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Abstract Determining where and when to invest resources during and after a disruption can
challenge policy makers and homeland security officials. Two decision models, one static
and one dynamic, are proposed to determine the optimal resource allocation to facilitate the
recovery of impacted industries after a disruption where the objective is to minimize the
production losses due to the disruption. The paper presents necessary conditions for opti-
mality for the static model and develops an algorithm that finds every possible solution that
satisfies those necessary conditions. A deterministic branch-and-bound algorithm solves the
dynamic model and relies on a convex relaxation of the dynamic optimization problem. Both
models are applied to the Deepwater Horizon oil spill, which adversely impacted several in-
dustries in the Gulf region, such as fishing, tourism, real estate, and oil and gas. Results
demonstrate the importance of allocating enough resources to stop the oil spill and clean
up the oil, which reduces the economic loss across all industries. These models can be ap-
plied to different homeland security and disaster response situations to help governments
and organizations decide among different resource allocation strategies during and after a
disruption.
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1 Introduction

The 2010 explosion on the Deepwater Horizon oil rig resulted in the largest marine oil spill
in history (Robertson and Krauss 2010). Eleven people died and 16 other employees were
injured from the explosion, and nearly 5 million barrels of crude oil spilled into the Gulf of
Mexico. The environmental damage, loss of wildlife, and loss of business to several Gulf
industries exemplify the far-reaching consequences that disruptions can have on a region,
and government policy makers must allocate resources effectively to minimize the impacts
of a disruption. Officials who are responsible for helping an economic region recover from
such a disruptive event need to understand how the disruption impacts the economy, deter-
mine the best allocation resources at different points in time, and analyze how allocating
resources to particular industries benefits the regional economy.

This paper—a shorter version of which appears in MacKenzie et al. (2012b)—seeks
to help officials resolve those difficulties by developing a resource allocation for regional
economic recovery following a disruption. It makes the following contributions to operations
in homeland security and disaster management. First, the modeling approach allows a policy
maker to determine the level of resources that he or she should allocate to specific industries
in order to effectively reduce the adverse impact of a disruptive event. Second, unlike many
other homeland security resource allocation models, we focus on post-disruption decision
making that seeks to limit the impacts and enhance recovery. Third, because policy makers
are required to make decisions over the course of a disruption, we construct a discrete-time
dynamic model in addition to a static model. Finally, estimating values for model parameters
from a variety of sources enables these models to be applied to the Deepwater Horizon oil
spill, which adversely impacted several industries in the Gulf region. The application of
this analytical approach to the Deepwater Horizon oil spill generates insights into where
resources should be concentrated if a similar disruption occurs.

This paper provides a theoretical construct that can potentially assist policy makers to al-
locate resources following a disruption. Although the Deepwater Horizon oil spill represents
a real-world application of the models, consultation with government officials to estimate
parameters would be necessary in order to practically use these models. Section 2 reviews
previous optimal resource allocation models and expands on the unique contributions of this
paper. Section 3 develops and provides solutions for two decision models: (i) a static model
of both direct and indirect impacts from a disruption and (ii) a discrete-time dynamic model
where resources are allocated over time. Section 4 applies these models to the Deepwater
Horizon oil spill and analyzes the sensitivity of model results to key parameters. Concluding
remarks appear in Section 5.

2 Literature review

A resource allocation model seeks to answer the fundamental economic question of how to
satisfy unlimited wants with limited resources within a specific domain. Resource allocation
models are typically formulated as static or dynamic optimization problems with a resource
budget serving as a primary constraint. Such resource allocation models have been deployed
to analyze several policy-related problems.
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Resource allocation models in engineering risk management generally focus on rein-
forcing different components or building redundancy within a system in order to maximize
reliability or minimize failure (Tillman et al. 1970; Misra and Ljubojevi¢ 1973; Elms 1997).
Guikema and Paté-Cornell (2002) develop an optimization problem in which several com-
ponents can be upgraded, and the alternatives are whether or not to select a component for
upgrading and how much money to spend on upgrading the component. A two-period model
(Dillon et al. 2003) examines a problem for NASA where a decision maker minimizes the
technical risk of an exploration spacecraft in the first period and allocates the remainder of
the budget to minimize the risk of failure during the development phase. A dynamic model
(Dillon et al. 2005) extends this two-period model by allowing the decision maker to allocate
resources at different points in time to improve reliability.

Homeland security officials have struggled with how to allocate resources to differ-
ent geographic areas based on risk or cost effectiveness. An analysis of the Department
of Homeland Security’s fiscal year 2004 budget reveals that the department’s allocation to
urban areas to protect those areas from terrorism significantly differs from an allocation
based on the risk of a terrorist attack (Willis 2007). As Willis (2007) acknowledges, the de-
cision should be based on where the money reduces risk the most rather than on which areas
carry the most risk, but data do not exist to estimate the functional relationship between
investing in protection and risk reduction. This latter point applies to protection against nat-
ural disasters as well. Other resource models for homeland security deploy game theory to
help government officials understand how resources should be allocated differently to pro-
tect against a strategic actor such as a terrorist (Major 2002; Bier 2007; Zhuang and Bier
2007; Bakir 2011; Shan and Zhuang 2013a,b). Haimes et al. (2008) offer several systems
engineering principles to help policy makers balance protective and resilience activities for
critical infrastructure protection against both terrorism and natural disasters.

Dynamic resource allocation models seek to efficiently allocate resources at different
points in time. Rather than allocating money, many of these models allocate discrete re-
sources such as machines at a work center (Miller and Davis 1978), specific resources to
complete a job (Daniels et al. 1997), and operators and cranes to unload or load ships
(Dell’Olmo and Lulli 2004). Consequently, these models are formulated as integer pro-
grams, whose solutions may require heuristic algorithms for problems of realistic size. The
medical field has been a natural application for dynamic resource allocation problems as
policy makers seek to understand the best intervention strategies to stop the spread of a dis-
ease (Zaric and Brandeau 2000; Brandeau 2005). Dynamic resource allocation models seem
to be sparser in the field of disaster management or disaster response although Fiedrich et al.
(2000) build a model to determine the placement of machines and equipment to minimize
fatalities after an earthquake and Petrovic et al. (2012) provide a model for responding to a
wildfire.

Two dynamic allocation models specific to oil spills (Psaraftis and Ziogas 1985; Srini-
vasa and Wilhelm 1997) focus on tactical decisions to determine the type of equipment to
clean up a spill. The decision variables in both models are discrete integers, and the models
in this paper focus on strategic decision making as opposed to tactical decision making. A
game theoretic model related to oil spills determines the level of safety effort that results
from the strategic interaction between an oil company and the government (Hausken and
Zhuang 2013). Cheung and Zhuang (2012) analyze the impact of competition between two
oil companies on whether a company will follow safety regulations and whether a govern-
ment will enforce those regulations.

The modeling approach in this paper borrows from the different resource allocation
models but also develops new insights and methods to aid policy makers. This paper focuses
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on post-disruption decision making in order to limit the impacts and enhance recovery. A
risk-based input-output model has been proposed to improve preparedness decision making
in the face of potential disruptions (Crowther 2008), and such a model used in response de-
cision making quantifies the decision maker’s objective by translating direct impacts from a
disruption into total production losses in a region. The functional form that maps allocated
resources to a reduction in direct impacts is borrowed from the engineering risk analysis lit-
erature and is used to identify those industries where resources can most reduce the impacts
from a disruption.

The discrete-time dynamic model in this paper allows the decision maker to allocate
resources at different points in time. Unlike many other dynamic resource allocation mod-
els, our model assumes resources are infinitely divisible like money, as opposed to discrete
resources, and the solution to this model relies on a branch-and-bound algorithm for continu-
ous variables. The resource constraint is one constraint for the entire time period as opposed
to a budget constraint for each individual period of time, as many dynamic models propose.

