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ABSTRACT 

Aspects of a classifier’s training dataset can often make building a helpful and high 

accuracy classifier difficult.  Instance selection addresses some of the issues in a dataset by 

selecting a subset of the data in such a way that learning from the reduced dataset leads to a 

better classifier.  This work introduces an integer programming formulation of instance 

selection that relies on column generation techniques to obtain a good solution to the 

problem.  Experimental results show that instance selection improves the usefulness of some 

classifiers by optimizing the training data so that that the training dataset has easier to learn 

boundaries between class values.  Also included in this paper are two case studies from the 

Surveillance, Epidemiology, and End Results (SEER) database that further confirm the 

benefit of instance selection.  Overall, results indicate that performing instance selection for a 

classifier is a competitive classification approach.  However, it should be noted that instance 

selection might overfit classifiers that have already achieved a good fit to the dataset. 
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CHAPTER 1. INTRODUCTION 

This chapter will introduce the concept of instance selection for classifier training 

along with its benefit and the objectives of this dissertation. At the end, an overview of the 

dissertation’s contents is presented.  

1.1 Motivation 

The world is inundated with information and it is advantageous to extract as much 

knowledge from that information as possible.  Some practices that help accomplish this task 

are grouped into the area of data mining, and one particularly helpful practice is known as 

classification.     

In data mining, information is arranged into a collection of data points called 

instances.  Each instance can describe a particular object or situation and is defined by a set 

of independent variables called attributes.  For classification problems there is a target 

concept we wish to learn about and this concept is represented in each instance as a 

dependent variable having finitely many values called the class.   The goal of classification is 

therefore to construct a model from instances with known class values, called the training 

dataset, to predict which class an instance should belong to based on its observed attribute 

values.  In some cases the induced classification model, or classifier, is simply used to make 

class predictions for instances with unknown class values, while in other cases the classifier 

is analyzed to learn more about the target concept.  The quality of the learned model is 
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typically assessed by calculating the number of correct predictions made by the classifier 

when predicting the class values of a withheld set of instances called the testing dataset.  

The goal of this research is to provide a method to create better classification models, 

or as that often implies, classification models with higher testing accuracy.  Better 

classification models will be obtained by optimizing the training data in such a way that the 

training dataset has easier to learn boundaries between class values. The motivation for this is 

that numerous aspects of the training data can make it difficult for a classification learner to 

induce an accurate model.   For example, two class values may completely overlap, one or 

more classes may have outliers, or minority class values may exist that can be ignored by the 

learner.  A relatively recent approach for addressing such issues is to use what has been 

termed instance selection to create a subset of the training dataset in such a way that all or 

some classification learning algorithms will perform better when applied to the new and 

reduced training dataset.   

Clearly, instance selection may be thought of as a combinatorial optimization 

problem where each instance is either included or not, that is, a problem with a binary 

decision variable, resulting in a search space of 2𝑛 possible subsets of 𝑛 instances. As 𝑛 may 

be very large, searching through this space without structure is very difficult. Furthermore, 

the ultimate objective function is to maximize the test accuracy of the classifier induced on 

the selected instances; that is, the objective function has no closed form and can only be 

evaluated on an independent test dataset after a classification model has been learned. One 

can use a proxy of the test accuracy, e.g. the accuracy on the training data, but even then the 

objective function has no closed form and is difficult to evaluate. Perhaps due to those 

reasons past work on instance selection has focused heavily on the use of metaheuristics, 
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primarily evolutionary algorithm, that search the space of 2𝑛 possible instance subsets 

directly without attempting to place any structure on the search space or utilize any 

optimization theory. Thus, while numerous connections between optimization and 

classification have been thoroughly studied in the literature (Olafsson et al., 2008; Bradley et 

al., 1999), it is contended that the understanding of instance selection as an optimization 

problem is still in its infancy. 

1.2 Research objectives 

The premise of this dissertation is that the boundaries between instances with different 

class values in the training data can be optimized for the induction of a classifier through an 

integer programming (IP) formulation of instance selection.  This draws on optimization 

theory to create a search space (formulation) that can be searched to find a better set of the 

training data; that is, training data with boundaries more suited to the chosen classifier, which 

subsequently leads to a better (high- accuracy) classification model. The overall objective of 

this dissertation is thus to develop optimization theory and methods for instance selection, 

focusing primarily on an integer programming formulation of instance selection. 

A naïve integer programming formulation of instance selection is very straightforward. 

The decision variable could be defined as, 

𝑥𝑖 = {
1 if instance 𝑖 is included in the final training data
0 otherwise.

 

The objective function could then be to maximize the accuracy of some model (e.g., a 

decision tree) learned on the selected instances, and no further constraints are required. 

However, this objective function has no closed form and the feasible region has no structure 
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that can be exploited to help search through this space of 2𝑛 possible solutions (where 𝑛 is 

the number of instances).  

The contention of this dissertation is that instead of naively solving this problem 

using some heuristic, the formulation should be rethought to make it more solvable. One of 

the key novel ideas of this dissertation is thus to construct subsets of instances that appear to 

perform well together, that is, instances that when considered together lead to a classifier 

with high accuracy.   A column can then be defined as (𝑎1𝑗 … 𝑎𝑛𝑗)𝑇 where 𝑎𝑖𝑗 = 1 if 

instance 𝑖 is included in the 𝑗th column (subset), and 𝑎𝑖𝑗 = 0 otherwise.  The decision 

variable of the integer programming problem is then to decide which columns’ instances 

should be used in the final training data, that is,  

𝑥𝑗 = {
1 if column 𝑗′𝑠 instances are included in the final training data
0 otherwise.

 

Additional constraints may now be relevant. For example, let 𝐽 denote the set of all 

columns, and formulate the instance selection problem as  

𝑀𝑎𝑥           𝑍 =  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦                 (1) 

   𝑠. 𝑡          ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 1,   ∀ 𝑖 𝜖 𝐼

𝑗 𝜖 𝐽

      (2) 

                  𝑥𝑗  𝜖 {0,1} , ∀𝑗 𝜖 𝐽.                 (3) 

The objective is still to maximize classifier accuracy and the constraint ∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝐽 ≤ 1 

ensures that each instance is selected for the final training data at most once. One may 

recognize this constraint as a set packing constraint, as the set packing problem is a well-

studied IP problem.  However, for reasons outlined below, the pure set packing formulation 

may not be the best formulation of the instance selection problem. 



 5 

The key to a good formulation of the instance selection problem is the ability to 

generate good columns, that is, to construct subsets of instances that work well together. This 

leads to the first explicit research question addressed in this dissertation. 

 

Research Question 1: When formulating a set-packing-type IP for instance selection, 

how should a good initial set of columns be constructed? 

Regardless of the specifics of the instance selection formulation, a key issue is to 

determine a set of columns (subsets) to be used in the IP. Motivated by similar approaches 

that have been found effective for both set covering and partitioning problems, the process is 

initiated by generating good initial columns 𝐽’, which can then be improved (see Research 

Question 2 below). 

Research Question 2: Given a set of initial columns and an IP formulation of instance 

selection, how can column generation be implemented to find improving columns? 

In traditional column generation a linear program (LP) with a prohibitively large 

number of decision variables (or columns) is solved to optimality without having to consider 

or construct all of its possible columns.  This is accomplished by considering a relaxation of 

the original LP that contains only a subset of the possible columns and generating any new 

columns needed to improve the relaxation’s solution.  Through an iterative process 

eventually no improving columns can be generated and it is known that the optimal solution 

to the original LP is found.   

Column generation is an ideal technique to construct good columns for instance 

selection because of the prohibitively large number of possible columns.  Even though 

column generation is designed specifically for solving LPs it is frequently used in integer 
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programs by relaxing the integrality constraint of the decision variables, and this is no 

different when considering instance selection.  However, unlike traditional column 

generation, instance selection requires estimation in order to find improving columns.  This is 

because there is no closed form function to calculate the accuracy of a classifier based solely 

on the contents of its training data. 

Therefore, to effectively implement column generation with the purpose of finding 

improving columns for an IP formulation of instance selection, an estimation of classifier 

accuracy based on the content’s of its training data is required.  

Research Question 3: When formulating instance selection using IP, what constraints 

should be placed on the selection of columns in addition to the set packing constraints? 

The formulation of instance selection in equations (1) through (3) is only one of the 

many instance selection IPs that could be devised, and it is not without its own shortcomings.  

For example, adding a constraint ∑ 𝑥𝑗𝑗∈𝐽 ≤ 1 to (2) and (3) insures that a simple linear 

objective function can be defined for the instance selection integer program. While this is a 

plausible approach and preliminary results indicate that column generation is able to discover 

useful columns based on a relaxation of this IP, it also somewhat restricted. In fact, it is 

known that allowing more than one column can be advantageous as preliminary results also 

show that a greedy search can be used to select amongst the columns to combine them in a 

useful way.  Two IP formulations of instance selection with different goals in regard to 

column generation are discussed in Chapter 3. 

1.3 Organization of dissertation 

 Chapter 2 of this dissertation presents a review of the relevant literature related to 

data mining, instance selection, and column generation.  Chapter 3 follows with two 
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formulations of instance selection as an integer program, as well as considerations for 

column generation.  Chapter 4 introduces results from 12 experimental datasets along with an 

analysis of instance selection.  In Chapter 5, two case studies concerning the Surveillance, 

Epidemiology, and End Results (SEER) database and instance selection are discussed.  

Finally, conclusions and suggestions for future work are made in Chapter 6. 
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CHAPTER 2. LITERATURE REVIEW 

Chapter 2 will introduce data mining, instance selection, and column generation.  

This will provide the reader with sufficient background information to follow the concepts of 

the dissertation and to show the current gap in the instance selection literature.  

2.1 Data mining 

Data mining has been found to be increasingly useful in many application areas (Han 

and Kamber, 2003; Witten and Frank, 2005). This can partially be contributed to increased 

prevalence of massive databases, which often contain a wealth of data that traditional 

methods of analysis fail to transform into relevant knowledge.  Specifically, meaningful 

patterns are often hidden and unexpected, which implies that they may not be uncovered by 

hypothesis-driven methods. In such cases, inductive data mining methods, which learn 

directly from the data without an a priori hypothesis, can be used to uncover hidden patterns 

that can then be transformed into actionable knowledge. 

All data mining starts with a set of data called the training set, which consists of 

instances describing the observed values of certain variables, or attributes. These instances 

are then used to learn a given target concept or pattern. One such approach is classification. 

In classification the training data is labeled, meaning that each instance is identified as 

belonging to one of two or more classes, and an inductive learning algorithm is used to create 

a model that discriminates between those class values. The model can then be used to classify 
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any new instances according to this class variable. The primary objective is usually for the 

classification to be as accurate as possible.  

Five useful and common classification algorithms are k-Nearest Neighbors (k-NN), 

naïve Bayes, decision tree, logistic regression, and support vector machines.  Each of these 

classification algorithms, with the exception of k-NN, operates by inducing some model from 

the training data that can then be used to predict the class of unlabeled instances.  However, 

each of these classifiers has an intrinsic bias that stems from assumptions made by the 

algorithm during its construction.  This bias will cause the classifier to perform better for 

classification problems whose instances exhibit certain relationships amongst their attributes 

and true class labels.  Although no classification problem may perfectly fit the assumptions 

made by any specific classification algorithm, it has been found that classifiers are still able 

to take advantage of some of the relationships and structure in the data and make good 

classifications.  The five classifiers mentioned above will now be discussed along with their 

inherit biases. 

K-Nearest Neighbors is an instance-based classifier.  Meaning, the classification of an 

unlabeled instance is not based on any abstraction of the training data, but rather, is based on 

the training instances themselves.  With k-NN an unlabeled instance is classified as the most 

prevalent class observed in the nearest k training instances.  A positive of the k-NN classifier 

is that it is very simplistic, but this simplicity comes at the sacrifice of having to store large 

amounts of data and perform a large number of calculations every time that an instance needs 

to be classified. The bias of k-NN comes from the assumption that an unlabeled instance 

should be classified the same as its nearest neighbors.  This assumption means k-NN will 



 10 

perform better for classification problems where instances belonging to different classes do 

not overlap and are separated by a large distance in Euclidian space. 

Naïve Bayes is a statistical classifier that predicts the probability that a given instance 

belongs to a particular class.  It is an attractive classifier because it requires only simple 

calculations and has been shown to have good accuracy for a wide variety of classification 

problems.  The probability prediction of naïve Bayes operates under the assumption that the 

“effect of an attribute value on a given class is independent of the values of the other 

attributes” (Han and Kamber, 2003).  This assumption allows the required calculations of the 

classifier to be simple, but also introduces a bias to the classifier.  Specifically, the naïve 

Bayes classifier is biased in a way that it performs better when an instance’s attribute values 

affect its class outcome with higher levels of independence. 

 Decision trees are another popular and relatively simple technique for classification.  

Decision tree algorithms induce a tree in a top-down manner by selecting attributes one at a 

time and splitting the training instances into groups according to the values of their attributes.  

The most important attribute is selected as the top split node, the next most important 

attribute is considered at the next level, and so forth. For example, in the popular C4.5 

algorithm (Quinlan, 1992), attributes are chosen to maximize the information gain ratio in the 

split. This is an entropy measure designed to increase the average class purity of the resulting 

subsets of instances as a result of the sequential splits.  A bias intrinsic to decision trees is of 

course that they perform better when an instance’s attributes actually have a hierarchical 

structure in regard to determining class label. 

 Logistic regression is a classification technique closely related to linear regression.  

However, unlike linear regression the outcome is not a predicted numerical value, but instead 
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is a probability prediction that an instance belongs to a specific class.  This prediction is 

achieved by creating a linear function of the dataset’s attributes.  Again, as with the other 

techniques that create a classification scheme from the data, a bias is introduced.  This time 

the bias is that logistic regression works better when an instance’s class is actually 

determined by some linear function of its attribute values.   

 A support vector machine is a classification technique that identifies instances (or 

support vectors) that help define the optimal border between classes.  Support vectors are 

typically found by transforming the original data with some non-linear mapping to a high 

dimension space and then implementing an optimization problem to find an optimal hyper 

plane that separates the instances into different classes.  Support vector machines have been 

found to be very useful in practice as they can achieve high accuracy while avoiding 

overfitting.  Still, support vector machines have a bias and the challenge is to find an 

appropriate kernel that maps the instances to a space in which they are truly separable.     

Because classification algorithms have biases and because natural classification 

problems do not perfectly fit this bias, classifiers are quite frequently less than perfect.  To 

combat these imperfections many researches have suggested improvement techniques.  In 

fact, instance selection is one such class of techniques and will be discussed in great detail 

later.  Another class of improvement techniques is ensemble classifiers.  Ensemble classifiers 

make a prediction for an unlabeled instance by consulting multiple classifiers and using a 

voting scheme to make a final determination.  The idea behind ensemble classifiers is that a 

deficiency in one classifier may be compensated for in the other classifiers, and that the 

majority decision has greater potential to be correct.  Two ensemble classification techniques 

are AdaBoost and random forests. 
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 AdaBoost is an ensemble classifier that builds sequential classifiers from a training 

dataset.  At the beginning, a classifier is built from the training dataset with all of the 

instances having an equal weight.  This classifier is then used to classify the original training 

data.  Any instances that are misclassified by the classifier have their weight increased so that 

the classifier built next will give them more attention.  This process of building a classifier 

and adjusting instance weights continues until a sufficient number of classifiers are 

constructed.  An unlabeled instance can then be classified through a voting scheme where 

each constructed classifier gets a weighted vote.  The weight of each vote corresponds to the 

accuracy of the classifier that cast it.  AdaBoost is an effective technique to increase the 

accuracy of simple classifiers, but interpreting the constructed classifier is difficult because a 

prediction is not the result of a single classifier.   

 Random forest is an ensemble technique that utilizes decision trees.  Similar to 

AdaBoost it operates by creating a large number of decision trees and uses a voting 

mechanism to assign a class to unlabeled instances.  A single decision tree in random forest 

is created using a random subset of the training data’s attributes.  Additionally, the training 

data for a single decision tree has randomness introduced through bagging, which is sampling 

the original training data with replacement (Brieman, 2001).  It has been found that random 

forest can achieve quite good accuracy in comparison to other methods, but again 

interpreting the constructed classifier is difficult.   

