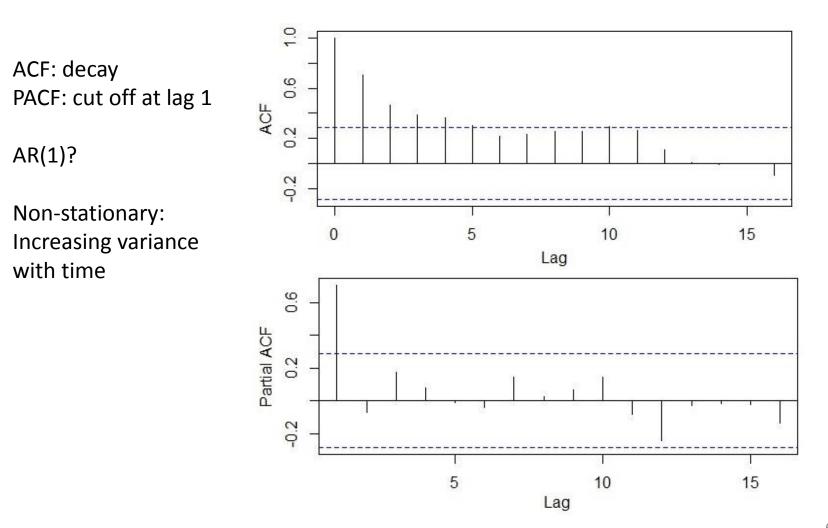
Demand Forecasting for 737 Airplane

737 Airplane - Historical Annual Order



Data source: Boeing Commercial. Available: http://www.boeing.com/commercial/, 2015

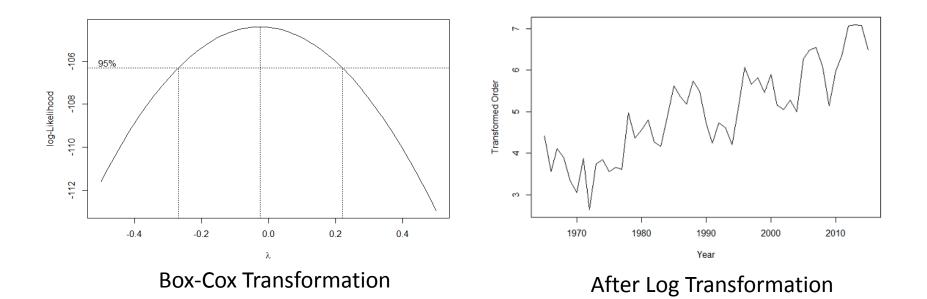
737 Airplane - Autocorrelation



IOWA STATE UNIVERSITY

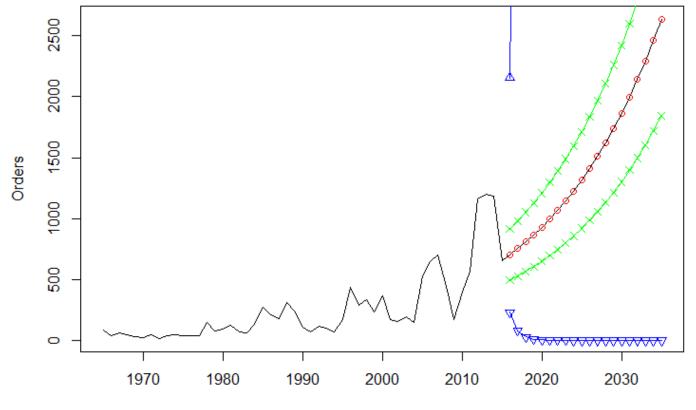
ARIMA – Transformation

$$S(\lambda) = \begin{cases} \frac{X^{\lambda} - 1}{\lambda} & if \quad \lambda \neq 0\\ \log(X) & if \quad \lambda = 0 \end{cases}$$



7

ARIMA (0,1,1) $S_t - S_{t-1} = Z_t - 0.3344Z_{t-1}$ $\{Z(t)\} \sim WN(0, 0.3243)$



