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Abstract 

Supply chain disruptions can lead to firms losing customers and consequently losing profit. We 

consider a firm facing a supply chain disruption due to which it is unable to deliver products for a 

certain period of time. When the firm is restored, each customer may choose to return to the firm 

immediately, with or without backorders, or may purchase from other firms. This chapter develops 

a quantitative model of the different customer behaviors in such a scenario and analytically 

interprets the impact of these behaviors on the firm’s post-disruption performance. The model is 

applied to an illustrative example. 
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1. Introduction  

Supply chain disruptions have garnered increased attention, both in academia and in practice, since 

the early 2000s. Modern production methodologies, globalized supply chains, shorter product life 

cycle, and the emphasis on efficiency have increased the risk faced by many supply chains. 

Managing the risk facing a supply chain is vital to the success of any company.  

 

 

Fig. 1. A simple supply chain model 



A supply chain is an integrated system of companies involved in the upstream and downstream 

flows of products, services, finances, and/or information from a source to a customer (Mentzer et 

al. 2001). Fig. 1 presents a basic supply chain model from the firm’s perspective. A supply chain 

is characterized by the flow of resources—typically material, information, and money—with the 

primary purpose of satisfying the needs of a customer, who are the source of revenue for a firm. A 

supply chain will ideally maximize the total value generated from customers and minimize the 

cost of meeting consumer demand.  

 

Major disruptions, such as those that occur from natural disasters, terrorist acts, and labor strikes, 

can interrupt the flow of materials for several firms. Sodhi and Tang (2012) categorized supply 

chain risk into supply risks, process risks, demand risks, and corporate-level risks. These risks 

often materialize all together during a major supply chain disruption, and decision makers need to 

consider all of these risks. Kilubi and Haasis (2015) conducted a systematic literature review on 

supply chain risk management (SCRM) and identified ten different definitions of SCRM. Lavastre 

et al. (p. 839, 2012) defined SCRM as “the management of risk that implies both strategic and 

operational horizons for long-term and short-term assessment.” As implied by this definition, 

decision makers need to consider both the long-term and short-term impacts from a supply chain 

disruption.  

 

The marketplace or customers can play a significant role in the long-term impacts as their needs, 

values, and opinions will affect the firm’s decisions during the disruption. The volatility of 

consumer demand is a major form of risk (Jüttner et al. 2003). Firms face a risk of being penalized 

by their customers if their suppliers default and firms are unable to deliver on their obligations. 

Assessing how consumers react to such disruptions helps to forecast the long-term profits for the 

firm and can help it make sound risk management decisions. Modeling consumer behavior is useful 

not only when a disaster occurs but also to build flexibility within the supply chain as a proactive 

measure to anticipate such threats and quickly respond.  

 

This chapter presents a probabilistic model to quantify the risk from a severe supply chain 

disruption with an explicit focus on how consumers or the marketplace’s demand for a product 

should influence a firm’s risk management strategies. Many supply chain disruption models 



assume some type of demand function, which may be constant or random. However, that demand 

function does not usually change when the disruption occurs, or simple assumptions are made 

about whether or not customers are willing to wait for a final product. Less research has focused 

on how the final customers should influence how a firm determines what risk management 

strategies are appropriate. This chapter models the demand function using a probabilistic approach 

to customer behavior in a post-disruption scenario. The model assumes that a disruption causes a 

supplier to default, and a firm is unable to deliver its product to consumers. The market responds 

with defined probabilities and time delays. The model attempts to measure the extent to which a 

firm can be penalized due to a default from its supplier and recommends strategies or practices to 

build resilience to such disruptions.  

 

This chapter is organized as follows: a literature review is given in Section 2. Section 3 presents 

the mathematical model framework, and Section 4 describes an illustrative example and performs 

sensitivity analysis. Section 5 concludes the chapter with recommendations, insights, and 

conclusions drawn from the study.  