Finally, a policy maker can use the models to understand the effect of different factors
that may influence the optimal allocation of resources. The models seek to illuminate the
relationship between the optimal allocation and parameters such as direct impacts, the ef-
fectiveness of allocating resources, the resource budget, and time. By comparing the benefits
of allocating resources to help multiple industries simultaneously with the benefits of tar-
geting individual industries, this modeling approach can offer guidance on general recovery
efforts versus specific recovery tasks for an industry.

3 Resource allocation models
3.1 Inoperability Input-Output Model

Two resource allocation models, one static and one dynamic, measure the economic con-
sequences from a disruption, and a policy maker wishes to allocate resources to minimize
total production loss caused by the disruption. Production losses derive from both direct and
indirect impacts. Direct impacts represent production losses that result directly from final
consumers reducing their demand or from facilities that are inoperable due to the disruption.
Indirect impacts are production losses incurred by industries or firms who depend on those
directly impacted industries. Large-scale disruptions such as the 2011 Japanese earthquake
and tsunami can induce indirect impacts on a global scale (MacKenzie et al. 2012c).

Industries and economic sectors suffer from indirect impacts because of the interde-
pendencies among industries and infrastructure systems. Two entities are interdependent if
each impacts or influences the performance or functionality of the other entity (Rinaldi et
al. 2001). Interdependence plays an important role in risk and policy analysis because a
disruptive event that directly impacts infrastructure, business, or the economy can induce
partial or even total failure in other systems, markets, and businesses that are not directly
impacted by the event. A variety of models (see Pederson et al. 2006; Medal et al. 2011)
have been proposed to understand and analyze the linkages among critical infrastructure
systems. Network models can quantify the vulnerability, resilience, and interdependence of
infrastructure systems (Duefias-Osorio et al. 2007; Johansson and Hassel 2010). System dy-
namics models attempt to capture the interdependence between infrastructure and humans
during a disruption (Conrad et al. 2006).

The models presented in this paper measure the economic interdependence among in-
dustries using an input-output model. Modeling economic interdependence in the midst of
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a disruption seeks to quantify production and demand changes resulting from the disrup-
tive event (Okuyama and Chang 2004). The Leontief (1936) input-output model measures
these interdependent impacts by assuming that production changes are demand driven. If a
disruption forces an industry to produce less or causes final demand to drop, less product
is demanded of suppliers. Linear dependencies among industries are driven completely by
these changes in final or intermediate demand. Despite the linear and demand-driven as-
sumptions, input-output models provide a reasonable estimate of the economic impacts of
disruptions (Boisvert 1992; Gordon et al. 2005; Okuyama 2008), and the models are sup-
ported by a large data collection effort undertaken by governments around the world.

The Inoperability Input-Output Model (IIM) (Santos and Haimes 2004) is a risk-based
extension of the Leontief input-output framework. A disruption directly impacts m industries
in an economy with a total of n industries, where m < n. A vector ¢* is of length m, and
¢; measures the direct impacts, in proportional terms, to industry i. D = (I—A*)_I is a
square matrix of order n, where A* is the normalized interdependency matrix in the IIM.
D translates direct impacts into direct and indirect impacts. Each element in the matrix,
dj;, calculates the proportional loss in production for industry j due to a loss in production
in the directly impacted industry i. Each element on the diagonal of D is greater than or
equal to one because direct impacts in industry i lead to total impacts at least as large as the
direct impacts in that industry. If no interdependencies are present, D is the identity matrix.
Because the disruption does not directly impact all » industries but only m industries, we
use D, a n x m matrix whose columns correspond to the directly impacted industries from
D. Thus, D translates the direct impacts in the m industries into direct and indirect impacts
for all n industries in the economy. Table 1 depicts D for the Deepwater Horizon application.
Most of the off-diagonal elements are on the order of 102 or 1073, which demonstrate that
interdependencies between any two industries are fairly small. However, the column sums
of D for the Real Estate, Accommodations, and Oil and Gas industries are 2.75, 1.39, and
1.73, respectively. Indirect impacts due to economic interdependencies are 175%, 39%, and
73% of the direct impacts for each of those industries.

Translating the proportional impacts to production losses requires multiplying the total
impacts by x, which is a vector of length n representing as-planned production for each in-
dustry in the economy. Total production losses due to the disruption is given by xTDe*. The
IIM has been used to study a number of disruptions that concern policy makers including ter-
rorist attacks (Haimes et al. 2005), cyber security (Dynes et al. 2007), workforce disruptions
(Barker and Santos 2010), and waterway port closures (MacKenzie et al. 2012a).

3.2 Model 1: Static allocation

For the first model, a policy maker wishes to allocate resources to minimize the total produc-
tion loss caused by the disruption. Model (1) presents the policy maker’s problem through
optimization. The total budget, Z, is divided into resources allocated to each directly im-
pacted industry, z1, . . ., Z;,, and all industries simultaneously, zo. These z; (wWhere i=1,...,m)
and zp, which serve as the decision variables in the optimization problem, are investments
to promote recovery following a disruptive event. Under this model, the policy maker’s goal
is to minimize total production losses in a region as determined by the IIM.
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The direct impacts to each industry, cj, is a function of the allocation amounts, ; (the ef-
fectiveness of allocating resources to industry i), kg (the effectiveness of allocating resources
to all industries simultaneously), and ¢ (direct impacts if no resources are allocated). Di-
rect impacts on an industry can be assessed by (i) estimating the number of consumers that
would stop purchasing from an industry because of a disruption or (ii) measuring the amount
of production that would be lost if a facility were suddenly closed.

The model assumes that allocating resources reduces the impacts exponentially, which is
a frequent assumption in engineering risk problems (Bier and Abhichandani 2003; Guikema
and Paté-Cornell 2002; Dillon et al. 2005). As more resources are allocated to an indus-
try, the impacts on an industry decline at a constantly decreasing rate, and investing an
additional dollar to reduce risk returns less benefit than investing the first dollar. For each
directly impacted industry, the exponential function requires estimating a cost-effectiveness
parameter, k;. As (2) shows, this parameter can be assessed if z;, the amount of resources
needed to reduce the direct impacts on industry i by a given fraction c; / ¢}, is known or can
be estimated, since

o _loele/a) @
Zi

The value of k; is always greater than or equal to O but has no upper bound. We expect k;
to be extremely small for large-scale disruptions where millions of dollars are necessary to
reduce the impacts. For example, if it takes $1 million to reduce the direct impacts by half,
ki = —10g(0.5)/10° = 6.9x 1077 = 0.69 per $1 million.

In addition to allocating resource to benefit a single industry, a policy maker can also
allocate resources to simultaneously benefit all industries, as represented by the parameter
z0- These resources could include activities such as cleaning the area and removing debris
after the disruption, repairing infrastructure that all industries require (e.g., electric power,
transportation), and engaging in risk communication efforts to inform the public that a region
is safe. The model squares this allocation amount because of an assumption that if a major
disruption occurs, allocating resources for these types of activities will not enhance recovery
unless a significant amount of resources is allocated. Mathematically, kp < 1 and squaring
zo reduces the impact of allocating zg if v/kozo < 1. Squaring zo also assumes that if a
substantial amount of resources are allocated to all industries (i.e., if \/kgzg > 1), the impact
of this allocation is enhanced. We base this assumption on a belief that actions such as
containing a disruption like an oil spill and rebuilding infrastructure are crucial in order to
generate economic activity in a region after a disruption.

Equations (3) - (5) depict the Karush-Kuhn-Tucker (KKT) conditions for optimality,
where A, 4;, and A are the Lagrange multipliers for the budget constraint, the nonnegative
constraints for z;, and the nonnegative constraint for zg, respectively. The parameter d,; is a
vector of length n representing the ith column from the interdependency matrix D.
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The KKT conditions for optimality provide insight into the factors influencing the op-
timal allocation of resources to each industry. Equation (4) demonstrates that if some re-
sources are allocated to industry i/, z; monotonically increases with xTd.; and ¢;. If industry
i induces large impacts on the entire economic region as measured by x7d,; or if the direct
impacts for that industry as measured by ¢; are large, government officials should devote
more resources to reduce losses for that industry. The optimal allocation depends on both
the impacts to industry i and the interdependent impacts that industry i induces in the rest of
the economy. The optimal allocation to industry i increases as k; increases for smaller val-
ues of k; but decreases for larger values of ;. If allocating resources to an industry becomes
more effective, the industry requires fewer resources, leaving more resources available for
other industries.