2.2 Instance selection 

The process of instance selection was first utilized for instance based classifiers, such 

as k-Nearest Neighbors (k-NN), because faster and less costly classifications could be 

obtained by maintaining only certain necessary instances in the classifier’s dataset (Hart, 



 13 

1968; Ritter et al., 1975; Wilson, 1972). That is, because instance based classifiers perform 

calculations for each instance of a dataset every time a new classification is to be made, a 

smaller dataset would require a smaller amount of memory storage and a fewer number of 

calculations. The goals of the first instance selection algorithms were therefore to select the 

minimum number of instances required to maintain the current classification accuracy of a 

dataset (Hart, 1968). However, it has been found that instance selection not only reduces the 

size of the dataset, but it also improves the dataset quality by not selecting to maintain 

outlying, noisy, contradictory or simply unhelpful instances (Sebban et al., 2000; Zhu and 

Wu, 2006; Olvera-Lopez et al., 2010). 

As a consequence of instance selection’s ability to improve the quality of a dataset, a 

developing use of instance selection outside of instance based classifiers is to select good 

training datasets for learning a classification model, such as with the decision tree or neural 

network classifiers. This area of instance selection is different than early methods used for 

instance based classifiers because the goal is no longer data reduction but it is rather to 

maximize classifier accuracy.  However, a good selection of instances for an instance based 

classifier may not lead to the best training dataset for another type of classifier, indicating 

methods that incorporate the intended classifier in the learning process are warranted 

(Olvera-Lopez et al., 2009). In fact, it is this author’s belief that using the intended classifier 

in instance selection procedures is beneficial because instances that obscure advantageous 

structure or relationships in regard to the classifier’s bias can be removed.  This makes 

learning good boundaries between class values easier for the classifier.  Therefore, with the 

majority of instance selection algorithms being developed for instance based classifiers, 



 14 

effort should be given to develop instance selection algorithms that are applicable to other 

classification methods used in practice. 

A recent review paper notes that the majority of instance selection methods for 

training set selection find an acceptable set of training instances utilizing random search with 

evolutionary algorithms (Garcia-Pedrajas, 2011). Evolutionary algorithms are a popular 

search technique because they are capable of taking into consideration the particular bias of a 

specific classification algorithm, and as such, lead to a good selection of training instances 

for that classifier. Most instance selection methods for training set selection are designed for 

neural networks and decision trees, but could be adapted for a variety of different 

classification algorithms that learn a classification scheme from a training dataset. The 

majority of the evolutionary algorithms attempt to maximize training accuracy as a proxy for 

testing accuracy, where training accuracy is the percentage of correct predictions made by the 

classifier when predicting the original training instances, and where testing accuracy is the 

percentage of correct predictions made when predicting instances withheld from the training 

process (Han and Kamber ,2006).  

Training set instance selection procedures for neural networks serve to increase the 

generalization ability of the networks by selecting good instances on which to train. These 

procedures should be beneficial to neural networks because in the presence of noisy data, the 

networks become overfitted to the training dataset and subsequently are poor classifiers to 

unseen instances (Kim, 2006). Reeves and Taylor (1998) and Reeves and Bush (2001) 

perform instance selection for radial basis function (RBF) nets with evolutionary algorithms 

where the fitness of a solution is determined by the training accuracy of the RBF net, and the 

instances contained in the training dataset are evolved. It is found that indeed the 
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generalization performance of RBF nets can be increased through training set instance 

selection. Kim (2006) also performs instance selection for increased generalization ability, 

but this work is focused on feed forward neural networks and financial forecasts. Here, an 

evolutionary algorithm determines the training instances and the structure of the network, 

and the fitness of a solution is evaluated by the training accuracy of the network. Again, the 

results indicate that the generalization performance of neural networks can be improved by 

selecting instances to create a higher quality training dataset. 

The decision tree classifier is another popular choice for training set instance 

selection because unhelpful instances in the decision tree’s training dataset cause the tree to 

unnecessarily grow its structure (Sebban et al., 2000; Oates and Jensen, 1997). This 

overfitting problem defeats the purpose of the decision tree by hiding or confusing the 

discovered knowledge in a large and un-interpretable tree structure that has poor 

generalization abilities. Performing instance selection often results in a smaller and more 

interpretable tree, an indication that the unhelpful instances have not been selected. Endou 

and Zhao (2002), Cano et al. (2003), and Cano et al. (2006), evolve the instances contained 

in a subset of the training dataset in the hopes of finding a collection of instances that 

adequately describe the full dataset. Endou and Zhao (2002), as well as Cano et al. (2006), 

evaluate the fitness of the selected training dataset through the construction and evaluation of 

a decision tree from the training dataset, and both of these methods are successful in reducing 

decision tree size, while still maintaining acceptable, if not improved, levels of accuracy. 

Cano et al. (2003) evaluates the fitness of the training dataset using the 1-NN classifier, and 

interestingly, this method is also successful in creating simple, yet accurate, decision trees. 
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These methods indicate that decision tree learning can indeed be improved by selecting a 

good set of training instances through instance selection. 

One exception to the usual pattern of training set instance selection is found in a 

paper by Zhu and Wu (2006), where the training dataset’s instances are put into groups of 

similar instances, and then some of the groups are greedily selected to form a reduced 

training dataset with the goal of improving the classification training accuracy of the naïve 

Bayes and decision tree classifier. This work is notably different from other methods because 

instead of performing an evolutionary algorithm to select a training dataset from individual 

instances, a greedy selection procedure is used to select a training dataset from the created 

groups. Results show that this method is also successful in increasing classification accuracy. 

Another notable exception to the usual pattern of training set instance selection is 

work done by Olvera-Lopez et al. (2009).  In this paper a greedy selection procedure is 

developed that incrementally subtracts instances from the training data to achieve a suitable 

subset of instances for classifier learning.  This is not unlike Bennette and Olafsson (2011), 

with the exception that Bennette and Olafsson extend the idea by creating a large number of 

such subsets with the intent of recombining them in a way that results in even better 

classification accuracy. 

In all cases, previous instance selection techniques do not attempt to create a solvable 

formulation of the instance selection problem.  Instead, most techniques are content to 

employ heuristics that simply search a prohibitively large solution space.  This dissertation 

breaks the trend and presents an integer programming formulation of instance selection that 

has structure which can be exploited to find improving selections of instances. 
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2.3 Column generation for LPs 

Column generation is a set of techniques to solve linear programs (LP) that have a 

huge number of variables (Desrosiers and Lubbecke, 2005; Wilhelm, 2001). In column 

generation the original LP is called the master problem (MP).  Column generation is useful 

when it is too computationally expensive to solve the MP with all of the original variables or 

when it would be too computationally expensive to even enumerate all of the decision 

variables.  There are several approaches to column generation, but each involves solving a 

reduced portion of the MP, called the reduced master problem (RMP).  One approach to 

column generation, commonly referred to as Type I column generation, uses an auxiliary 

model (AM) to find a subset of the MP’s useful variables and then supplies those to the RMP 

with the hope that the RMP will find a good feasible solution to the MP.  However, because 

not all variables are considered, the solution to the RMP cannot be guaranteed to be optimal 

to the MP.   Another approach to column generation, Type II column generation, also 

involves supplying the RMP with a subset of the MP’s variables.  However, in this approach, 

the RMP is solved and then its dual variables are supplied to a price out problem (POP).  The 

POP generates another decision variable of the MP that will allow the RMP to improve its 

solution.  The RMP is then resolved with the new and improved decision variable, creating a 

new set of dual variables.  The POP can continue to interact with the RMP and generate 

improving variables until the optimal solution of the MP is found.   

2.3.1 Type I column generation 

Say there is a linear program (LP) 𝑧𝐿𝑃 = max
𝑥

{𝑐𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}, which is so large 

that defining all of its possible variables is computationally impractical.  Defining a variable 

𝑗 requires defining 𝑐𝑗  and 𝑎𝑗, where 𝑐𝑗 is the objective coefficient associated with variable 𝑗 
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and 𝑎𝑗is the column of the 𝐴 matrix defined by variable 𝑗.  The LP with all of its variables 

defined will be called the master problem (MP).  However, only a small number of the 

possible variables can actually be known or be provided to the RMP.  Therefore the reduced 

master problem (RMP) can be defined as 𝑧𝑅𝑀𝑃 = max
𝑥

{𝑐̇𝑇𝑥̇ ∶ 𝐴̇𝑥̇ ≤ 𝑏, 𝑥̇ ≥ 0}, where 𝑥̇ 

contains only the known variables and 𝑐̇ and 𝐴̇ contain the objective and constraint values for 

those variables.   

In Type I column generation the RMP is provided high quality decision variables 

from the auxiliary model and then solved.  Even though the optimal solution to the RMP is a 

feasible solution to the MP, it cannot be guaranteed to be the optimal solution to the MP.  

Therefore, it is hoped that the optimal solution to the RMP is an acceptably good feasible 

solution to the MP, mainly because the solution is found from what are considered good 

decision variables (Wilhelm, 2001).  Alternatively, Type II column generation provides a 

method to guarantee that the optimal solution to the MP is found. 

2.3.3 Type II column generation 

Type II column generation exploits a feature of the Simplex algorithm for solving 

linear programs.  Say there is a known feasible solution to 𝑧𝐿𝑃 = max
𝑥

{𝑐𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}.  

For a standard form LP any feasible solution can be written in terms of the basic and non-

basic variables. The Simplex algorithm moves to the optimal solution of the LP by switching 

variables from the basis to the non-basis in a way that improves the current feasible solution. 

The reduced cost is calculated for each variable belonging to the non-basis during an iteration 

of the Simplex algorithm, and when there are no non-basis variables with positive reduced 

cost, the optimal solution to the LP has been found.  Type II column generation provides a 

method to avoid examining every variable during the Simplex algorithm and for linear 
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programs that are so large they are infeasible to solve, this procedure can make them 

solvable. 

As in Type I column generation, say there is a very large LP.  The LP with all of its 

decision variables defined is the master problem (MP), and the restricted master problem 

(RMP) 𝑧𝑅𝑀𝑃 = max
𝑥

{𝑐̇𝑇𝑥̇ ∶ 𝐴̇𝑥̇ ≤ 𝑏, 𝑥̇ ≥ 0} is the LP with only the known decision variables 

defined. Now the optimal dual variables can be used in the price out problem (POP) to check 

if the optimal solution to the RMP is optimal to the MP.  Failing to find that the solution is 

truly optimal, the POP can provide a new variable for the RMP.  This new variable will have 

positive reduced cost, and by definition can improve the RMP’s solution.  The RMP can then 

be resolved, provide new dual variables to the POP, and the process repeated until no new 

positive reduced cost variables can be generated.  

The formulation of a POP is specific to every RMP, but contains the same basic 

objective function and should be capable of generating all of the undefined variables 

belonging to the master problem. The objective of a POP is to maximize the reduced cost of a 

newly generated variable 𝑥𝑛𝑒𝑤.  The objective of every POP should therefore be 

max{𝑐𝑛𝑒𝑤 − 𝜋∗𝑎𝑛𝑒𝑤}, where 𝑐𝑛𝑒𝑤 is the objective coefficient of 𝑥𝑛𝑒𝑤, 𝜋∗are the optimal 

dual variables to the RMP, and anew is the column of the 𝐴̇ matrix to be associated with 𝑥𝑛𝑒𝑤.  

Provided constraints in the POP are able to dictate how the new variable affects constraints in 

the RMP, and given a method to calculate the objective coefficient of the new variable, Type 

II column generation is complete.  When solving the POP if the optimal objective value is 

less than or equal to zero, indicating there are no positive reduced cost variables, it is known 

that the solution to the RMP is optimal to the MP.  Otherwise the new variable should be 

added to the RMP and the process repeated. 
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CHAPTER 3. MODEL FORMULATION 

This chapter includes two separate integer programming formulations of instance 

selection.  Each formulation is designed to facilitate column generation procedures that can 

help find improving subsets of instances (or columns).  Also discussed in this chapter are 

procedures to create initial sets of columns, the development of column generation for 

instance selection, necessary approximations for the price out problems, and a discussion of 

instance selection parameters. 

3.1 Integer programming formulations of instance selection 

The primary research objective of this dissertation is to find a structured integer 

programming formulation of instance selection.  The motivation for doing so is to impose a 

structure on instance selection that will help guide a search for improved subsets of the 

training data.  The two formulations are as follows, 

𝑀𝑎𝑥           𝑍 =  ∑ 𝑐𝑗𝑥𝑗

 

𝑗 ∈𝐽

                     (4) 

 

   𝑠. 𝑡          ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 1,   ∀ 𝑖 𝜖 𝐼

𝑗 𝜖 𝐽

      (5) 

 

                    𝑥𝑗  𝜖 {0,1} , ∀𝑗 𝜖 𝐽                 (6), 

and, 



 21 

𝑀𝑎𝑥           𝑍 =  ∑ 𝑐𝑗𝑥𝑗

 

𝑗 ∈𝐽

                     (7) 

 

   𝑠. 𝑡         ∑ 𝑥𝑗 ≤ 1                      

𝑗 𝜖 𝐽

      (8) 

 

                  𝑥𝑗  𝜖 {0,1} , ∀𝑗 𝜖 𝐽                  (9). 

In both formulations the decision variable 𝑥𝑗 represents the decision to include or not 

include a subset of the instances (column), S(j), in the final training dataset.  Associated with 

each column S(j), is a vector 𝑎𝑗.  If 𝑎𝑖𝑗, an element of 𝑎𝑗, has value one it indicates that the ith 

instance of the training dataset is included in column S(j), otherwise it is not.  This means that 

if the 𝑗𝑡ℎ column is included in the final training dataset, or 𝑥𝑗 = 1, and the 𝑖𝑡ℎ instance is in 

that column, or 𝑎𝑖𝑗 = 1, then the ith instance is included in the final dataset. The objective of 

each formulation is simply to maximize the accuracies of the selected columns, where 𝑐𝑗 is 

the accuracy of the jth column, or as that implies the accuracy of a classifier built from the 

instances in column S(j).  

Unfortunately for large datasets it is computationally impractical to enumerate all of 

the 2𝑛 decision variables that define J, where 𝑛 is the number of instances in the training 

dataset (indexed by I).  To resolve this issue, concepts from column generation are used to 

generate what are felt to be good decision variables for the instance selection problem.  That 

is, column generation is used to generate columns that have good accuracy.  After a number 

of good columns are generated, any number of solution procedures can then be used to obtain 

a suboptimal, but hopefully good, solution.  A Type II column generation procedure for each 
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of the above IP formulations encourages the generation of different but helpful types of 

columns.  

The logic behind the first integer program, (4) through (6), is that the instances of the 

IP’s most accurate columns should be included in the final selection of instances.  This 

formulation acknowledges the fact that the most accurate column of a dataset is unlikely to 

be found, and that combining the instances of good columns may be helpful.  However the 

constraint defined by (5) says that selected columns should be disjoint, meaning they should 

not have any instances in common. The result of this formulation should be a column 

generation procedure that strives for ever-improving and diverse columns.  Meaning, column 

generation should generate new columns that are similar to existing columns, but that result 

in higher accuracy. 

The second IP formulation, (7) through (9), has a constraint that says only one 

column can be selected by the IP, ∑ 𝑥𝑗𝑗∈𝐽 ≤ 1.  It should be noted that this constraint also 

enforces the constraint defined in (5).  The logic behind such a constraint is that the final 

training dataset should include only the instances of the most accurate column, and including 

any additional columns will not be helpful.  This formulation would perfectly solve the 

instance selection problem, except, as mentioned earlier, finding the most accurate column 

for a dataset is unlikely.  Still, this IP is attractive in a column generation procedure because 

any newly generated column must have accuracy higher than that of the previous best 

column.  This may lead to the discovery of very useful columns.   

Before Type II column generation can be implemented an initial set of columns needs 

to be generated.  This can be accomplished with what can be thought of as a Type I column 
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generation procedure.  Each IP can utilize the same initial set of columns and three such 

methods are introduced in Section 3.2. 

3.2 Constructing initial sets of columns 

 It is believed, and observed in preliminary experiments, that a set of initial columns 

for the provided IPs should be diverse and contain helpful instances.  By diverse it is meant 

that the combination of instances included in a particular column is unique to that column, 

and dissimilar to combinations found in other columns.  Additionally, a column is thought to 

include helpful instances if the accuracy of a classifier built from those instances has high 

accuracy.  Three approaches to create initial sets of columns are introduced, each imposing 

varying levels of instance diversity and helpfulness.   

 Each approach to creating initial columns for the instance selection IPs relies on an 

auxiliary model akin to that needed for Type I column generation.  The first two methods use 

greedy selection procedures that incorporate the base classifier of the instance selection 

problem, meaning the classifier considered for improvement, and the last method simply 

constructs initial columns with randomly included instances.  Each method results in the 

creation of a column for every instance.  This means that every instance is guaranteed to be 

included in at least one column, and the number of columns created is the same as the 

number of instances in the training data. 