 

2. Literature Review 

Supply chain management has seen a variety of trends, including Just-in-Time, global sourcing, 

and outsourcing. These methods are aimed at cutting costs in a firm’s supply chain and enabling 

the firm to compete more effectively. Increasing supply chain efficiency can also make supply 

chains more vulnerable to disruptions (Christopher 2005). In the race to increase their market 

share, firms may ignore that their supply chains are susceptible to disruptions.  

A wide variety of events can disrupt a supply chain, including supply-side difficulties, demand-

side variability, operational problems, and large-scale disruptions such as natural disasters (Manuj 

et al. 2007). Qualitative studies to manage these disruptions recommend excess inventory, 

additional capacity, redundant suppliers, flexible production and transportation, and dynamic 

pricing (Sheffi and Rice 2005; Stecke and Kumar 2009). Managing one type of risk may exacerbate 

another risk, and identifying the best strategy relies on the manager’s ability to identify the most 

crucial risk and understand the trade-offs in SCRM (Chopra and Sodhi 2004). Quantitative studies 

in SCRM generally model the trade-off between purchasing from alternate suppliers and holding 



inventory (Tomlin and Wang 2005), or they model the interaction between suppliers and customers 

(Babich et al. 2007; Xia et al. 2011). MacKenzie et al. (2014) used simulation to model the 

interactions among supply chain entities where each entity can take different actions such as 

holding inventory or purchasing from alternate suppliers. Interested readers should refer to Snyder 

et al. (2016) for an in-depth review of the recent models of supply chain disruptions and disruption 

management strategies.  

Although research has focused on the impacts of supply chain disruptions based on stock returns 

(Hendricks and Singhal 2005) or based on the economic linkages (MacKenzie et al. 2012), less 

research has focused on how customers behave during and after a supply chain disruption. 

Nagurney et al. (2005) examined the impact of unforeseen customer demands on the supply chain, 

but this research assumes the customer behavior causes the disruption. Ellis et al. (2010) surveyed 

managers and buyers of materials to study how customers may perceive supply chain risk. Modern 

supply chain management is very sensitive to customer demand (Nishat Faisal et al. 2006), but 

examining the relationship between customer demand sensitivity and a manufacturer or retailer 

during a disruption has not been fully explored. An important exception to this lack of research is 

the modeling and analysis of consumer behavior following a food contamination (Beach et al. 

2008; Arnade et al. 2009). 

This chapter seeks to fill the gap in the existing literature by probabilistically modeling customer 

behavior following a supply chain disruption. Whereas much of the current literature focuses on 

the interaction between the supplier and the firm, the focus of this chapter is the market response 

to the disruption and its impact on the firm. The model examines the decisions customers make 

after the interruption of a firm's service due to a supply chain disruption. Possible customer 

behaviors are fused within a probabilistic model to assess the expected lost revenue of the firm. A 

firm can use this forecasted measure of average lost revenue to decide what it should do to prepare 

and respond to such a disruption in its supply chain.  

 

3. Model 

This section presents an overall profile of a supply chain disruption and develops a probabilistic 

model to focus on the market response to the disruption. A supply chain disruption occurs when a 

firm’s supplier defaults. A major disruption impacts a firm in distinct phases (Sheffi and Rice  



2005). It may take time for the final consumer to be impacted by the supply disruption. If the firm 

does not have enough inventory or cannot purchase from alternate suppliers, it will not be able to 

satisfy demand for its goods. Consequently, consumers may choose to purchase from other firms. 

The consumers’ loyalty depends on a number of factors such as their relationship to the product. 

To get back to standard performance levels, a firm may adopt various response actions such as 

working at over-capacity levels. If the firm is prepared for such a disruption  (e.g., having multiple 

suppliers or having more inventory), it should be able to respond more effectively (Yu et al. 2009). 