We begin to solve for the KKT conditions by assuming some z; = 0 and the other z; > 0,
which allows us to express (5) as a function of a single variable zg. If z9 > 0, (5) can be
rewritten as (6) after substituting the expressions for A in (3) and for z; in (4).

w0—2 1
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Proposition 1 If a given subset of the m impacted industries are individually allocated re-
sources for recovery (i.e., zi > 0 for some i) and the other industries are not individually
allocated any resources (i.e., zi = 0), then (6) has at most three real solutions for zo if
0<zp<Z

Proof See the Appendix.

As shown in the proof to Proposition 1, the number of solutions to (6) is determined by
the number of solutions for zp when the expression in (7) equals 0.

20—2Z 1
Fexp| ————— | | 1 —2kozo — | =2Gkozo @)
(Zi:zi>0 1/ki ) ( i:z,~2>0 ki)

The first derivative of (7) with respect to zp is given in (8).
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As explained in Proposition 2, the budget Z must be large enough and the first derivative in
(8) must first be negative and then be positive in order for (6) to have three solutions for zg.

Proposition 2 Equation (6) has three real solutions for zg, where 0 < zo < Z, if and only if
the following conditions hold:
F
>
2Gko+2Fko Yz ~0 1/ki

1. Z

1 1
— — 8k
Zi:z,'>0 l/kz \/(Zi:zi>0 1/kz )2 0

4ko

1 1
+ — 8ko
Yiz>0 l/ki \/(Zi:zi>0 l/ki)z
4ko

2. The expressionin (8) is less than O when zo = 7* =

3. The expression in (8) is greater than 0 when zo =7 =

with 7 < Z
Proof See the Appendix.

Each solution for zy leads to a unique solution for z; and A that satisfies (3) and (4).
Given zo, the optimization problem in (1) is convex and the KKT conditions have one unique
solution. If all 7 industries are individually allocated resources, then zo = (2ko X2, 1/k;) "
is the unique solution to (6) because G = 0. If no industries receive individual allocations,
then zo = Z.

Because determining which z; > 0 and z; = 0 allows us to calculate zg, we need to
determine an efficient manner for selecting which z; > 0 and z; = 0. Although 2™ different
combinations of positive and zero z; exist, we only need to examine m possible combinations
based on Proposition 3.

Proposition 3 If it is optimal that z; = 0 for some j=1,...,m, then z; = 0 for all i such
that XTd*,'cA’?‘k,‘ < XTd*j@j»kj.

Proof Proof by contradiction. Assume that it is optimal that z; = 0 and that z; > 0 where
X',k < XTd*ch}fkj. From the first-order conditions in (4), z; = 0 implies that XTd*jé;‘-kj exp (—koz?)) <
A and z; > 0 implies that xTd,;¢} k; exp (—koz%) > A. But this cannot be true because of the
original assumption. Therefore, z; = 0if z; = 0. O

Based on these three propositions, we develop Algorithm 1 to find the optimal alloca-
tion for the static model. The algorithm begins by calculating the optimal allocation for z;
assuming zo = O (line 2). Because the optimization problem in (1) is convex in z;, the KKT
conditions in (3) and (4) are both necessary and sufficient under the assumption that zg = 0.

The algorithm continues by first assuming on line 5 that z; > O foralli=1,...,m and
calculates zy via line 8. The set Sy contains the industries for which z; = 0, and the set
S+ contains those industries for which z; > 0. As depicted in lines 10 - 13, the algorithm
adds industry i to the set S each time through the loop where industry ip has the smallest
product, xTd,;¢7 k;, of those industries currently in set S..
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Algorithm 1: Algorithm to find optimal allocation for Model 1

Data: ¢*,x,D, k;, ko, Z
Result: 1,7,z

1 begin

2 Set zp = 0 and find unique A and z; that satisfy (3) and (4)

3 Store zp = 0 and z; as a potential optimal allocation

4 So=0

5 S ={i:1<i<m}andassumez; >0Viec S,

6 for j<Otom—1 do

7 if j = 0 then

~1

8 | 0= (2koXy, 1/ki)

9 else
10 io = argmin{xTd,;¢}k;}

ieSy.
11 So=SoU{ip}
12 S5 = 2\ {io}
13 Assume z; =0Vie Spand z; >0Vie St
14 if the conditions of Proposition 2 are satisfied then
15 L Use (6) to find three solutions for zg
16 else if Fexp (1 —2k0Z Y120 %) —2GkoZ > 0 then
17 Use (6) to find two solutions for zy assuming a solution exists
18 If no solution exists for zp return to line 6
19 else
20 L Use (6) to find one solution for zg
21 For each 7 that satisfies (6), use (3) to solve for A and (4) to solve for z;
22 if 3i € So such that z; > 0 or 3i € S+ such that z; <0 then
23 L Proposed solution does not satisfy KKT conditions
24 else
25 L Store A, z;, and z¢ as a potential optimal allocation
26 Store zo =Z and z; =0, i = 1,...,m as a potential optimal allocation
27 Compare all potential optimal allocations from lines 3, 25, and 26 and choose allocation that
| minimizes objective function in (1)

Lines 14 - 20 calculate zg so that (6) is satisfied, and it checks to see whether one, two,
or three solutions exist. Proposition 2 is used to check whether three solutions exist. If the
conditions of Proposition 2 are not met, one solution exists if (6) is negative when zo = Z
and either two or no solution exist if (6) is positive when zg = Z. For each calculated value
of 7, the algorithm uses (3) to calculate A given zg and uses (4) to calculate z; given zg and
A in line 21. As lines 22 and 23 depict, if (4) calculates z; > 0 for any i in Sp or calculates
z; <0 for any i in S, then those values for zp and z; cannot be an optimal allocation, and
they are discarded. The algorithm also stores zp = Z as a potential solution. Finally, line 27
compares all the allocations that satisfy the KKT conditions and selects the allocation that
minimizes the objective function in (1).

3.3 Model 2: Discrete-time dynamic allocation
Disruptions can last a period of time, and recovering from a disruption often requires allo-

cating resources over time. A discrete-time dynamic resource allocation model is given in
(9) where a policy maker allocates resources at fixed points in time. The disruption occurs
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at time ¢ = 0, and t = ty is the fixed final time in the model. The model assumes it takes one
time period for the allocated resources to reduce the industry impacts. Therefore, the policy
maker seeks to minimize the total production losses (both direct and indirect) in the time in-
terval [1,7/] by allocating resources in the time interval (0,7, — 1]. The other variables in this
model correspond to those in the static allocation model except that many of the variables
change over time.

minimize ) x(t)TDe* (1)
subjectto ¢} (t+1) =c} (t)exp (—ki (1)z; (t) —ko (1) 25 (1))

i=1,....om t=0,...t—1
lf*l m (9)
Z Zo(l‘)JrZZi(t) <Z
t=0 i=1
20(t),zi(t)>0 i=1,....m t=0,...1;,—1
ci(0)=¢f i=1,....m

Because resources allocated over the entire time interval are constrained by the overall
budget Z, the optimal decision may be to allocate the entire budget in the first time period,
t =0, or spread the resources over time. This timing decision depends on how the effective-
ness of allocation changes over time as governed by k; () and ko (¢). If each k; (¢) and ko (¢)
remain constant over time or decrease with time, a policy maker should allocate the entire
budget Z at time t = 0. The optimal allocation follows that of the static allocation model.

If k; (t) or ko (t) increases with time, it may be optimal to wait to allocate some of the
available resources. A trade-off exists between allocating resources so that recovery begins
immediately and saving resources in order to impact recovery the most. Although policy
makers may also hold resources in reserve because they are uncertain about how the dis-
ruption will develop, the proposed dynamic model is deterministic. It assumes the decision
maker knows perfectly what will happen in the future. A deterministic model provides im-
portant insight about allocating resources and is a useful step before building an accurate
stochastic model. Future extensions of the model will examine the impact of uncertainty on
optimal resource allocation after a disruption.