3.2.1 Backward selection 

In the case of the backward selection procedure, a single column, S(j), initially 

contains all of the original training instances, and instances are removed from the column if 

doing so does not greatly hinder the predictive accuracy of a classifier built from that 

column.  In this way it is thought that columns will contain helpful instances, because 
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instances necessary to preserving classifier accuracy remain in the constructed columns.  To 

introduce diversity to the constructed columns instances are considered for removal from the 

columns in a random order.  Additionally, to ensure that each instance is represented in at 

least one column, each instance generates a column where that instance is not considered for 

removal. Pseudo code for the Backward Selection Algorithm is provided below.  Note that 

“Predictive Accuracy” can be calculated by constructing the base classifier from the provided 

instances and evaluating it on the original training data.  

Backward Selection Algorithm 

Step 0: 

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑇 =  {𝜏1, 𝜏2, … , 𝜏𝑛} 𝑤𝑖𝑡ℎ 𝑛 = |𝑇|  

𝑎𝑛𝑑 𝑎 𝛽, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛽 𝑖𝑠 𝑎𝑛 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠. 

Step 1: 

 𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 

               𝑆(𝑗) = {𝜏1, 𝜏2, … , 𝜏𝑛}   

               𝑈(𝑗) = {𝑢1
(𝑗)

, 𝑢2
(𝑗)

, … , 𝑢𝑛−1
(𝑗)

} 𝑤ℎ𝑒𝑟𝑒 𝑢𝑖
(𝑗)

 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑓 𝑎  

                                                           𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

                                                           𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛, 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑗.  

Step 2: 

𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛  

               𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 − 1 

                         𝐼𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆(𝑗)/ {𝜏
𝑢𝑖

(𝑗)}) ≥ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑇) − 𝛽 

                                       𝑇ℎ𝑒𝑛 𝑆(𝑗) = 𝑆(𝑗)/ {𝜏
𝑢𝑖

(𝑗)}  
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                     𝐸𝑙𝑠𝑒 𝑆(𝑗) = 𝑆(𝑗) . 

3.2.2 Forward then backward selection 

In the case of forward then backward selection, columns begin empty except for a 

single instance, and instances that improve the accuracy of the column are added in a greedy 

fashion.  Once all of the original training instances have been considered for addition to the 

column, all of the accepted instances are then considered for removal in a greedy fashion.  

Instances are only removed from the column if doing so does not greatly hinder the column’s 

accuracy.  As with the strictly backward selection method, a column is constructed for each 

instance of the original training data and instances are considered for addition to the column 

and subtraction from the column in a random order.   

 This method strives to find columns that contain only helpful instances by allowing 

all instances that improve the accuracy of the column to be included in the column.  

However, in preliminary experiments it was found that a strictly forward selection procedure 

seemed to include instances that were only marginally helpful.  It was then found helpful to 

consider removing instances from the columns.   This is presumably the case because some 

instances added later in the forward selection procedure could serve the purpose of some of 

the instances added early on.  Below is pseudo code for the Forward then Backward 

Selection Algorithm, where “Predictive Accuracy” is calculated as before. 

Forward then Backward Selection Algorithm 

Step 0: 

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑇 =  {𝜏1, 𝜏2, … , 𝜏𝑛} 𝑤𝑖𝑡ℎ 𝑛 = |𝑇|  

𝑎𝑛𝑑 𝑎 𝛽, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛽 𝑖𝑠 𝑎𝑛 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠. 

Step 1: 
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 𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 

               𝑆(𝑗) = {𝜏𝑗}   

               𝑈(𝑗) = {𝑢1
(𝑗)

, 𝑢2
(𝑗)

, … , 𝑢𝑛−1
(𝑗)

} 𝑤ℎ𝑒𝑟𝑒 𝑢𝑖
(𝑗)

 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑓 𝑎  

                                                           𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

                                                           𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛, 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑗.  

               𝑉(𝑗) = {𝑣1
(𝑗)

, 𝑣2
(𝑗)

, … , 𝑣𝑛−1
(𝑗)

} 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖
(𝑗)

 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑓 𝑎  

                                                           𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

                                                           𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛, 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑗.  

Step 2: 

𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛  

               𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 − 1 

                          𝐼𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆(𝑗) ∪  {𝜏
𝑢𝑖

(𝑗)}) > 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦( 𝑆(𝑗)) 

                                       𝑇ℎ𝑒𝑛 𝑆(𝑗) = 𝑆(𝑗) ∪ {𝜏
𝑢𝑖

(𝑗)}  

                            𝐸𝑙𝑠𝑒 𝑆(𝑗) = 𝑆(𝑗)  

Step 3: 

𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛  

                𝑆1
(𝑗)

= 𝑆(𝑗)  

               𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 − 1  

                         𝐼𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆(𝑗)/ {𝜏
𝑣𝑖

(𝑗)}) ≥ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ( 𝑆1
(𝑗)

) − 𝛽 

                                       𝑇ℎ𝑒𝑛 𝑆(𝑗) = 𝑆(𝑗)/ {𝜏
𝑣𝑖

(𝑗)}  

                     𝐸𝑙𝑠𝑒 𝑆(𝑗) = 𝑆(𝑗) . 
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3.2.3 Random selection 

In the random selection procedure no classifier information is used to determine 

which instances are included in a column.  Meaning, this method relies on random chance for 

helpful instances to be included in any one column.  However, by definition, this method 

creates diverse columns.  As with the previous methods a column is generated for each 

instance, where that instance is guaranteed to be included in the column. The remaining 

training instances are of course randomly assigned to the column.  One additional 

requirement of this method is for the user to decide how many instances should be included 

in a single column.  This may require some background knowledge of the classification 

problem and classifier to make an informed decision. Pseudo code for the Random Selection 

Algorithm is shown below.   

Random Selection Algorithm 

Step 0: 

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑇 =  {𝜏1, 𝜏2, … , 𝜏𝑛} 𝑤𝑖𝑡ℎ 𝑛 = |𝑇|  

𝑎𝑛𝑑 𝑎 𝜆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑡𝑜 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑜𝑙𝑢𝑚𝑛. 

Step 1: 

 𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 

               𝑆(𝑗) = {𝜏𝑗}   

               𝑈(𝑗) = {𝑢1
(𝑗)

, 𝑢2
(𝑗)

, … , 𝑢𝑛−1
(𝑗)

} 𝑤ℎ𝑒𝑟𝑒 𝑢𝑖
(𝑗)

 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑓 𝑎  

                                                           𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

                                                           𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛, 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑗.  

Step 2: 

𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛  
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               𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝜆 − 1 

                              𝑆(𝑗) = 𝑆(𝑗) ∪ 𝜏
𝑢𝑖

(𝑗) . 

3.3 Implementing column generation 

 Given the two integer programming formulations of instance selection and three 

methods to create initial columns, a simple variant of Type II column generation can now be 

defined.  To implement Type II column generation each integer program needs to have a 

master problem (MP) defined, a reduced master problem (RMP) defined, and a price out 

problem (POP) defined.  Each MP is a linear relaxation of the original integer program, and 

the RMP is defined as the MP having only considered a subset of the possible columns.  The 

POPs for each integer program are similar but have slightly different objective functions to 

generate valid columns for their respective IPs. 

3.3.1 Implementation one 

 Consider the formulation of instance selection defined by the IP in (4) through (6).  In 

order to implement a Type II column generation procedure the integrality constraints of (6) 

need to be relaxed.  In this particular case it is reasonable to relax the integrality constraints 

because the resultant linear program restricts the number of times an instance can be selected 

for the final training data.  Logically, the effect of this constraint combined with the objective 

function is that the MP will strive to select whole columns with high accuracy.  In the actual 

column generation procedure the intended result will be variations of existing columns that 

have improved accuracy. The resulting MP is,  

𝑀𝑎𝑥           𝑍 =  ∑ 𝑐𝑗𝑥𝑗

 

𝑗 ∈𝐽

                     (10) 
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   𝑠. 𝑡          ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 1,   ∀ 𝑖 𝜖 𝐼

𝑗 𝜖 𝐽

      (11) 

 

                          𝑥𝑗 ≥ 0,   ∀𝑗 𝜖 𝐽                      (12)               

 

                                                                𝑥𝑗 ≤ 1,   ∀𝑗 𝜖 𝐽,                     (13)  

and the related RMP is, 

 

𝑀𝑎𝑥           𝑍 =  ∑ 𝑐𝑗𝑥𝑗

 

𝑗 ∈𝐽′

                     (14) 

 

   𝑠. 𝑡          ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 1,   ∀ 𝑖 𝜖 𝐼

𝑗 𝜖 𝐽′

      (15) 

 

                          𝑥𝑗 ≥ 0,   ∀𝑗 𝜖 𝐽′                      (16)               

 

                                                                𝑥𝑗 ≤ 1,   ∀𝑗 𝜖 𝐽′.                     (17)   

 

The POP is then, 

𝑀𝑎𝑥          𝑍𝑃𝑂𝑃 =  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝐴𝑐𝑐. − ∑ 𝜋𝑖
∗𝑎𝑖

𝑛

𝑖=1

           (18)     

 

                 𝑠. 𝑡         ∑ 𝑎𝑖 ≤ 𝐺                                             (19)   

𝑖 𝜖 𝐼
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                                    𝑎𝑖 𝜖 {0,1} ,   ∀𝑖 𝜖 𝐼,                               (20)         

where we let Χ(1) denote the feasible region defined by (19) and (20). 

In this POP the decision variables are binary.  When a specific ai assumes the value one, it 

represents the decision to include instance i in the new column, and ai equal to zero 

represents the decision to exclude instance i from the new column.  The sole constraint 

∑ 𝑎𝑖𝑖∈𝐼 ≤ 𝐺 restricts the number of instances selected to belong to a new column to be less 

than or equal to some constant G.  This constant G allows the POP to directly control the size 

of the newly generated training data subsets. The objective of this POP is to maximize 

reduced cost, but as stated previously, a closed form function is not known for calculating the 

accuracy of a classifier based on the instances it is trained from.  This makes the POP 

unsolvable, but in Section 3.4, approximation techniques to solve the POP will be presented. 

3.3.2 Implementation two 

Consider the formulation of instance selection defined by the IP in (7) through (9).  In 

order to implement a Type II column generation procedure the integrality constraints of (9) 

need to be relaxed.  However, the integrality constraints of (9) can be relaxed and still allow 

for an integer solution to be found, as will now be proven.  

Lemma 1. Given that 𝑥∗ is optimal to 𝑍 = { max ∑ 𝑐𝑗𝑥𝑗 : ∑ 𝑥𝑗𝑗∈𝐽 ≤ 1, 0 ≤  𝑥𝑗 ≤  1 ∀ 𝑗 ∈ 
𝑗∈𝐽

 𝐽}, ∑ 𝑥𝑗
∗ = 1𝑗∈𝐽  when 𝑐𝑗 > 0 ∀ 𝑗 ∈ 𝐽. 

Proof: Assume ∑ 𝑥𝑗
∗ < 1𝑗∈𝐽 .  Then there exists 𝑖 such that 𝑥𝑖

∗ < 1.  Construct a new solution 

𝑥′ such that 𝑥𝑖
′ = 𝑥𝑖

∗ + (1 − ∑ 𝑥𝑗
∗

𝑗∈𝐽 ), and 𝑥𝑗
′ = 𝑥𝑗

∗ ∀ 𝑗 ≠ 𝑖.  Since 1 − ∑ 𝑥𝑗
∗

𝑗∈𝐽 ≤ 1 − 𝑥𝑖
∗, 

then 𝑥𝑖
′ ≤ 𝑥𝑖

∗ + (1 − 𝑥𝑖
∗) and it follows that 𝑥𝑖

′ ≤ 1.  Additionally, since ∑ 𝑥𝑗
∗

𝑗∈𝐽 = ∑ 𝑥𝑗
∗

𝑗≠𝑖 +
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𝑥𝑖
∗, then ∑ 𝑥𝑗

′
𝑗∈𝐽 = ∑ 𝑥𝑗

∗
𝑗∈𝐽 + (1 − ∑ 𝑥𝑗

∗
𝑗∈𝐽 ), and again it follows that ∑ 𝑥𝑗

′
𝑗∈𝐽 ≤ 1.  Finally, 

because ∑ 𝑐𝑗𝑥𝑗
′

𝑗∈𝐽 = ∑ 𝑐𝑗𝑥𝑗
∗

𝑗∈𝐽 + 𝑐𝑖(1 − ∑ 𝑥𝑗
∗

𝑗∈𝐽 ), and since 𝑐𝑖(1 − ∑ 𝑥𝑗
∗

𝑗∈𝐽 ) > 0, it is true 

that ∑ 𝑐𝑗𝑥𝑗
′

𝑗∈𝐽 > ∑ 𝑐𝑗𝑥𝑗
∗

𝑗∈𝐽 .  There is a contradiction, 𝑥∗ is not the optimal solution. ∎   

Lemma 2.  If 𝑐𝑘 < max
𝑖

𝑐𝑖 then 𝑥𝑘
∗ = 0, where 𝑥 

∗ is the optimal solution to 𝑍 =

{ max ∑ 𝑐𝑗𝑥𝑗 : ∑ 𝑥𝑗𝑗∈𝐽 ≤ 1, 0 ≤  𝑥𝑗 ≤  1 ∀ 𝑗 ∈  𝐽 
𝑗∈𝐽 }, when 𝑐𝑗 > 0 ∀ 𝑗 ∈ 𝐽.   

Proof: Assume there exists k such that 𝑐𝑘 < max
𝑖

𝑐𝑖 and 𝑥𝑘
∗ > 0. Given i such that 𝑖 =

𝑎𝑟𝑔 max
𝑖

(𝑐𝑖) define a new solution 𝑥′ where 𝑥𝑖
′ = 𝑥𝑖

∗ + 𝑥𝑘
∗ , 𝑥𝑘

′ = 0, and 𝑥𝑗
′ = 𝑥𝑗

∗ ∀ 𝑗 ≠

𝑖 𝑜𝑟 𝑘.  Since 𝑥𝑘
∗ + 𝑥𝑖

∗ ≤  ∑ 𝑥𝑗
∗

𝑗∈𝐽  and ∑ 𝑥𝑗
∗

𝑗∈𝐽 ≤ 1, then 𝑥𝑖
′ ≤ 1.  Additionally since 

∑ 𝑥𝑗
′

𝑗∈𝐽 = ∑ 𝑥𝑗
∗

𝑗≠𝑖 𝑜𝑟 𝑘 + 𝑥𝑖
∗ + 𝑥𝑘

∗ = ∑ 𝑥𝑗
∗

𝑗∈𝐽 , and ∑ 𝑥𝑗
∗

𝑗∈𝐽 ≤ 1, then ∑ 𝑥𝑗
′

𝑗∈𝐽 ≤ 1.  Next, 

because 𝑐𝑖 > 𝑐𝑘 and 𝑥𝑘
∗ > 0, it is known that ∑ 𝑐𝑗𝑥𝑗

∗
𝑗 ∈𝐽 < ∑ 𝑐𝑗𝑥𝑗

∗
𝑗≠𝑘 + 𝑐𝑖𝑥𝑘

∗ .  Finally, it can 

be shown that ∑ 𝑐𝑗𝑥𝑗
′

𝑗 ∈𝐽 = ∑ 𝑐𝑗𝑥𝑗
∗

𝑗≠𝑘 + 𝑐𝑖𝑥𝑘
∗ .  There is a contradiction, 𝑥∗ is not the optimal 

solution. ∎   

Theorem 1.  Given that 𝑐𝑗 > 0 ∀ 𝑗 ∈ 𝐽, 𝑍 = { max ∑ 𝑐𝑗𝑥𝑗 : ∑ 𝑥𝑗 ≤ 1, 0 ≤  𝑥𝑗 ≤  1 ∀ 𝑗 ∈ 
𝑗∈𝐽

 𝐽 } has an optimal solution such that 𝑥𝑗
∗ ∈ {0,1} ∀ 𝑗 ∈ 𝐽.  