3.1 Model Framework 

We develop a probabilistic model to quantify the reaction of customers following a supply chain 

disruption that causes a temporary production shut down. Before the disruption, there are 𝑛 

customers (they could also be retailers) who purchase from a firm in each time period before a 

disruption. In the base model, we assume the demand equals the number of customers. In other 

words, every customer buys exactly one product. This assumption is relaxed in Subsection 4.3, 

which considers varying demands from each customer. An unexpected disruptive event causes one 

or more of the firm’s suppliers to default, and the firm is unable to satisfy any demand beginning 

at time period 𝑡 = 1. The disruption continues for 𝑀 time periods, and the firm does not deliver to 

its 𝑛 customers for 𝑡 = 1, 2, . . , 𝑀. The firm recovers from the disruption at 𝑡 = 𝑀 + 1 and will be 

able to deliver at its full capacity 𝐶 orders per time period, where 𝐶 ≥ 𝑛.   

In the post-disruption time period beginning at 𝑡 = 𝑀 + 1, each customer decides whether or not 

to return to the firm in each time period 𝑡 = 𝑀 + 𝑖. Note that 𝑖 = 1, 2, … since the customer cannot 

buy from the firm during time periods 𝑡 =  1, 2, . . , 𝑀. Each customer comes back to the firm with 

a constant probability 𝑝 in each time period. The value of 𝑝 depends upon the type of product as 

well as the firm’s response actions such as qualifying alternate suppliers and making up for lost 

production by running at maximum capacity. If a customer decides not to return to the firm at a 

particular time period, the model assumes that it will return to the firm in the next period with the 

same probability 𝑝. Once a customer returns to the firm, it will continue to purchase from the firm 

in all future time periods. 

If a customer buys from the firm at time 𝑡 = 𝑀 + 𝑖, it will return with one of the following 

behaviors:  



1. Customers can return right away without backorders at time 𝑡 = 𝑀 + 1. This category of 

customers might have used inventory from safety stock, not used the product, or purchased 

the product from other firms during the time periods 1 through 𝑀. 

2. Customers who come back immediately and have backorders. 

3. Customers who do not return immediately but return later to the firm with no backorders.  

The probability 𝑞 represents the conditional probability that the customer who comes back 

immediately at 𝑡 = 𝑀 + 1 will require backorders for 𝑡 = 1, 2, . . , 𝑀. In other words, given the 

customer has returned to the firm, the probability that he or she will have backorders is 𝑞. The 

revenue from backorders is accounted for at 𝑡 = 𝑀 + 1 since backorders are taken only in that 

time period. We assume that customers who wait longer to return do not have backorders (behavior 

number 3). The initial model assumes the firm can satisfy all the backorders. This could be because 

the firm is able to monitor activity and make plans to increase capacity to satisfy backorders. If 𝑞 

is small, the firm can be reasonably confident the backorders will not exceed its capacity. Since 

this assumption may not be realistic, Subsection 3.3 discusses how the model might change if a 

capacity constraint limits the number of backorders the firm can accept. Even if the lack of a 

capacity constraint may not be realistic, modeling the situation without this constraint generates 

useful insights into the potential benefits of increasing capacity after reopening. 

3.2 Calculating the Firm’s Post-Impact Revenue 

The revenue at time periods 𝑡 = 1, 2, . . , 𝑀 is zero since the firm is not delivering any product to 

its customers. The total expected revenue after the firm reopens is calculated by estimating the 

number of customers who decide to buy from the firm at each period after it reopens at 𝑡 = 𝑀 +

1. Let 𝑋𝑡 be the number of customers who decide to come back and purchase from the firm at time 

𝑡. 𝑋𝑡 = 0 for 𝑡 = 1,2, . . , 𝑀 

For 𝑡 = 𝑀 + 1,𝑀 + 2, … each of the 𝑛 customers returns with a constant probability 𝑝 and 𝑋𝑡 

follows a binomial distribution. 