Solving the dynamic model using standard recursive relationships becomes impractical
because of the curse of dimensionality. At the last decision period ¢ = ¢y — 1, the direct
impacts for each of the m industries can range between 0 and ¢} and the remaining budget
can range between 0 and Z. Determining the optimal allocation for each of the possible
direct impacts and budget at f; — 1 to inform the decision in the previous period t = t; —2
requires a large number of calculations. Starting at time ¢t = 0 and moving forward fails
because the allocation considering only the current time period is not always optimal when
considering multiple time periods.

A branch-and-bound algorithm (see Lawler and Wood 1966; Horst and Tuy 1990) can
rely on a convex relaxation of the dynamic problem in (9) to find an allocation of resources
such that production losses are within a desired € > 0 of the minimum value of (9). The
minimum value from solving the optimization problem in (10) serves as a lower bound on
the minimum value in (9) where b, > 0 is a lower bound on zj (¢) and b, < Zis an upper
bound on z (7).
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s
minimize ) x(1)TDc* (1)
t=1

subjectto ¢} (t+1) = c} (t)exp (—k; (t)zi (t) —ko (t) byzo (1))
i=1,...m (=0, 11

ty—1 m (10)
Y Zo(t)+Zz,-(t)]<Z

t=0 i=1

bi<zo(t)<b, t=0,....tp—1

zi(1) >0 i=1,....om t=0,...,t—1

ci(0)=¢ i=1,....,m

Proposition 4 The optimal value in (10) provides a lower bound on the optimal value in (9)
given that each 7 (t) is bounded above by b, and below by b;.

Proof Let % (t) and Z; (t) be a feasible solution to both (9) and (10) where b, < % (t) < b,.
Notice that if the constraint b, < zq (t) < b; is added to the optimization problem in (9), a
feasible solution to one problem is also feasible in the other problem.

Clearly, c; (t)exp (—ki (1) Z; (t) —ko (1) biZo (1)) < ¢} (t)exp (—ki (1) Z; (t) —ko (1) 23 (1)) for
i=1,...,mandt=0,...,t; — 1. Because the direct impacts in (10) as given by c* (r + 1) are
less than or equal to the direct impacts in (9) for each industry and in each time period, the
objective function in (10) is less than or equal to the objective function in (9) for any feasible
allocation decision. Thus, the optimal value in (10) provides a lower bound for (9). O

The optimization problem in (10) is convex. Computer optimization programs can solve
the optimization problem using any one of a number of popular algorithms such as interior-
point methods (Byrd et al. 1999; Waltz 2006) or sequential quadratic programming (Nocedal
and Wright 1999). Algorithm 2 presents a branch-and-bound algorithm that solves (10) for
different bounds [b,,l_),] on zg (¢). The algorithm begins by solving (10) with the largest
bounds possible, b, = 0 and b, = Z for each z (¢),# = 1...ty — 1 (lines 2 and 3). Calculating
the value of the objective function from (9) with the optimal allocation from (10) establishes
an upper bound UB* on the minimum production lost in the dynamic model (line 4). These
bounds are stored in the set Wy where b and b are each vectors of length ty representing the
lower bounds and the upper bounds (in this case 0 and Z), respectively, on each zq (7).

Each set of bounds stored in W}y are divided into H new bounds where H > 1. (If H =1,
the algorithm keeps the original bounds.) Initially, Wy only contains one set of bounds
b =0 and b = Z where 0 and Z are each vectors of length ty. As depicted in line 11,

the new bounds [bt(m,l},(h) }, h=1,...,H must be chosen such that the union of these new

bounds spans the space covered by Wy. For example, if Wy = [0,Z], H = 3, and tr =4,
the three sets might be: (i) [p(l),f)(l)} = [(0,0,0,0),(2/3,2,2,2)]; (i) [1)(2),5(2)} —

[(2/3,0,0,0),(22/3 ,Z,Z,7)]; and (iii) [b“),f)(ﬂ =1[(22/3,0,0,0),(Z,Z,Z,7)]. The
union of these three sets is [(0,0,0,0),(Z,Z,Z,Z)], which equals Wy. The only bounds
that are branched or divided are those corresponding to time r = 0. We may want to fur-
ther divide the first set of bounds [(0,0,0,0),(Z/3,Z,Z,Z)] during a subsequent time
through the loop. If we select H = 2, we may divide the bounds corresponding to time
1=1:() [(0,0,0,0),(Z/3,Z/2,Z,Z)] and (i) [(0,Z/2,0,0),(Z/3,Z,Z,Z)]. A differ-
ent but equally viable division corresponds to = 0: (i) [(0,0,0,0),(Z/6,Z,Z,Z)] and (ii)
[(2/6,0,0,0),(2/3,2,2,Z)].
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Algorithm 2: Branch-and-bound algorithm to calculate optimal allocation for Model
2
Data: ¢* (0),x(t),D,t7,k; (t) ko (), Z, €
Result: z; (1) ,z0 (1) ,0
1 begin B
2 Seth, =0and b; =Z fort =0,... 1y — 1
3 Solve (10) with bounds [B;, B;] for each zg (¢)
4 Input the optimal solution from (10) into the objective function in (9) and set UB* equal to the
objective function’s value

5 Wo = [DJ_)}
6 J=1,1=0
7 repeat
8 I=0,W=0,UBy =0,LBy =0
9 for j< 1toJ do
10 Choose H > 1 as the number of branches
1 Establish bounds for each branch such that b,(h) <z (1) < l_zt(h) where h=1,...,H. The
bounds for each branch must be chosen such that Wy (j) C U, { [I_)(h> , l_)(h)} }
12 for h < 1to H do
13 Solve (10) with bounds [bﬁh),i_)fh)} for each zg ()
14 Set LB (h) equal to the optimal value of (10)
15 if LB (h) < UB* then
16 I=1+1
17 Input the optimal solution from (10) into the objective function in (9) and
assign UB (h) equal to the objective function’s value
18 W () = [t_)(h>,5<”>]
19 UBw (1) =UB(h)
20 LBy (1) =LB(h)
21 I* = argmin {UBy }
22 UB* =UBy (I*)
23 forh<1to!l do
24 if LBy (h) > UB* then
25 L Remove {I_)(h),f)(h)} from W
26 Set J equal to the number of bounds in W
27 Wo=W
28 until UB* —min{LBy } < ¢;
29 Set z; (1) and zo () equal to the optimal solution corresponding to [*

0 | 0=UB

The algorithm loops through each of the H branches in lines 12 - 20. A lower bound
on production losses LB (h) is calculated each time through the loop using the bounds
{b“’) , l_)(h)} in (10). If LB (h) > UB*, then {b“‘) , B(”)} does not contain the optimal allocation
for zo (), and the algorithm prunes or eliminates this branch from consideration. Otherwise,
an upper bound on production losses UB (h) is also calculated, and the bounds are added to
the set W. The upper bound and lower bound on production losses that correspond to each
bound on zg (¢) are stored in UByw and LBy, respectively.

After all the bounds in W, have been subdivided into new bounds, which are stored in
W, UB* is set to equal the minimum upper bound in UBy (lines 21 and 22). The algorithm
removes any bounds in W whose lower bound LB is greater than or equal to UB*. After
these bounds are removed from W, line 27 sets Wy equal to W, and the algorithm repeats
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the process beginning on line 9 by creating branches for each of the bounds in Wy. The loop
ends when the difference between UB* and the minimum lower bound is less than €, which
indicates the gap between the minimum values in (9) and (10) is less than €. As the bounds
get narrower, the algorithm converges to the optimal allocation. If b, = b, = z5 (1), where
24 () is the optimal allocation for (9), the objective function from (10) equals the minimum
value in the original dynamic model. The algorithm returns Q = UB* as the minimum value
for (9) and z; (¢) and zo (¢) corresponding to UB* as the optimal allocation.