Proof: Assume there is no optimal solution such that 𝑥𝑗
∗ ∈ {0,1} ∀ 𝑗 ∈ 𝐽.  Because of Lemma 

1 it is known that ∑ 𝑥𝑗
∗ = 1𝑗∈𝐽 .  Because of Lemma 2 it is known that for any 𝑗: 𝑥𝑗

∗ > 0 then 

𝑐𝑗 =  max
𝑖

𝑐𝑖, say k.  It can then be shown that ∑ 𝑐𝑗𝑥𝑗
∗

𝑗∈𝐽 = 𝑘 ∑ 𝑥𝑗
∗ = 𝑘𝑗∈𝐽 .  Define a new 

solution 𝑥′.  Choose some 𝑙 such that 𝑐𝑙 = k.  Then define 𝑥𝑙
′ = 1, and 𝑥𝑗

′ = 0 ∀𝑗 ≠ 𝑙.  Then 

∑ 𝑐𝑗𝑥𝑗
′

𝑗∈𝐽 = ∑ 𝑐𝑗𝑥𝑗
′

𝑗≠𝑙 + 𝑘 = 𝑘.   It is then known that ∑ 𝑐𝑗𝑥𝑗
′

𝑗∈𝐽 =  ∑ 𝑐𝑗𝑥𝑗
∗

𝑗∈𝐽 .  The new 

solution is also optimal.  There is a contradiction. ∎ 
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The required relaxation of (7) through (9) is permissible because as Theorem 1 

shows, there is always an integral optimal solution to the relaxed IP. This relaxation makes 

intuitive sense because it would be suboptimal to select a portion of any column that did not 

have the highest available accuracy.  If two or more columns are tied for the highest accuracy 

it would be possible to select non-integer portions of each of those, but an optimal integer 

solution is still possible by selecting the entirety of one column.  The result of this fact is that 

columns generated in the Type II column generation procedure will have higher accuracy 

than any of the existing columns.  The resulting MP is,  

𝑀𝑎𝑥           𝑍 =  ∑ 𝑐𝑗𝑥𝑗

 

𝑗 ∈𝐽

                     (21) 

 

   𝑠. 𝑡          ∑  𝑥𝑗  ≤  1             

𝑗 ∈𝐽

            (22) 

 

                          𝑥𝑗 ≥ 0,   ∀𝑗 𝜖 𝐽                       (23)               

 

                                                                𝑥𝑗 ≤ 1,   ∀𝑗 𝜖 𝐽,                      (24)  

and the associated RMP is, 

𝑀𝑎𝑥           𝑍 =  ∑ 𝑐𝑗𝑥𝑗

 

𝑗 ∈𝐽′

                     (25) 

 

   𝑠. 𝑡          ∑  𝑥𝑗  ≤  1             

𝑗 ∈𝐽′

            (26) 

 

                          𝑥𝑗 ≥ 0,   ∀𝑗 𝜖 𝐽′                      (27)               
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                                                                𝑥𝑗 ≤ 1,   ∀𝑗 𝜖 𝐽′.                     (28)  

The POP is then, 

𝑀𝑎𝑥          𝑍𝑃𝑂𝑃 =  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝐴𝑐𝑐. − ∑ 𝜋𝑖
∗𝑎𝑖

𝑛

𝑖=1

− 𝜋𝑛+1
∗            (29)     

 

                  𝑠. 𝑡         ∑ 𝑎𝑖 ≤ 𝐺                                                          (30)   

𝑖 𝜖 𝐼

 

 

                                    𝑎𝑖 𝜖 {0,1} ,   ∀𝑖 𝜖 𝐼,                                             (31)         

where we let 𝑋(2) denote the feasible region defined by (30) and (31). 

The POP formulation is identical to (18) through (20) except that the objective 

function automatically subtracts the last dual variable.  This change simply enforces 

constraint (26) in the RMP.  As before, this POP is not solvable because no closed form 

function is known to evaluate the accuracy of a classifier based on the contents of its training 

data.  Section 3.4 presents approximation methods for solving the POP. 

3.4 Approximating the price out problem 

 The price out problems defined in (18) through (20) and (29) through (31) are not 

solvable because there is no known closed form function for calculating the accuracy of a 

classifier based solely on the contents of its training data.  However, if some approximation 

of classifier accuracy is substituted for actual accuracy, approximations of the price out 

problems can be solved.  The objectives become to generate a column that maximizes an 

estimation of reduced cost.  Any generated column can then be checked for truly positive 
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reduced cost by simply building the associated classifier and using its accuracy in the 

reduced cost calculation.  If the column is indeed beneficial to the RMP it can be added, if it 

is not, a new column can be generated and considered. 

Generating improving columns with an estimated POP requires a good method to 

predict the usefulness of a classifier based on its training data.  Two methods that have been 

successful in preliminary tests are presented in this section.  Both methods find a ranking of 

the instances and operate under the assumption that the more high-ranking instances 

contained in a training dataset the higher the accuracy of the resultant classifier.  Note that 

the sum of the ranks of the instances included in a classifier’s training data does not represent 

a prediction of the classifier’s accuracy.  Rather the sum represents an indication of the 

classifier’s potential usefulness. 

Because ranking instances does not result in a prediction of classifier accuracy, but 

rather a prediction of usefulness, the rank and dual variables used in the estimated POPs are 

scaled between zero and one.  This scaling ensures a fair comparison when considering 

whether or not to include an instance in a new column.  For example, if an instance is ranked 

relatively high, but has an associated dual variable that is also relatively high, it may not be a 

good instance to include in the generated column.  Of course, it is not ideal to require that the 

rank of instances and the optimal dual variables be scaled, but it is necessary until some 

linear approximation of classifier accuracy is developed. 

The two methods used to rank instances are discussed in the following subsections.  

The first relies on information theory and some minor pieces of empirical evidence.  The 

second relies solely on empirical evidence.  The ranking procedures allow the POP defined in 

(18) through (20) to be replaced by,  
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𝑍𝑃𝑂𝑃 = 𝑚𝑎𝑥 {∑(𝑟𝑖𝑎𝑖 − 𝜋𝑖
′∗𝑎𝑖)

𝑛

𝑖=1

: 𝑎 ∈ 𝑋(1) }  ,                       (32)     

and the POP defined in (29) through (31) can be replaced by, 

𝑍𝑃𝑂𝑃 =  𝑚𝑎𝑥 {∑(𝑟𝑖𝑎𝑖 − 𝜋𝑖
′∗𝑎𝑖)

𝑛

𝑖=1

− 𝜋𝑛+1
′∗ : 𝑎 ∈ 𝑋(2)}.          (33)     

In both (32) and (33) r represents a scaled ranking of the instances, achieved using the first or 

second method, and 𝜋′∗ are the scaled optimal dual variables. 

3.4.1 Ranking instance usefulness through information theory 

 The first method used to rank the usefulness of the training instances is adapted from 

Zhu and Wu (2006) and does so by quantifying the information lost as a result of a column of 

instances being removed from the training data.  If a large amount of information is lost, or 

as that implies, a classifier suffers in accuracy and assuredness, it is assumed that the 

instances contained in the removed column are important to building a good classifier.  The 

more important an instance is deemed to be, the higher its resulting rank. 

 To quantify the information lost through the removal of a column of instances from 

the training data, the log loss function is introduced.  The log loss function is used to help 

quantify how much information is lost about a specific instance, say 𝜏, by a classifier.  This 

function, shown in equation (34), relies on the true distribution of an instance given by 

𝑃(𝑦|𝜏), and the predicted distribution of an instance given by 𝑃𝐸(𝑦|𝜏), where y is a class 

value of 𝜏.  The actual calculation is the negative sum over all possible class values of the 

true probability that an instance 𝜏 belongs to class y, times the log value of the predicted 

probability that the instance 𝜏 belongs to class y.  The result of the calculation is that the 
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more incorrect a classifier is about the true distribution or class of an instance 𝜏, the higher its 

value of 𝐿𝜏.  The lower bound of this calculation is zero, and there is no upper bound.     

𝐿𝜏 =  − ∑ 𝑃(𝑦𝑗|𝜏)𝑙𝑜𝑔 (𝑃𝐸(𝑦𝑗|𝜏))

|𝑦|

𝑗=1

                                              (34) 

 To utilize the amount of information lost by a classifier about a specific instance, one 

final calculation is introduced.  The behavior of a classifier for an instance 𝜏, say 𝐵ℎ𝜏, relays 

the quantification of information loss, but also incorporates whether or not a correct 

classification is made for the instance.  If a classifier makes the correct class prediction for 𝜏, 

𝐵ℎ𝜏 is equal to 0.1 to the power of 𝐿𝜏.  If the classifier makes the incorrect class prediction, 

𝐵ℎ𝜏  is equal to -0.1 to the power of 𝐿𝜏.  This calculation is summarized in (35).  The result of 

this calculation is that if a classifier loses little information about an instance, and it makes 

the correct prediction, then 𝐵ℎ𝜏 is high.  If the classifier loses little information, but makes 

the wrong prediction, then 𝐵ℎ𝜏  is low. Intuitively, the instances that a classifier is 

knowledgeable about have a high value of 𝐵ℎ𝜏. 𝐵ℎ𝜏 ranges between one and negative one.   

𝐵ℎ𝜏 =  {
0.1𝐿𝜏          𝑖𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝜏

−0.1𝐿𝜏          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                               
  (35)   

 The idea behind the proposed ranking system is to see how the values of 𝐵ℎ𝜏 change 

after the removal of a column from a classifier’s training data.  If the removed column has k 

instances, then the average change in 𝐵ℎ𝜏  over all of the training instances is added to the 

rank calculation of the k instances.  The logic is that if a column contains important instances, 

then the values of 𝐵ℎ𝜏 will decrease from their removal, and the average difference between 

the 𝐵ℎ𝜏 values will be positive.  Given an initial set of columns, all columns can have the 

effect of their removal measured, and in the end, the instances with the highest rank are those 
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that belong to columns that hurt classification power when removed from the training data.  

The Information Rank Algorithm is summarized in the pseudo code below. 

Information Rank Algorithm 

Step 0:  

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑇 =  {𝜏1, 𝜏2, … , 𝜏𝑛}, 𝑤𝑖𝑡ℎ 𝑛 = |𝑇|,  

𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑆 = {𝑆(1), 𝑆(2), … , 𝑆(𝑚)}, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆(𝑗) ⊆  𝑇,  

𝑎𝑛𝑑 𝑎 𝑟𝑎𝑛𝑘 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝜏 = 0 ∀ 𝜏 ∈ 𝑇. 

Step 1: 

𝑇′ = ⋃ 𝑆(𝑗)𝑚
𝑗=1   

Step 2: 

𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑚  

  𝑇′′ = 𝑇′ ∩ 𝑆(𝑗) 

 𝑭𝒐𝒓 𝜏 ∈ 𝑺(𝒋)  

                            𝐵ℎ𝜏
𝐵𝑒𝑓𝑜𝑟𝑒

= 𝐵ℎ𝜏 𝑎𝑠 𝑖𝑛 (35) 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑏𝑢𝑖𝑙𝑡 𝑓𝑟𝑜𝑚 𝑇′  

                𝐵ℎ𝜏
𝐴𝑓𝑡𝑒𝑟

=  𝐵ℎ𝜏 𝑎𝑠 𝑖𝑛 (35) 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑏𝑢𝑖𝑙𝑡 𝑓𝑟𝑜𝑚 𝑇′′  

             𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
∑ 𝐵ℎ𝜏

𝐵𝑒𝑓𝑜𝑟𝑒
−𝐵ℎ𝜏

𝐴𝑓𝑡𝑒𝑟𝑛
𝑖=1

𝑛
 

 𝑭𝒐𝒓 𝝉 ∈ 𝑺(𝒋)  

                             𝑟𝜏 
= 𝑟𝜏 

+ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

Step 3: 

𝑆𝑐𝑎𝑙𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1. 
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3.4.2 Ranking instance usefulness through the frequency of instance occurrences   

The second method used to rank the usefulness of instances is based solely on 

empirical evidence.  Specifically, this method ranks instances according to the frequency 

with which they appear in columns with high accuracy.  Ranking instances this way is likely 

successful because the high accuracy columns hold instances which are known to work well 

for classification.  If an instance appears frequently in these columns then it probably is 

indeed useful for classification, receives a high rank, and is prone to being included in new 

training data subsets.  The specific implementation of the Frequency Rank Algorithm is 

shown in the pseudo code below. 

Frequency Rank Algorithm 

Step 0:  

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑇 =  {𝜏1, 𝜏2, … , 𝜏𝑛}, 𝑤𝑖𝑡ℎ 𝑛 = |𝑇|,  

𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑆 = {𝑆(1), 𝑆(2), … , 𝑆(𝑚)}, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆(𝑗) ⊆  𝑇,  

𝑎𝑛𝑑 𝑎 𝑟𝑎𝑛𝑘 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝜏 
= 0 ∀ 𝑡 ∈ 𝑇. 

Step 1: 

𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑚  

               𝑭𝒐𝒓 𝒙 ∈ 𝑺(𝒋)  

                             𝑟𝜏 
= 𝑟𝜏 

+ 1  

Step 3: 

𝑆𝑐𝑎𝑙𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1. 
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3.5 Parameters 

 Instance selection as presented in this chapter requires a number of parameters to be 

set.  These parameters are broken into two groups.  First, parameters that require a choice, 

and second, parameters that require actual values to be chosen.  

Choice Parameters: 

 Which classifier to use 

 Which reduced master problem (RMP) to use 

 How to construct the initial columns (J’) of the RMP 

 How to estimate reduced cost in the price out problem (POP) 

 How to measure accuracy 

 How to combine columns for a final selection of instances 

 

Value Parameters: 

 The number of columns from which to estimate reduced cost in the POP, R 

 The number of instances the generated columns in the POP can include, G 

 The number of columns from the POP to check for positive reduced cost, K 

 The number of restarts allowed in the POP 

 

In the following subsections are descriptions of the different parameters that require 

tuning or a choice for the application of instance selection.  Choice parameters will have the 

pros and cons of each choice analyzed.  Discussed with the description of each value 

parameter will be values that have worked in preliminary experiments, as well the potential 

benefit and harm of alternative values. 

3.5.1 Which classifier to use 

Instance selection should be performed with a specific classifier in mind.  This 

classifier is used in the selection process and the goal is for the classifier to select instances 

that it can take more advantage of than the original training data. Preliminary results indicate 
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that good classifiers for instance selection are naïve Bayes, logistic regression, and decision 

trees. 

3.5.2 Which reduced master problem (RMP) to use 

Both of the instance selection reduced master problems have promising properties for 

a column generation procedure, but they also both have shortcomings.  The end goal of each 

RMP is to create high quality columns to be used in a search for the best selection of 

instances from which to build a classifier.  However, only one RMP will be considered when 

creating these improved columns for the instance selection procedure.  A short description of 

each choice, RMP1 as shown in (14) through (17), and RMP2 as shown in (25) through (28), 

along with its positives and negatives is provided below. 

Both RMPs are linear program relaxations of similar integer programs (IP).  The IPs 

upon which each RMP is based, have the same decision variables and objective functions.  

The decision variables, called columns, can have value zero, indicating the column is not 

selected, and value one, indicating the column is selected.  A column is a subset of the 

original training instances, and the accuracy of a column is the accuracy of a classifier built 

from the column’s instances as evaluated on the original training data.  The shared objective 

function of each IP is to maximize the sum of the selected columns’ accuracies, and columns 

must be selected such that no instance appears in more than one selected column. With no 

additional constraints, the IPs select high accuracy yet disjoint columns. 

RMP1, the first master problem, has no constraint limiting the number of columns 

that can be selected in the solution, and the optimal solution to RMP1 is not optimal to the IP 

upon which it is based.  However, the objective function of RMP1 does encourage the 

selection of disjoint high accuracy columns, making it useful.  The price out problem of 



 41 

RMP1 leads to the generation of solutions that improve upon previous columns, where an 

improvement is considered a similar column that results in higher accuracy, but these 

improvements can pertain to any column currently existing in J’. 

It is obvious that generating improved columns could be beneficial, as they may be 

attractive building blocks in the search for the best subset of instances.  The downside of the 

formulation of RMP1 is that in the column generation procedure it is possible to create 

columns that are degradations of previously discovered columns.  This seems to clutter the 

search space with unhelpful columns.  It is possible to generate such columns because the 

objective function defining RMP1 can reward the addition of small, disjoint, and low 

accuracy columns.  This will be impossible with RMP2.  

RMP2, the second reduced master problem, has an additional constraint that no more 

than one column may be selected in the LP solution.  The optimal solution to RMP1 is also 

optimal to the IP upon which it is based (see Theorem One).  The solution of RMP2 is to 

select the highest accuracy column.  This means with RMP2 that any improving column 

found in the column generation procedure must have higher accuracy than any column 

previously created.   