Years

Brownian Motion with dependency

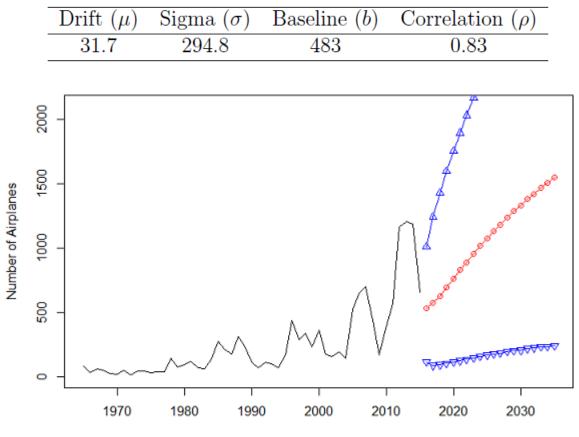
$$X(t) = \sigma B(t) + \mu t + e$$

Where $B(t) \sim N(0, t)$ is a standard Brownian motion

Add correlation ρ at lag 1 $N_{cor} = \rho N_1 + \sqrt{1 - \rho^2} N_2$

correlation between X(t) and X(t + 1) equals ρ

Brownian Motion with dependency



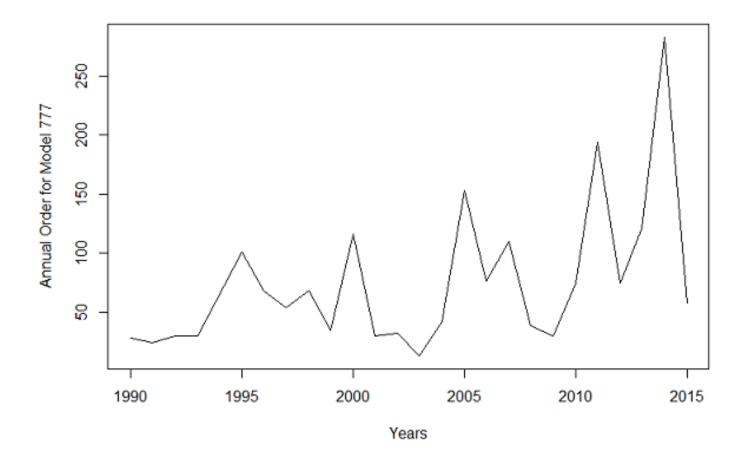
Years

Comparison

	ARIMA	Brownian Motion with dependency
Prediction trend	Handled by differencing	Defined explicitly
Interval	Confidence interval of mean	Probability interval
Input Data - Stationary	Weak stationary	Non-stationary
Input Data - Correlation	lag≥1	lag = 1
Sensitivity	Model parameters	Estimated Trend

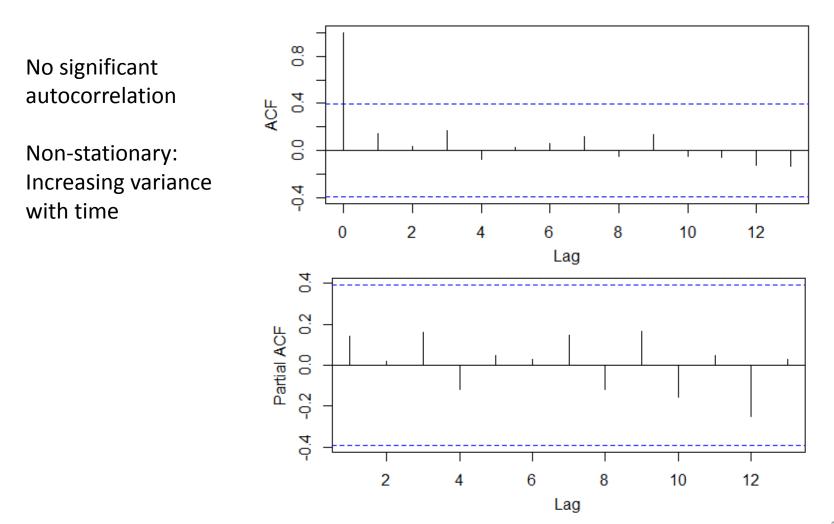
Demand Forecasting for 777 Airplane

777 Airplane - Historical Annual Order



Data source: Boeing Commercial. Available: http://www.boeing.com/commercial/, 2015

777 Airplane - Autocorrelation



Traditional GBM Fitting

Brownian motion:

$$X(t) = \sigma B(t) + \mu t + e$$

Geometric Brownian motion:

$$Y(t) = e^{X(t)}$$

$$R(1) = \frac{Y(t+1)}{Y(t)} \sim lognormal(\mu, \sigma^2)$$

Interested in difference between two adjacent years

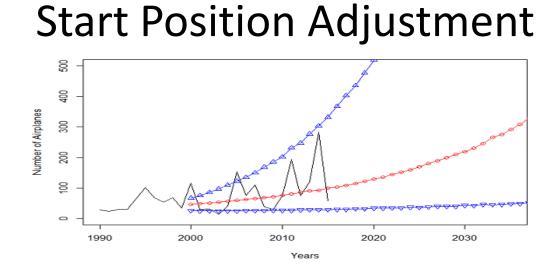
Alternative GBM Fitting

$$R(t) = \frac{Y(t)}{Y(0)} \sim lognormal(\mu t, \sigma^2 t)$$

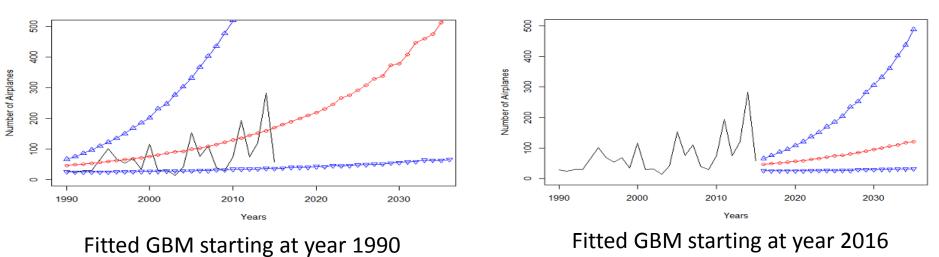
Interested in fitting model over t years

Method	Time Scale	Drift	Sigma	Baseline
Traditional	Year	0.030	0.847	3.635
Alternative	Year	0.0563	0.1913	3.635

Alternative method reduces variance of estimation significantly



Fitted GBM starting at year 2000



17

Conclusion

- Incorporate correlation into Brownian motion
- Comparison of probabilistic model and time series model in forecasting
- Geometric Brownian motion at different starting points for increasing variation
- Use probabilistic model in forecasting to capture varies scenarios rather than single prediction
- Applied to other airplane models as well
- Future work: Multi-variate forecasting