At 𝑡 = 𝑀 + 1,  𝑋𝑀+1 ~ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝) 

                                     𝑤𝑖𝑡ℎ 𝐸[𝑋𝑀+1] =  𝑛𝑝  

At 𝑡 = 𝑀 + 2,  𝑋𝑀+2 ~ 𝐵𝑖𝑛𝑜𝑚(𝑛 − 𝑋𝑀+1, 𝑝) 

                                     𝑤𝑖𝑡ℎ 𝐸[𝑋𝑀+2] =  𝑛𝑝(1 − 𝑝)  



At 𝑡 = 𝑀 + 3,  𝑋𝑀+3 ~ 𝐵𝑖𝑛𝑜𝑚(𝑛 − 𝑋𝑀+1 − 𝑋𝑀+2, 𝑝) 

                                     𝑤𝑖𝑡ℎ 𝐸[𝑋𝑀+3] =  𝑛𝑝(1 − 𝑝)2  

      …………………………………… 

At 𝑡 = 𝑀 + 𝑖,             𝑋𝑀+𝑖 ~ 𝐵𝑖𝑛𝑜𝑚 (𝑛 −∑ 𝑋𝑀+𝑗
𝑖−1

𝑗=1  

, 𝑝) 

                                     with 𝐸[𝑋𝑀+𝑖] =  𝑛𝑝(1 − 𝑝)
𝑖−1 

Since the model assumes that a customer who returns to the firm will continue to purchase from 

the firm in subsequent periods, the expected number of customers who purchase from the firm at 

𝑡 = 𝑀 + 𝑖 is: 

                                         𝑛𝑝 (1 + (1 − 𝑝) + (1 − 𝑝)2 + (1 − 𝑝)3 +⋯ + (1 − 𝑝)(𝑖−1)) 

                                         =  𝑛𝑝 (
1 − (1 − 𝑝)𝑖

1 − (1 − 𝑝)
) 

                                         =  𝑛 (1 − (1 − 𝑝)𝑖)  

Since customers that return at 𝑡 = 𝑀 + 1 may return with backorders, the number of orders for the 

firm may exceed the number of customers 𝑋𝑀+1. The number of customers who return with 

backorders is represented by the random variable 𝑍. The model assumes that backorders are placed 

only once at time 𝑡 = 𝑀 + 1 and 𝑍~𝐵𝑖𝑛𝑜𝑚(𝑋𝑀+1, 𝑞). 

Although it makes intuitive sense to assume that customers who did not return to the firm 

immediately satisfied their demand during the shutdown period, 𝑡 = 1, 2, . . , 𝑀, from another firm, 

a further extension to this model may consider situations where customers who do not return 

immediately but return later to the firm also places backorders. In that case 𝑍 would need to be 

indexed by time 𝑡. 

Since each customer orders exactly 1 product in each time period, a customer who returns with 

backorders is assumed to have 𝑀 backorders (one backorder for each period that the firm was 

closed). Thus, the total number of orders at time 𝑀 + 1 is 𝑀 ∗ 𝑍 + 𝑋𝑀+1. Using the expected 

number of customers from the above results and the conditional probability of placing a backorder, 

we calculate the expected number of orders at 𝑡 = 𝑀 + 1: 



= (
Expected number of
customers who return
with backorders

) ∗

(

 
 
 
 

Backorder 
quantity 

per customer 
+

Regular order 
quantity per 
customer )

 
 
 
 

+  (
Expected number of
customers who return
without backorders

) ∗ (
Regular order 
quantity per 
customer

) 

                                         = (𝑛𝑝 ∗ 𝑞) ∗ (𝑀+ 1) +  𝑛𝑝 ∗ (1 − 𝑞) ∗ 1 

                                         =  𝑛𝑝(𝑞𝑀 + 𝑞 + 1 − 𝑞) 

                                         =  𝑛𝑝(𝑞𝑀 + 1)                                                        

The expected cumulative orders at time 𝑡 = 𝑀 + 𝑖 for 𝑖 > 1 equals 𝑛 (1 − (1 − 𝑝)𝑖), which is 

equivalent to the expected cumulative number of customers who have returned by time 𝑡 = 𝑀 + 𝑖.  