The benefit from generating higher and higher accuracy columns is obvious.  Very 

high accuracy columns could be a good starting point in the search for the best subset of 

instances.  The downside of RMP2 is also its strength.  Since the price out problem can only 

generate columns with higher accuracy than the accuracy of columns previously discovered, 

potentially helpful columns in the search to find the best subset of instances may be omitted.  

For an example of such a column imagine a new column that has completely unique 

instances from the current best column, but also has equal accuracy.  This column is not 
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discovered or considered in the price out problem of RMP2, but could obviously be 

beneficial if considered in the construction of a high accuracy subset of training instances.   

3.5.3 How to construct the initial columns (J’) of the RMP 

J’ is the set of initial columns used to populate the RMP in the column generation 

procedure.  It is known that the number of iterations required to solve a column generation 

procedure depends on this initial population.  Even though column generation for instance 

selection will never be run to true optimality, it is clear that the quality of generated columns 

will depend on the initial columns of the RMP.  One glaring reason for this dependency is 

that the two methods provided to estimate reduced cost depend on a subset of the columns 

from the RMP.  For the early iterations of column generation the initial J’ is inextricably 

linked to the approximation of reduced cost.   

Preliminary experimentation has shown that good initial columns of J’ should be 

diverse and contain beneficial instances (indicated by high column accuracy).  However, it is 

not clear exactly how diverse the columns should be and how sensitive the procedure is to the 

inclusion of columns with non-beneficial instances.  Five ways to create initial columns are 

summarized below, along with the positives and negatives of each.  

The Backward Selection algorithm with 𝛽 equal to zero (B0) is the first method 

considered to create initial columns. B0 creates a column based on each training instance.  

Initially, a column contains all of the original training instances, but each instance (except the 

instance the column is created for) is considered for removal in a random order. An instance 

is removed from the column if it is un-helpful, meaning its removal does not change the 

accuracy of the column.  With B0, diversity is created by the random order instances are 
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considered for removal from the column and helpful instances are purposefully not removed 

from the column. 

The positive of B0 columns is that some unnecessary instances are removed from 

each subset.  The negative is that columns contain a somewhat large number of instances, so 

large that it is expected they still contain un-helpful instances.  These un-helpful instances 

may make the estimates of reduced cost ineffective and may encourage the inclusion of 

harmful instances in the columns generated by the price out problem.     

The Backward Selection algorithm with 𝛽 equal to ten (B10) is the second method 

considered to create initial columns.  These columns are created identically to the columns of 

B0, but now an instance is removed if doing so does not decrease the column’s original 

accuracy by more than ten percentage points. As with B0, B10 brings in diversity through the 

random order instances are considered for removal from the column.  With B10 some of the 

helpful instances are purposefully not removed from the column.  However, some marginally 

helpful instances can be removed from the column, as controlled by the allowed loss of ten 

percentage points from the original column accuracy.   

The positive of B10 columns is that the columns contain fewer instances than the 

columns of B0, possibly having removed more of the unnecessary instances.  The negative, 

indicated by the loss of training accuracy, is that helpful and necessary instances may have 

also been removed from the columns.  

The Forward then Backward Selection Algorithm with 𝛽 equal to zero (FB) is the 

third method considered to create initial columns.  In this procedure, again, a column is made 

for each instance.  This time the initial column contains only the instance for which it is 

created.  The remaining instances are then considered in a random order for inclusion in the 
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column.  Instances are included if doing so increases the accuracy of the column.  After all of 

the instances are considered for inclusion, or the forward phase, the instances in the column 

are considered in a random order for removal.  Instances are removed if doing so does not 

hurt the accuracy of the column.  FB introduces diversity to the columns through the random 

order instances are considered for addition and subtraction, and extra effort is made to only 

include helpful instances.    

The positive of the FB columns is that the columns have been carefully constructed to 

contain more helpful and fewer unnecessary instances than in previous methods.  The 

negative is that they may not have enough diversity to help the price out problem find 

improving columns, as indicated in preliminary experiments. 

The two final methods consider the Random Selection Algorithm to create columns 

that contain randomly chosen instances.  As with the other methods the number of random 

columns is equal to the number of the original training instances.  The positive of these types 

of columns is that they are quite diverse.  The negative is that helpful instances are included 

in columns only by random chance.  Additionally, the user must decide how many instances 

should be included in each column. 

For the first type of random columns (RB), the number of random instances included 

in each column is equal to the average number of instances included in the best columns 

created by each of the three previous methods.  The reasoning for including this number of 

instances is that the previous methods found good columns by including a certain number of 

instances, and the subset sizes are similar enough to warrant the average.  It may be possible 

to recreate this prior success with the random inclusion of instances, the result of which 

would be quite diverse columns that contain helpful instances.  



 45 

For the second type of random columns (RU), the number of random instances 

included in each column is decided by first creating a large number of randomly sized 

columns.  Specifically, a large number of columns containing random instances are created 

for each possible number of instances (one instance through n instances, where n is the 

number of original instances).  Then the best column from each size is plotted, and a user 

selects where it seems the column accuracy peaks or levels off.  The reasoning for this is 

again to create diverse columns, but to do so with column sizes that seem to lead to high 

accuracy columns, or columns with helpful instances. 

3.5.4 How to estimate reduced cost in the price out problem (POP) 

The objective function of the POP is to maximize the difference between classifier 

accuracy and the sum of the dual variables.  In order to solve the price out problem, a linear 

function describing the accuracy of a classifier based on its training dataset needs to be 

constructed.  Unfortunately, no closed form, let alone linear, function exists. An estimation of 

classifier accuracy is used instead. 

There are two current methods considered to estimate reduced cost.   The first is 

based on information theory, and the second is based on the frequency of instances appearing 

in the high accuracy columns of J’.  Both result in a ranking of the instances, which can then 

be used as a linear function estimating the accuracy of a classifier based on its training data.  

The intuition is that columns built from high-ranking instances will have high classifier 

accuracy and columns built from low-ranking instances will have low classifier accuracy.  

Unfortunately, because this estimation does not correspond directly with classifier accuracy, 

it is necessary to scale the ranks and dual variables between zero and one.  This way, when 

calculating reduced cost, the difference between an instance’s contribution to classifier 
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accuracy and it’s dual variable is somewhat comparable.  For both methods of 

approximation, the goal is to give helpful instances a high rank.  The positive and negatives 

of each ranking method are discussed below.   

The first method used to assign a ranking to the instances of the original training data 

is based on information theory.  The basic idea behind this method is that the amount of 

classification ability lost by removing a column of instances from the training data can be 

quantified.  Columns that when removed from the training data lead to a big loss of accuracy 

are said to contain important instances, and these instances are given a high ranking.  This 

method is outlined in the Information Rank Algorithm, and it relies on having a set of initial 

columns.  This set is a subset of columns from J’ where the columns in J’ are ordered from 

the most to least accurate, and as many columns as needed to represent R% of the instances 

from the original training data are included.  Starting with the most accurate.  Of course, R is 

another parameter that requires a value.   

The positive of this method is that it attributes a quantification of classification ability 

to each instance.  If this quantification is accurate, the measure has the potential to be quite 

informative when ranking instances.  The negative of this method is that instances are never 

judged alone.  Instead whole columns are used to measure a change in classification ability, 

and the difference is attributed to each instance.  It is possible that some unhelpful instances 

will accidentally receive a high ranking by always being grouped with helpful instances, and 

some good instances will receive a low ranking by always being grouped with unhelpful 

instances. 

The second method used to assign a ranking to the instances of the training data is 

based on the frequency with which instances appear in the high accuracy columns of J’.  This 
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method is outlined in Frequency Rank Algorithm and is calculated by first ordering the 

columns in J’ from highest accuracy to lowest accuracy.  A subset of J’ is then created.  The 

subset contains as many columns as required to have the union of their contents represent R% 

of the instances from the original training data.  Columns are added to the subset in order of 

the most to the least accurate. The number of times each instance occurs in the subset of 

columns then corresponds to its rank.  Meaning, instances that occur very frequently in the 

high accuracy columns are ranked high, and are thought to help create high accuracy 

columns.   

A positive of basing the rank of instances on the frequency of instances in high 

accuracy columns is that the rank is based on empirical evidence from the dataset.  Indeed, 

preliminary testing has shown that this ranking does lead to the discovery of improving 

columns.  This means at least some of the helpful instances receive a high ranking.  A 

negative of this method is that some truly helpful instances may not appear frequently in the 

initial J’ columns, and never enter newly created columns.  The opposite may also occur, 

where harmful instances are included in the initial J’ by mistake, and propagate through to 

new columns.  An additional negative is that this method seemingly requires a good set of 

initial columns to be successful; otherwise the ranking may be of little consequence.   

3.5.5 How to measure accuracy 

A measurement of accuracy is needed in several steps of the instance selection 

procedure.  First call to mind both formulations of the reduced master problem.  In both 

formulations the objective function is to maximize the sum of the selected columns’ 

accuracy, where column accuracy is calculated as the accuracy of a classifier built from the 

column’s instances evaluated on the original training data.  Second call to mind the creation 
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of J’, most of the procedures used to create initial columns also require some measurement of 

accuracy.  In both cases any measurement of accuracy can be used.  Two measurements are 

discussed here, regular accuracy and class balance accuracy.  Only the more appropriate of 

the two will be considered for a particular application.  The two measurements are discussed 

below along with their positives and negatives. 

Regular accuracy is calculated by dividing the number of correct predictions made by 

a classifier by the number of total predictions.  The benefit of this measurement is that it is a 

common way of thinking about accuracy, it is easy to calculate, and it is easy to explain.  The 

negative of this measurement is that for imbalanced datasets (datasets where the instances 

belonging to one or more classes far outnumber the instances in the other classes) it can give 

the impression of having constructed a better model than what is actually built.  For example, 

imagine a dataset with two classes.  In the dataset 95% of the instances belong to class one, 

and 5% belong to class two.  A very simple, and very accurate classifier simply classifies all 

instances as class one! Even though this model is trivial and tells us very little about the data, 

reporting regular accuracy can make it seem like a good model.   

Class balance accuracy is one type of accuracy measurement specifically designed to 

handle imbalanced datasets (Mosely 2014).  The benefit of class balance accuracy is that it 

does not reward models for favoring one class over another.  This can be an ideal 

measurement to maximize when the desired outcome of instance selection is a model that 

values each class of the dataset.  The downside of this measurement is that what is being 

measured is not immediately intuitive. A high level explanation is that class balance accuracy 

reports the minimum of the average recall and the average precision, where average recall 

and average precision summarize how the classifier performs on average for each class. 
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3.5.6 How to combine columns for a final selection of instances 

 Due to the fact that the column generation procedure does not reach the true optimal 

selection of instances, it has been found to be beneficial to implement some heuristic to 

further combine columns into a final training dataset.  Only one combination procedure is 

considered in this dissertation, but others could be easily implemented.  The final 

combination procedure follows a greedy algorithm where the highest training accuracy 

column is added to the final training dataset and the column that most improves the accuracy 

of final classifier is added next, and so on until no improvements can be achieved.  

 The positive of the greedy method is that it is very straightforward.  The negative is 

that a slightly more involved heuristic may be able to achieve better testing accuracy while 

avoiding overfitting.  

3.5.7 The number of columns from which to estimate reduced cost in the POP, R 

Both of the methods used to estimate the accuracy of a classifier require a subset of J’ 

to make calculations.  For the method based on frequency a subset of J’ is taken in an attempt 

to isolate the helpful instances of the training data.  For the method that is based on 

information theory a subset of J’ is taken to introduce a level of volatility for calculations.  

Meaning, to make sure removing a column of instances from the training data will have an 

affect on classifier accuracy. 

In both cases, it is not clear exactly how many columns should be considered.  It 

seems helpful to think of the number of columns as the number of columns required to 

represent R% of the original training data by the union of their contents.   This reformatting is 

convenient when trying to make recommendations for different datasets and different 

methods of constructing the initial J’, which intrinsically result in columns containing a 
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varying number of instances.  Preliminary testing showed 25% to be a good value for R.  A 

higher and lower value should also be considered.    

For both methods the hope of using a lower value will be to truly isolate the helpful 

instances of the dataset.  For the method based on information theory another benefit may be 

the increase in volatility.  Meaning, the removal of a single column from the training data 

may dramatically affect the accuracy of a classifier, resulting in stronger opinions about the 

columns.  As long as these opinions are correct, the helpful and harmful instances should be 

clearly identified.  The downside of the small size may be that the number and variety of 

ranked instances will not be large enough to find improving columns in the price out 

problem.   

Conversely, the hope of a higher value will be to obtain an opinion on a large number 

of instances.  The benefit of this for both methods would be the increased number of 

instances for which an opinion of usefulness is known.  The downside of including a large 

number of columns may be that wrong conclusions are formed about particular instances 

(skewed by low accuracy columns) or the sheer number of columns may mute conclusions 

about the instances. 

3.5.8 The number of instances the generated columns in the POP can include, G 

In the price out problem the evaluation of reduced cost is estimated as a linear 

function.  For both techniques of estimating reduced cost, only the helpfulness of the 

instances is identified (do to the scaling of the instances between one and zero).  The result of 

both of these conditions is that the objective function drives the price out problem to include 

as many instances in a new column as possible.  The only restraints preventing the inclusion 

of every instance in a new column are the dual variables.  Initial experimental results showed 
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the creation of very large columns that rarely had accuracy different than that of the original 

classifier.  Too many instances were typically included.  Therefore, the ability to create very 

large columns is taken away from the price out problem by placing an arbitrary constraint on 

the number of instances allowed in a newly generated column, called G.  Two possible 

values of G are discussed along with their positives and negatives.   

The first value of G comes from preliminary experiments where the size of newly 

generated columns was constrained to be less than the size of the very best column in the 

initial J’.  This seemed to be a natural size to select because any improving columns 

generated in the POP would be similar in size to the initial subsets.  This would make 

comparisons between new and old columns fair because the major differences between the 

two would simply be the instances contained in the column.  Any improvement in column 

accuracy could then be attributed to a better selection of instances.  However, it may be 

possible to find even better columns by allowing G to be larger than the best column in the 

initial J’, as shown through the greedy selection procedure used to make the final selection of 

instances.   

The second value of G comes from the greedy procedure used to combine the 

columns to find a final selection of instances.  Preliminary results show that the greedy 

procedure typically includes more than one column in its selection, and as a result improves 

upon the accuracy of the previously best column found.  This is an indication that the created 

columns do not yet contain enough instances.  Therefore, for the second value of G, the size 

of the improving columns found in the price out problem are constrained to be less than or 

equal to the number of instances found in a greedy selection of the initial columns of J’.  This 

value could work well because the greedy selection shows us that the columns in the initial J’ 
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are too small.  However, this value could also work poorly because it may allow the POP to 

include unnecessary instances due to its larger size. 

3.5.9 The number of columns from the POP to check for positive reduced cost, K 

The optimal solution of the price out problem is a newly generated column that is 

estimated to have positive reduced cost, and may improve the solution of the RMP if 

included in J’.  Because this is only an estimation of reduced cost, the column should be 

checked to see if it truly does have positive reduced cost.  If it does, it certainly should be 

included in J’.  This check is performed by subtracting the sum of the dual variables from the 

true accuracy of the generated column.  

Of course, it is cumbersome to obtain a single solution from the POP and then 

calculate its reduced cost.  This is especially true when the likelihood of finding a positive 

reduced cost column has been observed to be low.  Instead, it is recommended that K 

columns with high estimated reduced cost be checked for truly positive reduced cost at one 

time.  Usually, obtaining these K solutions is trivial because a large number of feasible but 

sub optimal solutions are generated in the branch and bound tree used to solve the POP.  The 

positive reduced cost columns are then treated differently depending on the RMP.   

In RMP2 all of the K columns that have been found to have positive reduced cost are 

added to J’.  Any positive reduced cost column represents a column with greater accuracy 

than the previous best column.  These are obviously good columns to keep.  In RMP1, only 

the column with the greatest positive reduced cost is added to J’.  The reason for the 

difference is that in RMP2, the only column that matters in regard to the calculation of 

reduced cost is the column with the greatest accuracy.  Including columns with lower, but 

still positive reduced cost will not cause the most positive reduced cost column in the K 
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solutions to change.  The same cannot be said for RMP1.  Therefore, only the highest 

positive reduced cost column is included so that RMP1 can take the greatest step toward 

improvement.  

In preliminary experiments it was determined that K equal to 2,500 results in the 

discovery of improving columns for both RMP1 and RMP2.  Discussed are the potential 

benefits and pitfalls of smaller and larger values. 