Exploring and subdividing all the possible branches until the gap between the minimum
upper bound and minimum lower bound is less than € can take a long time. The algorithm
takes 20 to 30 minutes to solve the Deepwater Horizon application in the next section. The
algorithm can be modified so that it always explores a branch with the smallest lower bound
in the hope that subdividing this branch will generate a smaller lower upper bound.

4 Application: Deepwater Horizon oil spill

The resource allocation models are applied to a case study examining the economic impacts
of the Deepwater Horizon oil spill. As a result of the April 20, 2010 explosion on the Deep-
water Horizon oil rig, almost 5 million barrels of crude oil spilled into the Gulf of Mexico
until the leak was finally capped on July 15. BP, which operated the oil rig, agreed to es-
tablish a $20 billion fund to pay for the damage to the Gulf ecosystem, reimburse state and
local governments for the cost of responding to the spill, and compensate individuals for lost
business. This application measures the lost production in the region due to the spill’s direct
impacts on five different industries. Parameter estimation for the resource allocation models
derive from publicly available economic data, think-tank and government reports, journal
articles, and news stories.

4.1 Assumptions and parameter estimation

The models include five Gulf states (Texas, Louisiana, Mississippi, Alabama, and Florida).
The U.S. Bureau of Economic Analysis (2010a,b, 2011) collects economic data used to
populate production for each industry in those states (the vector x) and the interdependencies
among industries (the matrix D in Table 1). The models combine the five Gulf States into a
single economy with a total of n = 63 industries.

The models focus exclusively on production losses due to inoperable facilities or re-
duced demand and ignore the severe environmental damage. Direct impacts from the oil
spill include: (i) demand losses because consumers decide to buy or consume fewer goods
and services as a result of the oil spill and (ii) less industry production because facilities are
inoperable. Demand losses occurred because people did not travel to the Gulf for vacation
or buy fish from the Gulf (and fewer fish were caught). Firms drilled for less oil in the Gulf
because of the moratorium, the lack of new leases and licenses, and the need for enhanced
safety measures. The models consider that the oil spill directly impacted the Fishing and
Forestry, Real Estate, Amusements, Accommodations, and Oil and Gas industries (m = 5).

The decision maker for this application is a hypothetical policy maker responsible for
limiting economic losses in the five Gulf states. The policy maker controls resources that
can be used to increase demand for seafood, tourism, and real estate in the Gulf, implement
new safety requirements in the offshore oil platforms, and remove crude oil from the Gulf
which benefits all of the impacted industries. Although the U.S. federal government has
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Table 1 Interdependence matrix D for the Gulf region

Tndustry Fishing and Real Amuse-  Accommo-  Oil and
Forestry Estate ments dations Gas
Fishing and Forestry 1.120 0.026 0.005 0.013 0.005
Real Estate < 0.001 1.057 0.003 0.004 0.002
Amusements < 0.001 0.004 1.000 0.002 0.001
Accommodations < 0.001 0.022 0.002 1.005 0.003
Oil and Gas 0.001 0.011 0.002 0.004 1.067
Farms 0.003 0.002 0.002 0.002 0.001
Mining 0.001 0.033 0.006 0.005 0.023
Mining Support < 0.001 0.001 < 0.001 < 0.001 0.042
Utilities < 0.001 0.025 0.004 0.012 0.010
Construction < 0.001 0.024 0.001 0.002 0.021
Wood Products 0.004 0.092 0.003 0.011 0.016
Nonmetallic Mineral 0.001 0.056  0.002 0.004 0022
Products
Primary Metals 0.001 0.022 0.003 0.004 0.043
Fabricated Metal Products 0.002 0.027 0.002 0.005 0.034
Machinery 0.002 0.014 0.001 0.002 0.021
Computer and Electronic Products < 0.001 0.011 0.001 0.005 0.004
Electrical Equipment 0.002 0.023 0.002 0.005 0.012
Motor Vehicles 0.001 0.005 0.001 0.001 0.005
Other Transportation Equipment < 0.001 0.002 < 0.001 0.001 0.001
Furniture Products < 0.001 0.076 0.004 0.003 0.006
Misc. Manufacturing < 0.001 0.006 0.001 0.003 0.004
Food, Beverage, and Tobacco 0.001 0.002 0.003 0.004 0.001
Textile Mills 0.002 0.013 0.006 0.005 0.005
Apparel and Leather 0.001 0.009 0.002 0.003 0.003
Paper Products 0.001 0.015 0.003 0.018 0.009
Printing 0.001 0.023 0.006 0.016 0.006
Petroleum and Coal Products 0.001 0.007 0.001 0.002 0.004
Chemical Products 0.004 0.011 0.003 0.002 0.016
Plastics and Rubber Products 0.001 0.023 0.002 0.004 0.015
Wholesale Trade 0.001 0.009 0.001 0.003 0.007
Retail Trade < 0.001 0.010 0.001 0.001 0.002
Air Transportation < 0.001 0.016 0.002 0.004 0.003
Rail Transportation 0.001 0.019 0.003 0.005 0.022
Water Transportation < 0.001 0.001 < 0.001 0.001 0.002
Truck Transportation 0.001 0.015 0.004 0.004 0.008
Ground Passenger Transportation < 0.001 0.022 0.002 0.005 0.003
Pipeline Transportation < 0.001 0.011 0.002 0.005 0.065
Other Transportation 0.001 0.014 0.004 0.005 0.006
Warehousing and Storage 0.001 0.015 0.004 0.009 0.006
Publishing < 0.001 0.012 0.002 0.006 0.005
Motion Picture and Sound Recording < 0.001 0.009 0.003 0.017 0.002
Broadcasting and Telecommunications < 0.001 0.021 0.004 0.009 0.006
Information and Data Processing 0.001 0.274 0.004 0.006 0.011
Federal Reserve Banks < 0.001 0.064 0.002 0.003 0.005
Securities, Commodity <0001 0091  0.007 0.009  0.004
Contracts, and Investments
Insurance Carriers < 0.001 0.004 < 0.001 <0.001 <0.001
Funds, Trusts, and Other 0001 0013 0003 0008 0076
Financial Vehicles
Rental and Leasing Services 0.001 0.065 0.006 0.016 0.011
Legal Services < 0.001 0.018 0.002 0.005 0.009
Computer Systems Design 0.001 0.038 0.007 0.018 0.013
Misc. Professional Services 0.001 0.028 0.007 0.031 0.031
Management of Companies < 0.001 0.066 0.006 0.016 0.007
Administrative and Support Services < 0.001 0.178 0.007 0.018 0.008
Waste Management Services 0.001 0.003 0.001 0.001 0.001
Educational Services <0.001 <0.001 <0.001 <0.001 <0.001
Ambulatory Health Care Services <0.001 <0.001 <0.001 <0.001 <0.001
Hospitals and Nursing <0.001 <0.001 <0.001 <0.001 <0.001
Social Assistance < 0.001 0.024 0.008 0.013 0.007
Performing Arts, Sports, and Museums < 0.001 0.011 0.001 0.006 0.001
Food Services < 0.001 0.030 0.003 0.006 0.003
Other Services < 0.001 0.003 < 0.001 0.003 0.001
Federal Government < 0.001 0.006 0.001 0.002 0.001

Sum 1.166 2.754 1.170 1.386 1.733
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Table 2 Input values for Deepwater Horizon application

i Industry ki (per $1 million) &

1 Fishing and Forestry 0.074 0.0084

2 Real Estate 0 0.047

3 Amusements 0.0038 0.21

4 Accommodations 0.0027 0.16

5 Oil and Gas 0.0057 0.079
All industries simultaneously | ko =7.4* 1079 (per $1 million?)

responsibility for many of these areas, in practice, the federal government, state and local
entities, and the private sector all control resources that can be used for these types of tasks.