If the firm’s per-unit selling price is 𝑐, we calculate 𝑅𝑡 the lost revenue at time 𝑡: 

𝑅𝑡 =

{
 
 

 
 

𝑐𝑛 if 𝑡 = 1,2, . . ,𝑀
𝑐(𝑛 – 𝑋𝑀+1 − 𝑍) if  𝑡 = 𝑀+ 1 

𝑐(𝑛 – ∑𝑋𝑀+𝑖

𝑡

𝑖=1

) if 𝑡 = 𝑀+ 2,𝑀+ 3,…
 

The expected lost revenue at time 𝑡 is denoted as �̅�𝑡. 

3.3 Production Capacity Considerations 

In the proposed model, it is important to look at the production capacity of the firm, especially at 

time 𝑡 = 𝑀 + 1, when backorders may be received. The number of orders 𝑀 ∗ 𝑍 + 𝑋𝑀+1 must not 

exceed the available capacity 𝐶. If 𝑀 ∗ 𝑍 + 𝑋𝑀+1 > 𝐶, the excess orders will be carried forward 

to the next time period, 𝑡 = 𝑀 + 2, but capacity restrictions require that 𝑀 ∗ 𝑍 + 𝑋𝑀+1 + 𝑋𝑀+2 ≤

2𝐶.  

Similarly, the firm can estimate and forecast the production capacity levels for future time periods. 

Depending on the willingness of customers to wait for the backorder delivery, the firm needs to 

prioritize production with the goal of meeting customer needs. If customers are likely to be lost in 

case of a late delivery, the firm will have to consider whether it can temporarily increase its 

production capacity or other alternatives to meet the spike in demand due to backorders.  

 

 

4. Illustrative Example 



This model can be applied to several situations. For example, a consumer-product manufacturing 

firm could face a supply chain disruption forcing it to shut down production. The firm’s customers 

could react in different ways. One, a retailer who uses inventory during this period may come back 

to the firm immediately with backorders to replace its inventory. Two, a retailer who temporarily 

switches to another supplier may decide to come back when the firm starts producing again. Three, 

a retailer who switches to another supplier may decide not to come back when the firm starts 

producing again. The latter retailer may come back at a later stage depending on the firm’s 

performance. By estimating the probability that the retailer takes any of these actions, the model 

can account for each of these scenarios.  

4.1 Lost revenue with backorders 

We illustrate the application of this model to a scenario in which a firm experiences a supply 

disruption and must stop production for 𝑀 = 4 periods. Table 1 provides values for the parameters 

in this example.  

Table 1. Parameters 

 Symbol Value 

Number of customers or demand per period n 100 

Per unit selling price in dollars c 1000 

Probability with which customers return in each period p 0.15 

Conditional probability of backorder requirement q 0.50 

Duration of the disruption in periods M 4 
 

 

The average value and standard deviation of lost revenue at each time period were obtained via 

10,000 simulations of the supply chain disruption model for customer reactions using the 

parameters in Table 1. Since the firm is unable to produce during 𝑡 = 1,2, . . , 𝑀, the lost revenue 

at each time period equals the total revenue per period at undisrupted production rates. Because 

some of the lost revenue in the first 𝑀 periods may be recaptured via backorders, the lost revenue 

may not actually be completely lost. In the model, this is accounted for at 𝑡 = 𝑀 + 1.  

Since the binomial distribution can be approximated by the normal distribution, we calculate 90% 

probability intervals for the lost revenue �̅�𝑡 ± 1.64𝑆𝑡, where �̅�𝑡 is the average lost revenue and 𝑆𝑡 



is the standard deviation for time period 𝑡. The results are illustrated in Fig. 2. The expected lost 

revenue reduces to less than 1% of the total pre-disruption revenue after 𝑡 = 34, and the revenue 

from sales is almost completely restored to pre-disruption levels. If each time period is a week, the 

firm returns to its full performance in approximately 8 months. 