For RMP1 the potential benefit of a smaller value may be that intermediate improving 

columns are found.  Meaning, if a larger number of columns are checked, the highest positive 

reduced cost column found when checking a smaller number of columns may be 

overshadowed.  This column, a potentially beneficial building block in the search for the best 

subset of instances, may be ignored.  The negative of checking this smaller number of 

columns is that it is possible that not enough columns will be checked to find any truly 

positive reduced cost columns.  When checking the smaller number of columns, the column 

generation procedure may not lead to the creation of any improving columns. 

The intent of checking a larger number of columns for positive reduced cost is to try 

and ensure that enough columns are checked to find an improving column, for both RMP1 

and RMP2.  The negative of course is that for RMP1 the intermediate columns sought after 

through the lower setting will be overlooked.  However, the benefit may ultimately be 

columns that are even better elements in the search for the best subset of instances. 

3.5.10 The number of restarts allowed in the POP 

A restart, simply stated, is a way to continue the search for an improving column if no 

improving column was found after checking K columns of the POP.  Due to a limited amount 

of time available to perform the experiments in this dissertation, the number of restarts 
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allowed in the price out problem does not vary from three, the value used in initial testing. 

However, the concept of a restart and the perceived benefits of using them are discussed for 

each RMP. 

For RMP2, a restart is performed by adding the previously generated columns to the 

POP as cuts and then solving for K new columns.  The cuts make re-generating a column 

previously checked for positive reduced cost infeasible in the POP.  This is acceptable 

because only columns that have higher accuracy than the current best column will ever have 

positive reduced cost.  Once verified that this is not true for a column, the column never has 

to be reconsidered.  Figure 1 shows the solution procedure for RMP2 with restarts. 

The benefit of a restart with RMP2 is an artifact of the solution procedure.  Adding 

cuts to the POP seems to make the branch and bound tree more complex, and columns 

obtained after adding the cuts seem to be more diverse.  This could be because the cuts force 

the POP to consider columns from different areas of the solution space  

A restart is performed for RMP1 by checking K additional columns for positive 

reduced cost.  In this formulation it is not possible to add previously checked columns as cuts 

because previously checked columns are not guaranteed to always have negative reduced 

cost.  This means that the perceived benefit of adding complexity to the branch and bound 

tree is not present.   Still, the step procedure does allow improving columns to be found that 

could have otherwise been overlooked.  Figure 2 shows the solution procedure for RMP1 

with restarts.   
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Figure 1. Solution procedure RMP2 

 

Figure 2. Solution procedure for RMP1 
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CHAPTER 4. EXPERIMENTAL RESULTS 

This chapter presents results of instance selection applied to 12 experimental datasets.  

Included is an analysis of the results, focusing specifically on the reasons for successful and 

unsuccessful instance selection.  Next is a discussion of what instance selection does to 

different datasets to achieve an improvement in classifier accuracy.  Finally, instance 

selection’s performance is compared to support vector machines, random forest, and 

AdaBoost.   

4.1 Experimentation 

In this section instance selection is applied to 12 experimental datasets. The datasets 

were selected such that instance selection could be exposed to a wide variety of classification 

problems.  Meaning, the datasets differ in their number of instances, their number and types 

of attributes, their number of classes, and the difficulty of the classification task.  The 

datasets were obtained from the UCI machine learning data repository and from “The 

Elements of Statistical Learning”.  Table 1 summarizes each of the datasets.   
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Name Instances Attributes Numeric Nominal Classes 

Balance 625 4 Yes No 3 

Credit 690 15 Yes Yes 2 

Diabetes 768 8 Yes No 2 

Ecoli 336 7 Yes No 8 

Glass 214 9 Yes No 6 

Horse 368 21 Yes Yes 3 

Ionosphere 351 34 Yes No 2 

LandSat*  444 36 Yes No 6 

Spect 267 22 No Yes 2 

Tic-Tac-Toe 958 9 No Yes 2 

Waveform 800 21 Yes No 3 

Wisc. Breast Cancer 699 9 Yes No 2 

Table 1.  An * indicates that the dataset is a subset of the original, in that the numbers of instances are 

reduced. 

4.1.1 Experimental design 

 For the experimental design, each dataset has instance selection applied with the 

naïve Bayes classifier (NB), logistic regression classifier (LR), and the decision tree classifier 

(DT).  20 replications of instance selection are performed for each dataset classifier 

combination.  Additionally, in each replication the dataset is randomly split into a two third 

training and a one third testing dataset so that the testing accuracy of the classifiers can be 

compared before and after instance selection. 
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The application of instance selection to the experimental datasets follows rules of 

thumb that are developed in Chapter 5.  Specifically, RMP2 is used, the initial J’ is 

constructed with user defined random columns (see Chapter 5 for details on defining random 

columns), reduced cost is estimated by ranking instances based off of the frequency of their 

appearances in the high accuracy columns of J’, regular accuracy is used an accuracy 

measure, greedy selection is used as a final step to combine the generated columns into a 

final selection of instances, R is equal to 25%, G is equal to the number of instances in a 

greedy selection over the initial J’, K is equal to 10,000, and three restarts are allowed in the 

POP.  Also, classifiers were constructed with the machine-learning library Weka using 

default parameter values, and Cplex12.5 was used to solve all mathematical models.   

4.1.2 Results 

 Figure 3 shows the difference in testing accuracy before and after instance selection 

for the 12 experimental datasets.  A paired t hypothesis test, testing for a difference in mean 

accuracy with 95% confidence was performed for each dataset classifier combination.  

Combinations with significant differences before and after instance selection are colored 

blue.  Positive values on the x-axis indicate an improvement in accuracy after instance 

selection.  
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Figure 3.  The difference between testing accuracy before and after instance selection.  Positive values 

indicate an improvement from instance selection.  Tables of the results can be found in Appendix A. 

4.2 Analysis of results 

 This section will address why the success of instance selection varies for the different 

dataset classifier combinations.  Specifics of why instance selection can lead to an increase in 

classifier accuracy are reserved for Section 4.3.   
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4.2.1 Overfitting 

Instance selection manipulates a classifier’s training data in an effort to maximize 

training accuracy.  A danger of this type of manipulation is overfitting the classifier to the 

data, and as that implies, losing the ability to correctly label unclassified instances.  In that 

light, logistic regression and decision trees may not benefit from instance selection (as Figure 

3 suggests) for some datasets, because they may be prone to overfitting the original data.  In 

fact, for decision trees, overfitting is a common and well-known concern.  In such situations, 

instance selection with the goal of maximizing training accuracy will only exacerbate the 

overfitting.   

Consider Figure 4.  This figure shows the training and test accuracies of a logistic 

regression classifier before and after instance selection for the Glass, Horse, and Ionosphere 

datasets.  Recall from Figure 3 that these three dataset classifier combinations are adversely 

affected by instance selection.  Yet, when looking at the training and test accuracy of the 

model built from the original training data, it is clear that logistic regression already overfits 

the data.  It would be foolish to think that applying instance selection to maximize the 

training accuracy would do anything but make the overfitting worse.   

 

 Figure 4. Logistic regression obviously overfits the original dataset. 
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Now, consider Figure 5.  This figure shows the training and test accuracy of a naïve 

Bayes classifier before and after instance selection for the Balance, Credit, and Waveform 

datasets.  Here, overfitting does not seem to be an issue, and instance selection is indeed 

helpful, as indicated in Figure 3.    

 

Figure 5. Naive Bayes is obviously not overfit to the original dataset. 

A related observation is as follows.  The Glass, Ionosphere, Landsat, and Waveform 

datasets, datasets with strictly numeric attributes, benefit from instance selection with the 

naïve Bayes classifier.  For the same datasets, instance selection with the logistic regression 

classifier does not lead to a significant improvement.  This disparity makes sense when 

considering the strengths and weaknesses of the two classifiers.   

The naïve Bayes classifier assumes a distribution for numeric attributes to calculate 

prior probabilities.  Because of this naïve Bayes may achieve a poor fit for datasets with 

strictly numeric attributes.  However, instance selection could help discover beneficial 

structure to make up for this weakness.  Conversely, logistic regression should work well for 

datasets with numeric attributes and it is possible that instance selection has little to 

contribute.  A good fit, or an overfit, has probably already been achieved.  This is further 
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indicated by the lackluster performance of instance selection with the logistic regression 

classifier for the Glass, Ionosphere, and Landsat datasets. 

A good example of differences in fit for different classifiers on the same dataset is the 

Glass dataset.  The training and test accuracy before and after instance selection for both the 

logistic regression and naïve Bayes classifiers are shown in Figure 6.  Here it can be seen that 

the original median test accuracy with the naïve Bayes classifier is very low.  After instance 

selection the median test accuracy is comparable to the accuracy achieved by the original 

logistic regression classifier.  However, instance selection with the logistic regression 

classifier does not lead to a significant improvement, perhaps because a good fit has already 

been achieved.  Still, instance selection has enabled the naïve Bayes classifier to achieve the 

classification accuracy of logistic regression.  What instance selection has changed to allow 

this increase is not immediately apparent, although it should be noted that the same increase 

in accuracy for the naïve Bayes classifier is achievable through attribute selection.   

 

Figure 6.  Instance selection on the Glass dataset using naive Bayes and logistic regression. 

Overall, it is believed that when instance selection performs poorly, a structure, or 

bias, is imposed on the original training data that does not truly exist.  Even though the 
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intention of instance selection was to allow the classifier to take advantage of some obscured 

bias or relationship, it is possible that at times this discovery is exaggerated.  In these cases, 

the structure is clearly not as strong in the true classification problem.  This is evidenced by 

the classifier’s poor performance on the testing dataset.  Overfitting through instance 

selection can potentially be avoided by not performing instance selection with classifiers that 

have obviously already overfitted the original training data.  

4.3   Outliers, overlapping classes, and minority classes 

 This section is devoted to examining exactly what instance selection is doing to 

improve the training accuracy of a classifier.  In Chapter 1 it was noted that numerous 

aspects of the training data could make it difficult for a classification learner to induce an 

accurate model.  These troubles included class values that overlap one another, one or more 

classes with outliers, and minority class values that are easily ignored by the learner.  

Depending on the dataset and classifier, it has been observed that instance selection addresses 

one or more of these issues in the training data.  However, exactly how instance selection 

addresses each of these issues depends on the classification problem.   This section examines 

each aspect more closely. 

4.3.1 Outliers  

Outliers in a dataset may be detrimental to a classifier because they can draw the 

attention of the classifier away from the bulk of the instances.  Stated differently, a classifier 

that must consider outlying instances may miss discovering very helpful relationships that 

apply to the majority of the instances.  As a result, the classifier accuracy may be less 

accurate than if it had tried to solely fit the non-outlying instances.  The process of instance 
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selection allows this possibility to be indirectly checked by considering subsets of the 

original training data.   

In the experimental results presented in this chapter it has been observed that instance 

selection treats outliers differently for different dataset classifier combinations.  To discover 

this, outliers were defined to be instances that had at least one numeric attribute value that 

was more than two standard deviations away from the mean attribute value of all the 

instances.  The percentage of outliers in the training data was recorded before and after 

instance selection.  Note, simply the count of outliers would be uninformative because 

instance selection reduces the size of the dataset.  

Results show that instance selection with the naïve Bayes classifier for the Glass 

dataset leads to a significant decrease in the percentage of outliers, as determined by a paired 

t-test with 95% confidence.  The median percentage before instance selection was 26% and 

after instance selection was 24%.  Alternatively, for the Ionosphere dataset with the naïve 

Bayes classifier there was actually a significant increase in the percentage of outliers.  Here 

the median value increased from 41% to 45%. 

The reason that the treatment of outliers differs from dataset to dataset is that instance 

selection is treated as a wrapper.  This means that feedback from the dataset is used to decide 

if removing an outlier is beneficial.  Obviously for the Glass dataset it is beneficial to remove 

some outliers.  However, for the Ionosphere dataset it is not.  A case is discussed below that 

shows why the removal of outliers may be beneficial. 

The goal of the Credit dataset is to classify customers as having either good or bad 

credit.  For this illustration the data is split into a training and test dataset, where the training 

data contains 204 examples of good credit and 256 examples of bad credit.  Here, instance 



 65 

selection can improve the test accuracy of the naïve Bayes classifier by two percentage 

points.  This improvement is due to some change in the boundaries of the training data, and 

in this case the notable difference between the original training dataset and the selected 

training dataset is that instances with extreme values are removed.  This is possibly the case 

because the classifier sacrifices the ability to classify extreme instances in exchange for 

obtaining better general knowledge about the dataset.   

 

Figure 7. Variable A14 of the Credit Approval dataset before and after instance selection. Note the 

reduced range of the variable. 

Specifically, one variable that has extreme values is A14.  Figure 7 shows the ranges 

for this variable before and after instance selection. It is evident that some instances with 

extreme values are not included in the subset of selected instances. This observation will be 

found interesting below when considering how decision tree learning uses the variable A14. 

The effect of excluding extreme values (of A14 and other variables) is clearly seen in the 

decision trees learned on the original data versus the selected data. The decision tree learned 

on the original data is very complex as shown in Figure 8. 
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Figure 8.  Decision tree learned from all of the Credit training instances. 

After applying instance selection the decision tree becomes much simpler (with 

slightly higher accuracy), but most notably the variable A14, with its truncated ranges, is 

now used earlier in the decision tree.  This results in a more interpretable, yet still more 

accurate model: 

 

Figure 9.  Decision tree learned from the selected instances of the Credit dataset. 

In the original decision tree the first two branches are used to completely classify 376 

instances and the remaining branches are used to split the 84 remaining instances into 

homogenous groups.  Looking at the new decision tree in Figure 9 it can be seen that a split 

on variable A14 is used to replace the original tree structure and a branching to make 
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homogenous groups for the instance selection training dataset can quite easily be found. 

Figure 10 illustrates the easier to separate training data found through instance selection.   

 

Figure 10.  Note the easier to separate instances after the initial branches of the decision tree with 

instance selection. 

In this example extreme valued instances are eliminated and as a result a clear 

boundary between instances with different class values is found.  Classification ability is no 

longer sacrificed by fitting the classifier to the training dataset with extreme valued instances. 

4.3.2 Overlapping classes 

 Classes that partially overlap, meaning classes that have some instances with similar 

attribute values, can make it difficult for a classifier to distinguish between one class and 

another.  Because of this, it may sometimes be advantageous to remove similar instances and 

allow the classifier to learn from the data with clear boundaries between the classes.  Instance 

selection allows for this possibility by considering subsets of the original training data.  

Again, instance selection simply chooses the subset with the highest accuracy, regardless if 

that is a subset with or without well-separated classes.   
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 From the experimental results presented in this chapter it has been observed that 

instance selection treats the separation of classes differently for the different dataset classifier 

combinations.  For datasets with all numeric attributes the treatment of overlap was 

quantified by the Dunn index using the R package clValid.  The Dunn index is a cluster 

validation measure that evaluates the compactness and separation of clusters, where high 

values are an indication of better compactness and separation (Kovacs 2005).  For the 

experimental datasets, instances were assigned to clusters based off of their class values, and 

the Dunn index was measured before and after instance selection.  Of course, because 

instance selection removes instances, instance selection can never hurt compactness and 

separation, but some datasets improve in compactness and separation much more than others.   

For the Balance dataset with the naïve Bayes classifier the median Dunn index before 

instance selection was 0.1, and after instance selection, the median Dunn index was still 0.1.  

Results for the Wisconsin Breast Cancer dataset with logistic regression were different, with 

the median Dunn index before instance selection being 0.1 and after instance selection 0.3.  

As with outlying instances, the importance instance selection places on increasing the 

separation between classes depends on the dataset and classifier.   A case is now discussed 

that shows why the separation of classes may be beneficial for some dataset classifier 

combinations. 

This example considers the Landsat dataset, where the classification task is to classify 

the pixels contained in an image.  This version of the Landsat dataset is from preliminary 

experimentation and is actually a different subset of the full Landsat dataset that was 

presented in the experimental results of this chapter.  Still, in this example, a logistic 

regression classifier is built and then improved.  The classifier’s testing accuracy improves 
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from 66% for the original training dataset to 80% for the selected training dataset.  To 

provide some insights into how such an improvement is obtained, multidimensional scaling 

is used to visualize the instance selection.  Figure 11 shows the original training data plotted 

with respect to the top two principal components. 

 

Figure 11.  Training dataset visualized before instance selection.  Class 4 appears difficult to separate. 

It is evident that Class 4 instances are difficult to separate from the other instances as 

it spans the boundaries between Class 3 and Class 6.  As it turns out, instance selection 

removed Class 4 altogether and modified the boundaries further as Figure 12 shows. 