Table 2 displays the parameter estimates for the effectiveness of allocating resources, k;,
and the direct impacts for each industry, ¢;. Allocating resources to one of the industries di-
rectly impacted by reduced demand means better communication about the risks, safety, and
cleanliness of the products and services produced by these industries. The models assume
that these resources can be expressed in monetary terms. If people are not consuming fish
caught in the Gulf of Mexico, resources can be devoted to testing fish for oil contamination
and to a public relations campaign explaining that fish are safe for consumption. A decrease
of $63 million in fishing revenue due to the oil spill (National Resources Defense Council
2011) enables the direct impacts for the Fishing and Forestry industry (i = 1) to be esti-
mated. The parameter k; is derived from two studies (Richards and Patterson 1999; Verbeke
and Ward 2001) examining the effect of positive media stories following two different food
scares.

The direct impacts for Amusements (i = 3) and Accommodations (i = 4) are based on
an estimate that tourism declined in Louisiana, Alabama, Mississippi, and Florida by 30%
although tourism in Texas does not appear to have been impacted (Market Dynamics Re-
search Group 2010; Oxford Economics 2010). Tourism to the Gulf can be encouraged by
ensuring that the beaches are free of oil and debris and demonstrating to potential tourists
that the beaches are safe and open. The effectiveness parameters are derived from an Oxford
Economics (2010) study that argues for a return on investment of 15 to 1 in tourism market-
ing. For the Real Estate industry (i = 2), the models assume that the demand for housing in
the four states fell 10% and that increasing demand for housing depends entirely on tasks
devoted to helping all industries such as stopping the oil leak and cleaning up the oil. Hence,
ky =0.

Allocating resources to the Oil and Gas industry (i = 5) means implementing new safety
measures to reduce the risk of an accident on an offshore oil platform. The U.S. government
imposed a six-month moratorium on deepwater drilling in the Gulf of Mexico, and it did
not issue new leases for oil exploration in the Gulf until December 2011 (Fowler 2011).
Spending more to improve the safety of deepwater drilling may have induced the federal
government to lift the moratorium earlier and grant more licenses and leases. Direct im-
pacts are based on domestic oil production from the Gulf of Mexico in 2010 (U.S. Energy
Information Administration 2011), and ks is derived from an estimate that the new safety
measures cost $183 million (McAndrews 2011).

Capping the oil leak, containing the spill, and removing crude oil from the ocean can
simultaneously benefit all five directly impacted industries. If less oil spills or if the oil is
cleaned up more quickly, people are more likely to eat fish from the Gulf and vacation on
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Fig. 1 Production losses for Model 1 at different budget amounts

its beaches. The Oil and Gas industry can also benefit because lifting the moratorium is less
politically sensitive if the consequences of the oil spill are limited. Approximately $11.6
billion was spent on stopping the oil leak and cleaning up the oil (Trefis Team 2011), and ko
(per $1 million squared) is estimated by assuming that \/ko * $11600 = 1. This assumption
implies that billions of dollars must be allocated in order to substantially reduce the direct
impacts on the five industries.

4.2 Model 1 results

Figure 1 depicts total production losses generated by using Algorithm 1 to solve the static
allocation model for different budgets ranging from $0 to $20 billion, where $20 billion
reflect the amount in BP’s fund for reimbursing cleanup costs and lost business. Production
losses total $49.1 billion if no resources are allocated and drop to $2.0 billion if the budget
is $20 billion.

Table 3 shows the optimal allocation for each industry for five different budget amounts:
$1, $4.8, $5, $10, and $20 billion. As implied by the table, if the budget is less than or
equal to $4.8 billion, the policy maker should not devote any resources to simultaneously
help all industries because these industries do not benefit as much as they do from each one
being targeted individually. If the budget is $4.8 billion, Accommodations should receive
the largest share because the money is less effective for this industry but the direct impacts
are very large. The policy maker should spend $1.5 and $1.2 billion to help Amusements
and Oil and Gas but only $59 million for Fishing and Forestry because the direct impacts in
this latter industry are less severe and the resources are very effective.

Because spending money to help all industries recover simultaneously only becomes
optimal when the budget is $4.9 billion or greater, the shape of the curve in Figure 1 changes
at $4.9 billion. If no money is ever spent to help all industries recover, production losses will
not drop below $20 billion even if the budget is $20 billion, and the figure demonstrates that
the curve begins to flatten out when the budget is $4 billion. When the budget increases to
$4.9 billion, the shape of the curve changes and production losses drop significantly because
resources are allocated to help all industries. Production losses continue to decrease at a
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Table 3 Optimal allocation amounts for Model 1

Industry Millions of dollars allocated to each industry
Fishing and Forestry 0 59 34 12 0
Real Estate 0 0 0 0 0
Amusements 250 1,458 968 543 278
Accommodations 379 2,107 1,407 799 420
Oil and Gas 372 1,176 850 567 391
All industries simultaneously 0 0 1,741 8,079 18,911
Total budget 1,000 4,800 5,000 10,000 20,000

steep rate because the model squares zg. Consequently, proportionally more resources should
be allocated to help all industries as the budget increases. As shown in Table 3, almost 95%
of a $20 billion budget should be spent on this category. As discussed in Section 3, squaring
7o reflects the assumption that as more money is allocated to stop the oil spill and clean
the oil, these tasks become easier, the work is accomplished more quickly, and the affected
industries suffer less. This unique modeling assumption appears reasonable for a budget less
than $20 billion with the given parameters. If the budget were larger than $20 billion, almost
all of the money would be allocated to all industries because it becomes so effective. We will
revisit this assumption by performing sensitivity analysis on the power to which z is raised
is varied.

4.3 Model 2 results

The effects from major disruptions can last several months or even years, and the Coast
Guard and BP engineers worked for almost three months to stop the oil leak. Government
officials working to contain and recover from disruptions need to make decisions at different
points in time. The discrete-time dynamic model discussed previously can provide guidance
on the optimal way to allocate resources over time. This model analyzes the oil spill for one
year and divides the year into 12 months, and z; = 12. Regional production is assumed to be
constant in each month, and x (1) = x/12.

If the effectiveness of allocating resources, k; (¢) and kg (¢), decreases or remains con-
stant with time, the policy maker should allocate all resources at time ¢ = 0 according to
the optimal division suggested by the results from Model 1. Encouraging people to eat fish
caught in the Gulf and to vacation on the beaches may become more effective with time
because people will worry less about the risks. The effectiveness of allocating resources
to individual industries is assumed to increase linearly with time, and k; (t) = (¢ + 1)k; for
t=0,...,ty—1andi=1,...,5. Tasks such as stopping the oil leak and removing crude
oil from the Gulf may not become more effective as time passes, and ko (t) = k¢ for all 7.
Although these tasks may get easier as more oil is removed, the effectiveness remains in-
dependent of time. Because k (r) remains constant over time, it is never optimal to spend
money on 7o (¢) = 0 for time ¢ > 0.

Algorithm 2 solves Model 2 for four different budgets. The algorithm solves the dy-
namic problem so that the upper and lower bounds on production losses are within € = $1
million of each other. Production losses exceed $1 billion dollars, so the value of € chosen
guarantees that the solution provided by the algorithm is within 0.1 percent of the mini-
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mum production losses. We use Matlab version R2012a fmincon program and its sequential
quadratic programming algorithm to solve the convex problem in (10) in order to calculate
the lower bound for each branch. Figure 2 depicts the first three levels on the bounds [b, , l_),]
for zo () when the total budget is $5 billion. We initially choose H = 10 branches, and the
second iteration in the figure displays H = 3 subbranches for each unpruned branch.

Results from Model 2 reveal that most of the resources should be allocated to benefit
all industries simultaneously at time 7 = 0 if the budget is $5 billion or more (Table 4). If
the budget is $1 billion, no resources should be allocated to help all industries because the
amount of money that could be spent is too small to make a difference. Similar to Model 1,
this difference in the amount of resources that should be allocated to all industries reflects
our modeling assumption of squaring zy. Proportionally more money should be spent to ben-
efit all industries as the budget increases. All the money in this category should be spent in
the first time period because the effectiveness of allocating to all industries remains constant
over time. Spending billions of dollars in one month may be impossible in reality, and an
extension of this model could include an additional constraint that establishes a maximum
amount that could be spent in a single time period. Even with such a constraint, stopping
the spill and cleaning up the oil should be accomplished as quickly as possible, as Model
2 demonstrates. The remainder of the budget should be spent on the other industries during
the first five time periods, with most of the money being allocated during the first two time
periods. The deterministic nature of Model 2 ignores any incentive the decision maker may
have to hold money in reserve to learn more about how the oil spill will impact industries.