 

 Fig. 2. The firm’s expected lost revenue per period from the supply chain disruption. 

As depicted by the probability interval, there is a 5% probability the lost revenue will be less than 

$1,000 within 24 periods and a 5% probability the lost revenue will be greater than $1,000 for at 

least 42 time periods. The expected lost revenue is at its maximum value for the first four periods, 

which is equal to the total pre-disruption revenue per period and then drops from $100,000 to 

$55,000. The downward spike in the expected lost revenue is due to the backorders. The lost 

revenue at 𝑡 =  5 has a 5% probability of being as low as $33,444, which would occur if many 

customers return with backorders. If very few customers return with backorders, the lost revenue 

could be $76,556, which is the 95% upper bound for lost revenue in that time period. At time 𝑡 =

 6, the expected lost revenue increases to $72,250 and then gradually decreases over time as the 

firm recovers from the disruption. 

  

4.2 Lost revenue without backorders 
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Certain disruptions may not allow for backorders. For instance, a restaurant could be closed for a 

period of time because of food poisoning, and when it reopens, backorders are not realistic because 

the delivered product is a service that cannot be backordered. We can assign 𝑞 =  0 in the 

simulation model to reflect such a situation. Fig. 3 illustrates this scenario without backorders. 

Here, the expected cumulative lost revenue is higher because of the lack of backorders.  

 

Fig. 3. The firm’s expected lost revenue without backorders. 

4.3 Customers with varying demand 

The assumption that each customer buys exactly one product may not be valid. This sub-section 

extends the simulation model to accommodate varying demands from the firm’s customers. The 

demand from customer 𝑙 is 𝑛𝑙 where 𝑙 = 1, 2, … , 𝑛. We assume each 𝑛𝑙 follows a discrete uniform 

distribution between 1 and 5, i.e., 𝑛𝑙  ~ 𝑈(1, 5). Backorders are ignored for simplicity. Parameters 

from Table 1 along with a simulation of 𝑛𝑙  ~ 𝑈(1, 5) were used in the model with varying demand 

from different customers to run 1,000 simulations. The results are illustrated in Fig. 4. 

The maximum total expected lost revenue is much higher than the previous cases because the total 

initial demand is more than in the previous cases. The shape of recovery is very similar to the 

model in section 4.1 because each customer returns with the same probability. The expected lost 
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revenue reduces to less than 1% of the total pre-disruption revenue after time period 25. This is 

comparable to the results from the model in sections 4.1 and 4.2. The results might look different 

if customers returned with different probabilities. For example, perhaps customers with more 

demand from the firm might be more likely to return because it may be more difficult for these 

customers to get all of their demand satisfied from the firm’s competitors. 

Fig. 4. The firm’s expected lost revenue with varying demand from customers 

4.4 Risk management insights 

A firm can use this model to understand how parameters impact the firm’s expected lost revenue. 

The results discussed are highly sensitive to the value of 𝑝. As illustrated in Fig. 5, the firm recovers 

more quickly when the probability with which customers are gained back in each period is larger. 

This makes intuitive sense since firms with loyal customers tend to recover faster. We observe that 

the downward spike at time 𝑡 = 𝑀 + 1 is directly correlated with 𝑝. At 𝑡 = 𝑀 + 1, the cumulative 

expected number of orders including the backorders is directly proportional to the probability of 

customers buying from the firm at a given time period after the disruption. 

The expected lost revenue in time period 𝑡 =  5 is negative when 𝑝 = 0.4. This negative value 

represents revenue greater than $100,000 in that period, a trend that continues as the value of 𝑝 

increases. Such situations may require the firm to work at overcapacity immediately after 
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reopening to meet the sudden increase in demand, which is an integral part of the firm’s recovery 

process (Sheffi and Rice 2005). This provides an important insight to the firm’s management that 

in case of a production shut down, it may need to be prepared to temporarily increase its production 

capacity after reopening. The model also helps to estimate the maximum production the firm would 

need in order to meet the demand.  