 

Figure 12.  Training dataset visualized after instance selection.  Class 4 was completely removed and the 

remaining classes are easy to separate. 
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After instance selection, Class 4 is ignored completely but there are now very clear 

boundaries between most of the remaining classes. (Note that a similar story was found by 

visualizing each pair of the four top principal components, which account for 90.9% of the 

dataset’s variability.) Ignoring one class value to create better boundaries seems to be 

justifiable, as it appears almost impossible to capture its boundaries anyway.  Table 2 shows 

the actual errors made by class values, both before and after instance selection. 

 Number of Test Instances Misclassified (Test Data) 

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total 

Original Training Data 5 9 11 9 8 9 51 

With Instance Selection 1 3 3 14 5 2 28 

Table 2. Misclassifications for the Credit Approval dataset before and after instance selection. 

It can quickly be observed that there are indeed more misclassifications made for 

Class 4, but it already had 9 out of 14 test instances misclassified so the change is relatively 

minor. The classifier built after instance selection improves the classification accuracy for all 

other class values and overall the errors are reduced from 51 to 28 instances. Thus, instance 

selection likely sacrificed the ability to classify the difficult minority Class 4 in an effort to 

make clearer and easier to learn boundaries for the remaining classes.   

4.3.3 Minority classes 

 Minority classes are sometimes the important aspect of a dataset.  For example, in 

Chapter 5 the goal of the second case study is to predict patient death as a result of some 

procedure.  There, the interesting class is the minority.  That is, the classification goal is to 

predict when patients do die from the procedure.  However, there are other cases when 

overall accuracy is more important than being able to predict the minority classes.  In cases 

like these, it may be advantageous to completely ignore the minority class and instead focus 
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on doing a good job predicting all remaining classes.  As before, instance selection can 

consider both alternatives by investigating subsets of the training data, and then can select the 

most favorable configuration. 

 Experimental results for the Glass and Ecoli dataset show the different ways instance 

selection can treat minority classes.  Both of these datasets have multiple classes with one or 

more class values being severely underrepresented.  The goals of the Glass and Ecoli dataset 

are to predict different types of glass and ecoli respectively.  For the Glass dataset with the 

naïve Bayes classifier it is observed that all of the classes are preserved in the training data 

after every replication of instance selection.  Recall from Figure 3 that instance selection 

does lead to a significant improvement in classifier accuracy for this dataset classifier 

combination.  Alternatively, for the Ecoli dataset it is frequently observed that instance 

selection with the naïve Bayes classifier completely removes a minority class from the 

training data, and this does lead to an improvement of classifier accuracy.  The reasoning for 

this improvement is likely similar to the example in Section 4.3.2, removing the minority 

class allows decision boundaries to be found that are clear enough to make up for the lost 

ability to classify a minority class. 

4.3.4 Summary 

This section has illustrated how instance selection can optimize the training data for 

two data examples. In the first example the extreme valued instances are removed from the 

training dataset and a better decision tree branching is found, indicating that there exists a 

clear separation of the classes.  In the second example a difficult to predict class is 

completely removed from the training dataset and clearer boundaries between class values in 

the selected training dataset lead to a more accurate classifier.  Instance selection appears to 
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construct training datasets that have predictable boundaries with the intention that these clear 

boundaries lead to more accurate classifiers.  However, it has been shown that the 

mechanism used to achieve the clearer boundaries depends on the dataset itself. 

4.4 Comparative results 

 Support vector machines (SVM), random forest (RF), and AdaBoost are three 

classification algorithms known for their good performance on a wide variety of datasets.  In 

this section instance selection will be compared to all three.   

For each replication of instance selection (IS) a support vector machine classifier, a 

random forest classifier, and an AdaBoost classifier (using a decision stump as the base 

classifier) were constructed and evaluated.  These classifiers were constructed using Weka 

with the default parameter settings.  Figure 13 shows the comparative results. 

Obviously no existing classifier is always going to have the best performance for 

every dataset, but the results from Figure 13 indicate that instance selection is a competitive 

classification approach. The accuracy achieved by instance selection is similar to some of 

best available classifiers.  There are datasets where instance selection with one classifier or 

another appears to be the best choice, there are datasets where there is no clear best classifier, 

and there are datasets where one of the other methods is clearly superior. 
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Figure 13. Comparative results of instance selection (IS), SVM, RF, and AdaBoost 

It is worth noting that when selecting a classification technique it is important to 

remember the properties of the classifier.  Consider the Glass dataset where random forest 

performs very well and instance selection with decision trees performs second best.  Decision 

trees are clearly a good way to solve this classification problem.  However, one benefit of 

instance selection with decision trees is that the result is more interpretable than random 

forest.  That is, random forest leads to a multitude of trees and instance selection results in 

only one.  If the goal of classification is to easily interpret the results, instance selection may 

become the preferred method. 
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Instance selection can help a classifier take advantage of structure in a dataset and 

improve its classification accuracy.  Performing instance selection for a classifier should be 

considered when the base classifier is not obviously overfit to the original data, and when the 

desired outcome is a single and perhaps interpretable classifier.   
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CHAPTER 5. CASE STUDIES 

The objective of this chapter is to show that integer programming techniques for 

instance selection can be applied to real world problems.  To do so, two studies concerning 

cancer patients are presented and then have instance selection applied to them.  The two 

studies analyze cancer patients in the Surveillance, Epidemiology, and End Results (SEER) 

database and construct classifiers to make predictions about their future or current health.  

This section includes a discussion about the tuning of the instance selection parameters, the 

application of the instance selection to the two data studies, and finally a discussion of what 

is learned about the parameters of instance selection. 

5.1 Parameter tuning 

Inherent to any classification method are a set of parameters that should be tuned to 

make the classifier perform well on a particular dataset.  For example, with decision trees it is 

necessary to establish a stopping criterion for the construction of leaves, with support vector 

machines it is necessary to choose a cost for violating the separability constraint, and with k-

nearest neighbors it is necessary to choose the number of neighbors used in classification.  

Instance selection is no different.    

Until now, instance selection has been performed with parameter values set by rules 

of thumb.  These rules were established because of the tuning experiments presented in this 

section.  Specifically, tuning is performed by applying instance selection to the two case 

studies with every combination of the proposed parameter values.  The best combination of 
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parameters is considered to be the combination that leads to the highest training accuracy.  

Table 3 shows the values (or choices) proposed for each of the instance selection parameters.  

A complete description of the instance selection parameters can be found in Section 3.5. 

Parameter Values 

Which classifier to use Logistic regression 

Which reduced master problem (RMP) to use RMP1 or RMP2 

How to construct the initial columns (J') of the 

RMP 
B0, B10, FB, RB or RU 

How to estimate reduced cost in the price out 

problem (POP) 
Information or frequency 

How to measure accuracy Case study specific 

How to combine columns for a final selection of 

instances 
Greedy selection 

The number of columns from which to estimate 

reduced cost in the POP, R 
10%, 25% or 50% 

The number of instances the generated column in 

the POP can include, G 

Size of the best column or the 

size of a greedy selection 

The number of columns from the POP to check 

for positive reduced cost, K 
500, 2,500 or 10,000 

The number of restarts allowed in the POP 3 

Table 3. Possible parameter values for instance selection tuning. 

5.2 Case studies 

The Surveillance, Epidemiology, and End Results (SEER) database is a program of 

the National Cancer Institute that collects and organizes information concerning cancer 

patients.  The collected data concerns demographic information of the patients, the types of 

cancers the patients have, their prescribed treatments, and the subsequent outcomes of the 

treatments.   The SEER database works with 19 different registries and has patient records 
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from 1973 through today.  In total, the SEER database covers approximately 28% of the 

United State’s population. 

The SEER database is vast and it allows researchers to analyze trends in healthcare as 

well as to identify best practices in cancer treatment.  One interesting area of research using 

the SEER database are studies that utilize logistic regression classifiers to make predictions.  

In this sub section, two case studies from the SEER database that concern prediction using 

logistic regression are considered.  It will be shown that instance selection can be used to 

help improve the predictive accuracy and/or usefulness of these classifiers.  

The first case study of this dissertation redevelops the classifier by Bhattacharyya and 

Fried (2002) in “Nodal Metastasis in Major salivary Gland Cancer” and attempts to improve 

its predictive accuracy through instance selection.  The goal of this classifier is to predict 

whether a patient identified as having major salivary gland cancer also has metastasis in 

regional lymph nodes.  This prediction is based off of non-invasive tests, and the argument is 

that if such a prediction can be made then a patient can either be spared or prescribed a more 

invasive procedure.  The second case study of this dissertation redevelops the classifier by 

Jeldres et. al (2009) in, “A Population-based Assessment of Perioperative Mortality After 

Nephroureterectomy for Upper-tract Urothelial Carcinoma”, and again attempts to improve 

the classifier’s predictive accuracy through instance selection.  Here the goal is to predict 

which patients will not survive a Nephroureterectomy, based on demographic information 

about the patient and the histology of their tumor. 

 Discussed for each case study are the training dataset before and after instance 

selection, the logistic regression classifier before and after instance selection, and any 

insights from the instance selection process. 
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5.2.1 Nodal metastasis in major salivary gland cancer 

Cancer of the major salivary glands is a relatively rare form of cancer that affects the 

parotid gland, the sublingual gland, and the submandibular gland.   Due in part to its rarity, 

predictive factors of the disease and the quantification of patient survival are still in question.  

The population study by Bhattacharyya and Fried (2002), “Nodal Metastasis in Major 

Salivary Gland Cancer”, attempts to further the understanding of this cancer by building a 

multivariate logistic regression classifier based on preoperative information to predict the 

presence of nodal metastasis.  Such a prediction is helpful because identifying nodal 

metastasis is necessary for the effective treatment of major salivary gland cancer, but 

checking for the condition involves an invasive procedure. 

It has been established in this dissertation that instance selection can be used to select 

a subset of instances that when learned from, can result in a better classifier than if the 

classifier had been built from the entire dataset.  For this study it is hoped that instance 

selection can identify a group of patients that allow multivariate logistic regression to clearly 

identify when a patient is positive for nodal metastasis.  Any improvement in such a 

classification would certainly be welcoming to those that suffer from major salivary cancer, 

and would definitely contribute to the understanding of factors that can predict nodal 

metastasis from the disease.  Following is a discussion of the study’s training dataset before 

and after instance selection, the logistic regression models before and after instance selection, 

and a discussion of what is learned from performing instance selection. 

5.2.1.1 The application of instance selection 
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The study’s dataset consists of patients diagnosed with major salivary gland cancer 

between 1988 and 1998 that have at least one regional lymph node sampled.  Attributes 

included in the multivariate logistic regression are: the age at diagnosis, gender, 

histopathology, extraglandular involvement, grade, and tumor size.  The outcome to be 

predicted is if any regional lymph nodes are positive for metastasis.  Of the original 1,423 

patients, 39% are found to be positive for nodal metastasis.  For experimental purposes the 

dataset is split into two thirds training data and one third testing data, where the testing 

dataset is reserved for evaluating final classifiers only. 

As discussed in Section 5.1 instance selection will be applied to the training datasets 

with extensive parameter tuning.  The set of parameters that result in the selection of 

instances with the highest training accuracy will be used to construct the final dataset.  The 

parameter values used in the tuning procedure can be found in Section 5.1, with the 

exception that regular accuracy will be used for evaluating classifier accuracy (because the 

training data is relatively balanced), and that 100 instances are included in the user defined 

random columns.   

The number of instances included in the user defined random columns was 

determined by plotting the best accuracy of 1,000 random subsets for every possible column 

length, and determining where the rise in accuracy levels off.  Figure 14 shows that the rise 

in accuracy levels off around 100 instances for this classification problem.  It is interesting to 

note that the size of the initial columns created with the other methods include much less than 

100 instances on average, but that their accuracy is similar to that of the random subsets. 
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Figure 14.  The rise in accuracy seems to level out when 100 random instances are included in a column. 

 After performing the parameter tuning for instance selection it was found that the best 

training dataset in regard to training accuracy was achieved by using RMP2, creating initial 

columns with a user defined number of random instances, estimating reduced cost with 

information theory, setting R equal to 10%, G equal to the number of instances found in the 

best initial column, and K equal to 10,000.  Results from this data study and the next will be 

generalized into rules of thumb in Section 5.3. 

 Table 3 shows a break down of the training dataset before and after instance 

selection.  The major difference in the training dataset after instance selection is that the 

proportion of male to female patients is closer to even, as is the split between having and not 

having extraglandular involvement.  The other observable aspects of the data remain 

relatively unchanged.  Interestingly, if the original training dataset is split into two 

classification tasks, the first being to predict nodal metastasis for men, and the second nodal 
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metastatis for women, a compelling argument can be found for increasing the relative 

proportion of women in the training data.   

When building a logistic regression classifier to predict nodal metastasis solely for 

men, the training accuracy is 63%, whereas when doing the same for women, the training 

accuracy is 75%.  It makes intuitive sense that the logistic regression classifier may benefit 

from devoting more attention to the easier task, predicting nodal metastasis in women.  The 

same observation can be made when considering the adjustment made to the proportions 

found in extraglandular involvement.  
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Original                   

(N = 949) 

Instance Selection    

(N = 100) 

Variable   Mean Range Mean Range 

Age at diagnosis   57 5-94 58 5-88 

Size  30 1-170 32 10-125 

 

          

Variable Level No. % No. % 

Gender           

  Male 544 57% 52 52% 

  Female 405 43% 48 48% 

Histopathology         

  Acinar cell carcinoma 128 13% 13 13% 

  Adenocarcinoma 125 13% 16 16% 

  

Adenoid cystic 

carcinoma 132 14% 16 16% 

  

Adenosquamous 

carcinoma 15 2% 1 1% 

  

Mucoepidermoid 

carcinoma 229 24% 18 18% 

  Other 154 16% 17 17% 

  Sarcoma 1 0% 0 0% 

  

Squamous cell 

carcinoma 165 17% 19 19% 

Extraglandular      

 Yes 383 57% 47 47% 

 No 545 40% 51 51% 

 Unknown 21 2% 2 2% 

Grade         

  Grade 1 81 9% 7 7% 

  Grade 2 215 23% 24 24% 

  Grade 3 236 25% 22 22% 

  Grade 4 90 9% 9 9% 

  Unknown 327 34% 38 38% 

Nodal Metastasis       

  No 590 62% 61 61% 

  Yes 359 38% 39 39% 
Table 4.  Training data before and after instance selection.  Notice that the proportion of females 

increases after instance selection, as does the proportion of cases with no extraglandular involvement. 

5.2.1.2 Multivariate logistic regression before and after instance selection 

 The multivariate logistic regression classifier built from the original training data had 

68.7% training accuracy and 69.6% testing accuracy.  The multivariate logistic regression 
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classifier built from the training data after instance selection had 71.9% training accuracy and 

70.0% testing accuracy.  The confusion matrix from the testing data for each classifier is 

shown in Table 5 and Table 6.  Here “No” represents patients that were not found to have 

distant metastasis, and “Yes” represents the patients that were.  Notice that the classifier built 

through instance selection, shown in Table 6, makes more false positives than false negatives 

(a desirable property), unlike the classifier built without instance selection.  Based on its 

higher testing accuracy and favorable types of error, the classifier built with instance 

selection is an improvement over the original classifier. 

  Predicted 

  No Yes 

Actual No 224 56 

 Yes 88 106 
Table 5. Confusion matrix for testing data with multivariate logistic regression classifier before instance 

selection. 

  Predicted 

  No Yes 

Actual No 220 60 

 Yes 82 112 
Table 6. Confusion matrix for testing data with multivariate logistic regression classifier after instance 

selection. 

5.2.1.3 Instance selection insights 

 The major insight gained from performing instance selection is not directly related to 

the developed model.  Instead, it is related to the selected instances.  Noticing that the 

proportion of men to women changed in the selected training data led to the discovery that a 

logistic regression classifier can more accurately predict distant metastasis for women. A 

medical professional may decide that it makes sense to develop a model for both men and 

women.  Multiple models could inspire more confidence in predictions for women.  The 

same can be said for patients that exhibit extraglandular involvement. 
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5.2.2 A population-based assessment of perioperative mortality after  

Nephroureterectomy for Upper-tract Urothelial Carcinoma 

Upper-tract Urothelial Carcinoma (UTUC) occurs mainly in the urinary bladder, 

ureters or renal pelvis.  The standard of care to treat this disease is to perform a 

nephroureterctomy (NU), which is the surgical removal of the kidney, ureter, and may 

include the excision of the bladder cuff. The purpose of an NU is to eliminate the carcinoma 

and to prevent its spread (Jeldres 2009).   