Given the assumptions that zo (¢) is squared and that ko (¢) remains constant over time,
Model 2’s results emphasize that stopping and containing the oil spill should be the top pri-
ority, especially for large budgets. When a disruption occurs, allocating substantial resources
to help individual industries recover is suboptimal if the disruption (e.g., an oil spill) is wors-
ening. Some resources should remain in reserve to help specific industries recover once the
primary disruption or spill is contained. The majority of the resources for individual in-
dustries should be allocated in the first few time periods, and all entire budget should be
allocated before time ¢ = 6. If the model of a disruption relies on different assumptions, it
may be optimal to allocate more resources to individual industries and/or spend more money
in future time periods.

4.4 Sensitivity analysis

Sensitivity analysis on a few key parameters and on an important model assumption provides
insight into how these parameters and assumptions affect the optimal allocation of resources.
Sensitivity analysis is explored on the the direct impacts and the effectiveness of allocating
resources to the Fishing and Forestry industry, the effectiveness of allocating resources to
all industries, and the modeling assumption that zg is squared. We perform the sensitivity
analysis on Model 1 although the conclusions can also be applied to Model 2.

The base case results for both models recommend allocating less than $60 million to the
Fishing and Forestry industry (i = 1). Sensitivity analysis can reveal if this recommendation
remains valid if the allocation effectiveness, k1, and direct impacts, ¢}, change (Figure 3).
The optimal allocation to this industry increases as ¢} increases. As k; increases, the optimal
allocation initially increases but then decreases. Although the value of k; at which the policy
maker should allocate the most to Fishing and Forestry depends on ¢}, the optimal allocation
decreases for k; > 0.005 for any value of ¢}. For a $10 billion budget, the most the industry
should receive is $710 million at k; = 0.015 and ¢} = 0.5. This extreme level of direct
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Fig. 2 An example of the first three levels on the bounds for zo (¢) for a budget of $5 billion. All numbers
are in billions of dollars. A dashed X means the branch has been pruned because the branch’s lower bound
exceeds the best upper bound.
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Table 4 Optimal allocation amounts for Model 2 (millions of dollars allocated to each industry)

$1 billion budget, $24.8 billion in lost production

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11
Fishing and Forestry 0 0 2 2 1 1 0 0 0 O 0 0
Real Estate 0 0 0 0 0 0o 0 0 0 o0 0 0
Amusements 0 125 61 34 21 15 0 O O O 0 0
Accommodations 0 190 87 48 30 21 O O O O 0 0
Oil and Gas 180 9% 40 22 14 10 0 O O O 0 0
All industries simultaneously 0 0 0 0 0 o 0 o0 0 o0 0 0

$5 billion budget,$20.1 billion in lost production

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11
Fishing and Forestry 3 7 3 2 1 1 0 0 0 O 0 0
Real Estate 0 0 0 0 0 o 0 0 0 O 0 0
Amusements 375 144 61 34 21 15 0 O O O 0 0
Accommodations 558 206 87 48 31 21 0 O O O 0 0
Oil and Gas 455 9% 40 22 14 10 O O O O 0 0
All industries simultaneously | 2,745 0 0 0 0 o 0 0 0 O 0 0

$10 billion budget, $13.5 billion in lost production

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11
Fishing and Forestry 0 1 3 2 1 1 0 0 0 O 0 0
Real Estate 0 0 0 0 0 0O 0 0 0 O 0 0
Amusements 49 144 o6l 34 21 15 0 0 0 O 0 0
Accommodations 92 206 87 48 31 21 O O O O 0 0
Oil and Gas 238 9% 40 22 14 10 O O O O 0 0
All industries simultaneously | 8,763 0 0 0 0 O 0 O 0 O 0 0

$20 billion budget, $1.7 billion in lost production

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11
Fishing and Forestry 0 0 0 1 1 1 0 0 0 O 0 0
Real Estate 0 0 0 0 0 o 0 0 0 o0 0 0
Amusements 0 52 61 34 21 15 0 O O O 0 0
Accommodations 0 8 87 48 30 21 O O O O 0 0
Oil and Gas 8 9 40 22 14 10 O O O O 0 0
All industries simultaneously | 19,276 0 0 0 0 o 0 0 0 O 0 0

impacts is very unlikely, however, and $710 million still only represents 7.1% of the entire
budget. As the effectiveness increases, even less money needs to be allocated to the Fishing
and Forestry industry even if the direct impacts are very large. Although the recommended
allocation for this industry varies with k1 and ¢}, the optimal allocation is less sensitive if
ki > 0.04. (Our results initially estimate k; = 0.074.)

One of the most important parameters in the model is the effectiveness of allocating to
all industries, kg, which determines the amount that should be allocated to stop the oil spill
and clean up the the oil. The proportion of resources allocated to all industries in Model 1
is highly sensitive to small changes in kq (Figure 4), especially for budgets of $10 billion or
less. For example, increasing ko from its initial value of 0.74 % 1073 to 2.0 % 10~% increases
the proportion of a $5 billion budget that should be allocated to zg from 0.35 to 0.62, and the
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Fig. 3 Contour plots of allocation to Fishing and Forestry industry with a budget of $10 billion
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Fig. 4 Sensitivity Analysis on Effectiveness of Allocating Resources to All Industries

proportion for a $10 billion budget increases from 0.81 to 0.92. For values of kq greater than
2.0 1078, the entire budget should be allocated to all industries when the budget is greater
than $10 billion. As such, the larger ky is, the more effective it is to invest in industry-wide
efforts. Because the optimal allocation is highly sensitive to very small changes in ko, a
more careful estimation of this parameter should be undertaken before the model is used as
a practical aid in responding to an oil spill.

The model squares the allocation to all industries, zp, due to the assumption that a lot of
resources need to be allocated to all industries before it begins to have a large impact. The
results suggest that the vast majority of the budget should be allocated to help all industries
for budgets of $10 billion or more. Thus, we examine the extent to which the optimal alloca-
tion amounts would change if zgp were not squared. The power to which z is raised is varied



22 MacKenzie et al.

1 ‘ -

sunt

@ lI--lll-llTH‘lH‘HTH‘H!‘\I-Hl-|H-1\-H!.\H.l:\:HHHHHHHHHHI!HHHH““
%; 087”””” S
20
=
S 06l w35 billion 1
g s $10 billion
g odl i $15 billion | |
3 = = = $20 hillion
S
§ 02 ]
o
o

0 ‘ ‘

1 15 2 25 3

Power to which z, israised

Fig. 5 Sensitivity Analysis on Squaring zo

from 1 to 3, and Figure 5 records the proportion of the budget allocated to all industries for
four different budgets. The value of kg also changes so that kO1 /P % 11600 = 1 where pis the
exponent.

For budgets of $10 billion or more, the fraction of the budget allocated to all industries
remains relatively constant as the power to which z is raised ranges from 1 to 3. A large
fraction should be allocated to zo partly because of the need to help the Real Estate industry,
whose individual allocation effectiveness parameter equals zero. If the budget is $5 billion,
55% of the budget should be allocated to all industries if zg is raised to 1. That percentage
decreases as the exponent increases until no money is allocated if the exponent is 2.2 or
larger. This sensitivity analysis on a key modeling assumption suggests that for large bud-
gets, a policy maker should allocate the vast majority of the budget to helping all industries
even if zg is not squared.