 

Fig. 5. Sensitivity of expected lost revenue to 𝑝. 

A similar trend can be observed with the sensitivity analysis on 𝑞, as illustrated in Fig. 6. The time 

of recovery remains the same since 𝑝 is constant. This is also an important insight since firms need 

to think about the likelihood that their customers will place backorders. Accordingly, they can 

devise suitable production plans. 
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Fig. 6. Sensitivity of expected lost revenue to 𝑞. 

Firms can prepare for disruptions by using this quantitative model to estimate the potential loss in 

revenue due to a shutdown of operations from a supply chain disruption. Moreover, the model can 

be used to evaluate whether preparation strategies are economical. Investments to reduce the 

chances of a supply chain disruption itself may not be practical or economically reasonable. In 

such cases, firms can use the expected lost revenue from the model to decide whether or not 

investments to reduce the risk of a disruption are cost effective. Preparedness measures can help 

reduce the probability of a disruption and/or allow the firm to regain more of its revenue following 

a disruption. Even if the disruption cannot be avoided, preparedness measures could reduce the 

shutdown length 𝑀. It is logical to assume that the probability of customers returning depends on 

𝑀. Decision makers can make decisions about investing in preparedness measures based on 

understanding how much revenue will be lost if the disruption occurs as well as the chances of the 

disruption itself.  

For example, the cumulative expected lost revenue in the illustrative example is $536,667. A risk-

neutral firm should spend at most $536,667 in preparing for this type of disruption and should 

spend much less once the probability of a disruption is considered. Investing in risk reduction 

strategies such as inventory or an additional supplier could reduce the time the firm is closed. The 

chances of customers returning immediately to the firm are higher if the firm is not closed as long. 

This would increase the probability 𝑝 and reduce the cumulative expected lost revenue. In the 
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example, increasing the value of p from 0.15 to 0.2 decreases the total expected lost revenue from 

$536,667 to $360,000. Strategies that could reduce p from 0.15 to 0.2 are economically wise if 

these strategies cost less than $176,667, assuming an extremely high probability of disruption.  

 

5. Conclusions 

This chapter proposes a model to quantitatively represent the way customers or the marketplace 

reacts to a supply chain disruption. The model is used to identify the impact of such an event on 

the firm’s revenue. From the firm’s perspective, the total expected lost revenue is a measure of the 

impact of the supply chain disruption and can be analyzed to draw useful insights to manage the 

risk of such an event. 

The results obtained from applying the model serves as an illustration of the usefulness of the 

model. The simulation of the customer response model allows the firm to anticipate how customers 

might react to a supply chain disruption. The model can inform decision making to manage the 

risks of a supply chain disruption. Insights from the model can reveal how a disruption can affect 

the firm’s revenue depending on the customers’ decisions and the time a firm takes to recover to 

its pre-disruption revenue levels. Sensitivity analysis on the model parameters reveals how the 

probability at which customers return to the firm impacts the recovery time. Firms that expect most 

of its customers to return with backorders may need to temporarily increase production capacity. 

Management can use the cumulative expected lost revenue projections to evaluate investments 

aimed at increasing the firm’s resilience to supply chain disruptions.  

The proposed model could be developed further by relaxing some of the assumptions. For instance, 

customers may return with different probabilities or probabilities that change over time. Further 

extensions to this research can include the development of a decision-making framework to utilize 

the mathematical model to determine the most effective risk management decisions during a 

supply chain disruption. Another extension is to model the probability of a supply chain disruption 

along with the total expected lost revenue to make sound management decisions regarding 

investments in preparedness measures. An optimization model that minimizes the lost revenue 

during the disruption periods can also serve as a future extension to this chapter. 
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