5 Conclusion

This paper presented two different models to instruct a policy maker on the effective allo-
cation of resources to help industries recover after a disruption. The first model is a static
optimization problem that seeks to minimize production losses as measured by the IIM.
The KKT conditions for optimality enable the expression of optimal resource allocations as
functions of model parameters, such as the initial impact, the effectiveness of allocating re-
sources, and an industry’s production or interdependent effects in an economy. The second
model also minimizes production losses but incorporates time by letting the policy maker
choose different allocation amounts at different points in time. A branch-and-bound algo-
rithm uses a convex relaxation of the original non-convex dynamic model to provide a lower
bound on the minimum value.

Applying these models to the 2010 Deepwater Horizon oil spill requires estimating
parameters using a variety of newspaper accounts, journal articles, think-tank reports, and
government data. If no money is spent on recovery, we estimate that the Gulf region would
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suffer $49.1 billion in production losses. The damages from the oil spill were estimated
between $10 and $20 billion (Aldy 2011), and the Oxford Economics (2010) study proposes
that tourism revenues could decline by as much as $23 billion over a three-year span. If the
budget for recovering from the oil spill is $11.6 billion (the amount that BP spent to stop
the spill), the static model estimates that total production losses are $12.3 billion and losses
from the dynamic model total $10.8 billion (because effectiveness increases with time).
These results from the models align closely with the other estimates.

The models in this paper and the application can guide government officials in making
decisions about recovering from future disruptions. First, the budget for recovering from a
disruption should be large enough to repair physical damage and limit environmental dam-
ages. These activities can benefit all of the directly impacted industries simultaneously and
may accomplish more than engaging in a risk communication campaign to help specific in-
dustries recover. Second, targeting individual industries can be beneficial. It can be optimal
to allocate the most money to industries with large direct impacts but where the money is
less effective such as Accommodations in the Deepwater Horizon application. Finally, when
allocation decisions are made over time, unless effectiveness substantially increases with
time, it is better to allocate most of the budget in the initial periods although bureaucratic
and budgetary obstacles may force policy makers to allocate resources in later periods.

These recommendations do depend on modeling assumptions, however, and policy mak-
ers should understand the assumptions behind the models. If the model does not square zg
or if kg is smaller, it may not be optimal to allocate such a large proportion of the budget
to all industries. If effectiveness increases over time, or if a dynamic model incorporates
uncertainty, it may not be optimal to spend as much as money in the initial time period as
suggested by Model 2 in this paper. Although we believe these assumptions are valid for
the type of oil spill disruption that motivated this paper, future research should explore the
validity of these and other assumptions, such as the exponential effect of resource allocation
and the linear model describing interdependent impacts. An empirical study could seek to
validate some of these assumptions, or a richer model could be developed that relaxes some
of these assumptions and incorporates greater complexity and uncertainty.

Appendix
Proof of Proposition 1

Given a set of z; > 0 and z; = 0, we seek to prove that (6) has at most three solutions. First, we need to prove
the following lemma.

Lemma 1 Given a function f (x) that is continuously differentiable for x > 0, if f' (x) = 0 has at most two
solutions for x > 0 and o > 0, then exp (—ocxz) [ (x) =0 has at most three solutions for x > 0.

Proof Assume the function f (x) is continuously differentiable for x > 0, ' (x) = 0 has at most two solutions,
and o > 0. If exp (—ax?) f (x) = 0 has more than three solutions for x > 0, then f (x) = 0 has more than three
solutions for x > 0 because exp (7Otx2) > 0 for all x.

If f(x) = 0 has more than three solutions, then f (x) has at least three local extrema, which means that
S’ (x) =0 has at least three solutions. This contradicts the premise that ' (x) = 0 has at most two solutions.
Thus, exp (—ax?) f (x) = 0 has at most three solutions for x > 0. O

If we can show that the first derivative as depicted in (8) has at most two values for zgp > 0 where the first
derivative equals zero, then Lemma 1 applies because (7) is continuously differentiable for zg > 0.
The second derivative of (7) with respect to zg is given in (11).
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Equation (11) has one solution for zg if (11) equals zero. This implies that the first derivative in (8) has
one extreme point and at most two solutions for zp if (8) equals 0. Because no more than two zeros exist for
the first derivative in (8), we can conclude from Lemma 1 that (6) has at most three solutions for 0 < zg < Z.

O

Proof of Proposition 2

First, we show that if (6) has three real solutions for zg, then each of the three conditions must hold. If (6)
has three solutions, then (7) has three solutions because exp (—koz%) # 0. Because the second derivative in
(11) has exactly one solution for zgp when (11) equals 0, the first derivative in (8) has one local extreme point,
which means that at most two solutions exist for zop when (8) equals 0. This implies that (7) has at most two
extreme points. If exactly three solutions exist for zp when (7) equals 0, then (7) has a local minimum at
z0 = z— where (7) is less than 0 and a local maximum at zo = z4+ where (7) is greater than 0.

Condition 1. The expression in (7) is greater than 0 if zop = 0. If (7) has three solutions, then (7) must be

less than or equal to 0 when zo = Z. If (7) is less than or equal to O when zg = Z, then F (1 —2koZ X5 1/ki ) —

2GkoZ < 0. Then it must be true that Z > F /(2Gko +2Fko Y;;,~0 1/ki ), which proves condition 1.
Condition 2. A local minimum exists at zop = z—, and a local maximum exists at zo = z. Since (7) is
greater than 0 when zo = 0 and (7) is less than 0 when zg = Z, it must be true that z_ < z.. The first derivative

. L. . 20—2Z 1
in (8) equals 0 when zp = z_ and zo = z4, which implies that 2Gky = Fexp —2kozo — 2ko Yz 0
B Tizo0 1/ki ) \ Eigm0 1/ki w0 g
at those two points. Substituting this expression for 2Gkg into (7) leads to the expression in (12).
20—Z 5 20
Fexp| ————— 2kozg— ———— +1 (12)
<Zi:zi>0 1/k; ) < Yiz0 1/ki

1 n ! -
Z[:z,->0 l/ki (Zi:z,'>0 l/ki)

Z* and 7** as defined in Proposition 2. The expression in (12) is greater than 0 when zp < z* and zo > 7**
and less than 0 when z* < zg < z**. If no solution exists when (12) equals 0, then that would imply that (7)
is greater than O when zo = z_ because (12) would always be greater than 0. If that were true, then three
solutions would not exist for zg when (7) equals 0.

Because (7) is less than 0 when zo = z_, then it must be true that z* < z_. Because (7) is decreasing for
70 < z—, the first derivative in (8) is less than 0 when zo = z*, which proves condition 2.

Condition 3. Because (7) is greater than O when 79 = z., it must be true that z** < z; < Z. Because (7)
is increasing for z_ < zp < z4, (8) is greater than O when zp = z., which proves condition 3.

Second, we show that if the three conditions hold, then (6) has three real solutions for zy. Assume the
three conditions hold. Because (8) is less than 0 when zg = z*, (7) is decreasing over some range. Because (8)
is greater than 0 when zo = z**, then (7) is increasing over some range. Since z* < z**, there must be a local
minimum at some point zop = z— where z* < z_ < z**. The expression in (12) is less than 0 for z* < zo9 < z**,
which implies that (7) is less than O at the local minimum zop = z_. The expression in (7) must equal O for
some point 0 < zp < z_.

If (12) equals 0, then zp = 8ko / (4ko) , which corresponds to

7 1 1
Since (8) is greater than 0 when zo = z**, 2Gko < Fexp < z ) ( —2koZ"* —2ko Lz >0 k) .
i

Yizs0 1/ki Yizs0 1/ki
This means that (7) is greater than (12) when zp = z**. Because (12) equals 0 when zo = z**, (7) is greater
than 0. The expression in (7) must equal 0 for some point z_ < zp < z**.
F

Ifz

> then (7) is less than or equal to O when zy = Z. Because z** < Z and
2Gko+2Fko Yizi>0 1/ki

(7) is greater than O when zg = z**, (7) must equal 0 for some point z** < zp < Z.

This proves there are at least three solutions for zp when (7) equals 0, which means that (6) has at least
three solutions for zg. From Proposition 1, no more than three solutions exist, and we conclude that (6) has
three solutions for zg. [}

)
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