It is said in the population study by Jeldres et al. (2009), “A Population based 

assessment of perioperative mortality after Nephroureterctomy for Upper-tract Urothelial 

Carcinoma” that no model currently exists to predict individual or average perioperative 

mortality associated with NU.  Even with perioperative mortality associated with NU being 

low, it is argued that such a model would be beneficial as a decision-making aide for at risk 

patients.  Therefore, the SEER database is used to develop a multivariate logistic regression 

classifier to predict the 90-day survivability of patients who have UTUC treated with NU.   

As with the study of subsection 5.2.1, it is hoped that instance selection can identify a 

group of patients that allow multivariate logistic regression to clearly identify when a patient 

is at risk of perioperative mortality associated with NU.  As the original classifier for this 

problem simply predicts that all patients will survive (an artifact of the imbalanced data), an 

ability to truly identify patients at risk from the surgery would certainly be welcoming to 

those that suffer from UTUC.  Following is a discussion of the study’s training dataset before 

and after instance selection, the logistic regression models before and after instance selection, 

and a discussion of what is learned from performing instance selection. 



 85 

5.2.2.1 The application of instance selection 

The study’s dataset considers patients diagnosed with UTUC and treated with NU 

between the years 2004 and 2010.  The study’s population includes patients over the age of 

18 with available disease stage and no known distant metastases.  The attributes considered 

in the model are the patient’s age, gender, race, whether they had NU with or without the 

bladder cuff excision, as well as their tumor’s grade, location, T stage, and N stage.  The 

target or class attribute was death within 90 days of surgery for any reason.  Of the original 

2,328 patients, 9% are found to have died within 90 days of NU.  For experimental purposes 

the dataset is split into two thirds training data and one third testing data, where the testing 

dataset is reserved for evaluating final classifiers only. 

As discussed in Section 5.1 instance selection will be applied to the training dataset 

with extensive parameter tuning.  The set of parameters that result in the selection of 

instances with the highest training accuracy will be selected to construct the final dataset.  

The parameter values used in the tuning procedure can be found in Section 5.1, with the 

exception that class balance accuracy will be used for evaluating classifier accuracy (because 

the training data is unbalanced and the original classifier ignores the minority class), and that 

75 instances are included in the user defined random columns.  It is important to note that 

class balance accuracy is chosen to evaluate instance selection for this problem because the 

desired outcome is a classifier that values each class equally.       

The number of instances included in the user defined random columns was 

determined by plotting the best accuracy of 1,000 random subsets for every possible column 

length, and determining where the rise in class balance accuracy peaks or levels off.  Figure 

15 shows that the rise in accuracy peaks around 75 instances for this classification problem.   
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Figure 15. Class balance accuracy seems to peak when 75 random instances are included in a column. 

After performing the parameter tuning for instance selection it was found that the best 

training dataset in regard to training class balance accuracy was achieved by using RMP1, 

creating initial columns with backward selection allowing a loss of ten percentage points, 

estimating reduced cost with information theory, setting R equal to 25%, G equal to the 

number of instances found in the best initial column, and K equal to 2,500.  Results from this 

data study and the previous will be generalized into rules of thumb in Section 5.3.  

 Table 7 shows a break down of the training dataset before and after instance 

selection.  Here it is observed that the proportion of male to female grows farther apart after 

instance selection.  However, unlike in Section 5.2.1.1, no good guess is easily found for the 

difference.  Additionally, the range of ages is reduced dramatically after instance selection.  

The new range of age at diagnosis covers 74% of the cases in the original training data.  

Perhaps the range is reduced to allow the classifier to focus its classification ability on the 

majority of cases, and to ignore cases with ages in the extremes.  
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Original  
(N = 1552) 

Instance Selection 
 (N = 14) 

Attribute   Mean Range Mean Range 

Age at diagnosis   71.7 22 - 99 71.7 65 - 96 

            

Attribute Level No. % No. % 

Gender           

  Male 901 41.9% 10 71.4% 

  Female 651 58.1% 4 28.6% 

Race        

  Caucasian 1352 87.1% 13 92.9% 

  Other 200 12.9% 1 7.1% 

Primary tumor location       

  Renal pelvis 1076 69.3% 10 71.4% 

  Ureteral 476 30.7% 4 28.6% 

Type of surgery       

  NU with cuff 1135 73.1% 10 71.4% 

  NU without cuff 417 26.9% 4 28.6% 

Grade       

  Grade 1 126 8.1% 1 7.1% 

  Grade 2 366 23.6% 4 28.6% 

  Grade 3 423 27.3% 3 21.4% 

  Grade 4 637 41.0% 6 42.9% 

T stage       

  Ta 389 25.1% 5 35.7% 

  Tis 66 4.3% 0 0.0% 

  T1 314 20.2% 1 7.1% 

  T2 221 14.2% 1 7.1% 

  T3 462 29.8% 6 42.9% 

  T4 100 6.4% 1 7.1% 

N stage       

  NO 1395 89.9% 10 71.4% 

  N+ 123 7.9% 2 14.3% 

  Nx 34 2.2% 2 14.3% 

Survived 

 
  

 
  

  Yes 1418 91.4% 12 85.7% 

  No 134 8.6% 2 14.3% 

Table 7.  The training dataset before and after instance selection.  Notice the range of age at diagnosis is 

reduced.  
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5.2.1.2 Multivariate logistic regression before and after instance selection 

 The multivariate logistic regression classifier built from the original training data had 

45.7% training class balance accuracy and 45.2% testing class balance accuracy.  The 

multivariate logistic regression classifier built from the training data after instance selection 

had 61.1% training class balance accuracy and 57.5% testing class balance accuracy.  

However, if only regular accuracy is considered it can be seen that testing accuracy reduces 

from 90.4% to 87.7% after instance selection.  Still, it is argued that the classifier achieved 

through instance selection is more useful than the classifier achieved without. 

 Consider the confusion matrices from the testing data shown in Table 8 and Table 9.  

Here the “No” class represents a patient that did not survive an NU, and “Yes” represents 

patients that did.  Notice that the confusion matrix for the classifier built before instance 

selection, shown in Table 8, simply predicts that every patient will survive an NU.  This 

logistic regression classifier is uninformative about the data.  However, consider the classifier 

built after instance selection.  It is actually able to predict the death of some patients.  If the 

goal of this classification was to actually identify patients at risk from an NU, the classifier 

built after instance selection is much more informative than the original classifier.   

  Predicted 

  No Yes 

Actual No 0 74 

 Yes 0 702 
Table 8. Confusion matrix for testing data with multivariate logistic regression classifier before instance 

selection. 

  Predicted 

  No Yes 

Actual No 18 56 

 Yes 59 643 
Table 9. Confusion matrix for testing data with multivariate logistic regression classifier after instance 

selection. 

Table 10 holds the odds ratios associated with the classifiers built before and after 
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instance selection.  It is believed that because the selected training data contains so few 

patients that are at risk from an NU, the odds ratios have rather extreme values after instance 

selection.  Also, some variables identified as important by the odds ratio stay the same before 

and after instance selection, for example, patients with T stage equal to T4, but some do 

change, for example age at diagnosis.     

Variable 

Odds ratio of 
“No” before 
instance 
selection 

Odds ratio of 
“No” after 
instance 
selection 

Age at diagnosis 1.0 17.4 

Sex 1.3 2.5 × 104  

Race 1.1 1.2 × 109 

Primary tumor location 1.1 3.6 × 108 

Type of surgery 1.3 2.4 × 106 

Grade 1.3 0.0 

T stage = Ta 1.3 1.2 × 102 

T stage = Tis 0.4 1 

T stage = T1 0.7 0 

T stage = T2 0.8 0 

T stage = T3 1.1 9 

T stage = T4 2.4 5.9 × 1026 

N stage = NO 0.8 0 

N stage = N+ 1.1 0.2 

N stage = NX 1.8 2.0 × 1011 

Table 10. The odds ratios from each classifier 

5.2.2.3 Instance selection insights 

 Insights can be derived from applying instance selection to the NU survival problem.  

Specifically, a medical professional may be able to learn something about patients at risk 

from NU by analyzing the odds ratios shown in Table 10.  Also, because the selected training 

dataset contains only two instances of patients not surviving the NU procedure, and fourteen 

patients total, it is possible that looking directly at these instances may reveal additional 

insight.  After all, these fourteen instances are used as a substitute to represent the entire 
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training data.  It may be appropriate to consider the twelve surviving patients as ideal patients 

for NU, and the two non-surviving patients as non-ideal patients for NU.  An example insight 

from the selected instances, as shown in Table 11, is that patients with T stage equal to T4 

may be at high risk from NU.  This is backed up by the odds ratios in Table 10. 

Age Gender Race 

Primary 
Tumor 
Location Type of Surgery Grade Tstage Nstage Survived 

87 Male Cauc. Ureteral NU w cuff 2 Ta N0 No 

74 Male Cauc. Ureteral NU w/out cuff 4 T4 N+ No 

96 Female Cauc. Ren. pelvis NU w cuff 4 T3 N0 Yes 

65 Female Cauc. Ren. pelvis NU w/out cuff 3 T3 N+ Yes 

77 Female Cauc. Ren. pelvis NU w/out cuff 4 T3 N0 Yes 

69 Female Other Ren. pelvis NU w cuff 3 Ta N0 Yes 

69 Male Cauc. Ren. pelvis NU w cuff 2 T3 N0 Yes 

66 Male Cauc. Ren. pelvis NU w cuff 2 T3 NX Yes 

67 Male Cauc. Ren. pelvis NU w cuff 3 Ta N0 Yes 

85 Male Cauc. Ren. pelvis NU w cuff 4 T2 N0 Yes 

80 Male Cauc. Ren. pelvis NU w cuff 4 Ta N0 Yes 

80 Male Cauc. Ren. pelvis NU w/out cuff 4 T3 NX Yes 

83 Male Cauc. Ureteral NU w cuff 1 T1 N0 Yes 

77 Male Cauc. Ureteral NU w cuff 2 Ta N0 Yes 
Table 11.  The selected training data for predicting death within 90 days of an NU. 

5.3 Rules of thumb for instance selection parameters 

 To implement instance selection as described in this dissertation, parameter values 

need to be chosen.  Section 5.1 described an experimental design to test a variety of values 

for each parameter and the two case studies implemented this design.  From these results, 

rules of thumb for selecting parameter values are derived.  Separate rules will be developed 

for using regular accuracy and class balance accuracy.  The settings for class balance 

accuracy should be used only when the desired outcome of instance selection is a classifier 

that values each class equally. 
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Remember, different classification problems and goals will benefit from parameter 

values chosen specifically for that task.  These rules of thumb are presented as good starting 

positions only.   

 Parameter values for using regular accuracy (RA) are discussed first.  These values 

are derived from the experimental design implemented for the case study on nodal metastatis 

in major salivary gland cancer.  Figure 16 shows that major differences in final training 

accuracy are noticed when considering how the initial columns of J’ are constructed.  Clear 

differences are not noticed in regard to any other single parameter.   

 

Figure 16. Training accuracy in regard to the initial construction of J'.  RU seems to be the best choice 

for balanced data. 

 Now, if only the cases that consider user defined random columns (RU) as the initial 

J’ are analyzed, other choices for parameter values become clearer. Figure 16 and Figure 17 

are used to find that initial columns should be created with RU, RMP2 should be used, 

instances should be ranked according to the frequency of their appearances, R should equal 

25%, G should equal the number of instances selected in a greedy selection procedure over 
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the initial J’, K should equal 10,000, and regular accuracy should be used to evaluate 

classifier accuracies. 

 

Figure 17.  Boxplots to help pick rules of thumb when using regular accuracy. 

 It should be noted that the majority of these parameter values for regular accuracy 

make intuitive sense.  For example, because the initial columns are constructed with a user 

defined number of random instances it is logical that the best instance ranking method would 

be based on frequency.  This is because it is known that the initial columns of J’ will be very 

diverse, and it seems intuitive that instances appearing frequently in the good random 

columns will be helpful.  Additionally, it makes sense that newly generated columns should 

be allowed to grow to a size that has been found helpful in an initial greedy selection over J’.  

However, it is not intuitive why RMP2 seems to be the preferred RMP, but perhaps it is 

favored because the goal of RMP2 is to find columns that strictly improve upon the highest 

accuracy column of J’ and these columns are useful in the final greedy selection procedure.   
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Now, parameter values for using class balance accuracy (CBA) are discussed.  Again, 

these rules of thumb should be used when the dataset is imbalanced and the desired outcome 

is a classifier that values each class.  These values are derived from the experimental design 

implemented for the case study on NU for UTUC.  Figure 18 shows that some difference in 

final training accuracy is noticed when considering how the initial columns of J’ are 

constructed.  Clear differences are not noticed in regard to any other single parameter. 

 

Figure 18.  Training accuracy in regard to the initial J' creation procedure.  B10 seems to be the best 

method for imbalanced data. 

If only the cases that use an initial J’ created through the backward greedy selection 

procedure with an allowed loss of ten percentage points (B10) are analyzed, other parameter 

choices become clearer.  Figure 18 and Figure 19 are used to find that initial columns should 

be created with B10, RMP1 should be used, instances should be ranked with the information 

measure, R should equal 25%, G should equal the number of instances selected in a greedy 

selection procedure over the initial J’, K should equal 500, and class balance accuracy should 

be used to evaluate classifier accuracies.  Obviously, the rules of thumb for class balance 
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accuracy are different from the regular accuracy rules, specifically in the way the initial J’ is 

created, the RMP used, how the instances are ranked, and what K should equal.   

 It is believed that the best initial columns for class balance accuracy are created with 

B10 because the procedure results in columns with very few instances.  In fact, most columns 

contain only a single instance, which seems to negate the premise that it is desirable to make 

decision variables that are collections of good instances.  However, if columns of individual 

instances were added to all the generated columns before the final greedy selection, the best 

initial columns would not have B10.  It is believed that for the imbalanced data problem it is 

desirable to have small columns that can be used to bolster the accuracy of other large but 

good columns.  The other generated columns appear to be too large to allow a useful 

combination to be found in the final greedy selection procedure.  Still, for the outlined 

experiment, initial columns created through B10 are the best choice. 

After selecting B10 for the initial columns, the remaining parameter choices make 

intuitive sense.  First, because RMP1 is chosen, it is logical that K should be a small value so 

that improving columns that are only slight improvements will be discovered.  That is, 

because RMP1 only includes the highest reduced cost column generated in the POP, fewer 

columns should be checked to allow moderately improved columns to be added to J’ and to 

be used in the final greedy search.  Second, information is likely used to rank instances 

because the frequency measure may favor instances from the minority class.  Meaning, 

because only the high accuracy columns are included in the frequency calculation and 

because these columns contain minority instances out of necessity, and because there are by 

definition a limited number of minority instances, minority instances receive a 



 95 

disproportionate high rank.  Relying on information instead allows minority instances to be 

assessed for their actual usefulness.   

 

Figure 19. Boxplots to help determine rules of thumb for class balance accuracy. 
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CHAPTER 6. CONCLUSIONS 

The motivation of this research has been that there are aspects of a classifier’s 

training data that can impede its effectiveness.  For model-based classifiers these troubling 

aspects are not always identifiable through a simple analysis of the data.  Therefore, this 

work has proposed that instance selection be used to optimize the training dataset to the 

classifier’s advantage.  Specifically, instance selection is reformulated as an integer program 

and draws upon optimization theory to obtain a good selection of instances from which to 

learn.    

Experimental results show that instance selection can increase the accuracy of 

classifiers by optimizing the training data in such a way that the training dataset has easier to 

learn boundaries between class values.  In part, it was shown that instance selection might 

remove instances from classes that partially overlap, instances with outlying attribute values, 

and instances from minority classes that could potentially be ignored.  However, exactly 

what is removed from a set of training data is dependent on both the classification problem 

and the intended classifier.  Additionally, results show that a classifier built after instance 

selection can be a competitive classification technique, but instance selection may also be 

prone to overfitting classifiers that have already obtained a good fit to the data. 

Also included in this dissertation were two case studies that concern predicting the 

current or future health of patients in the SEER database.  For both cases it was shown that 

instance selection could improve the classifier constructed from the original training data.  In 
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fact, for the second case study where the goal was to predict mortality after a 

Nephroureterectomy, instance selection lead to a classifier that was actually informed about 

the classification problem.  Meaning, unlike the original classifier, it did not simply predict 

that every patient would survive the procedure.  

In short, instance selection can help improve the classification ability of model-based 

classifiers by allowing the classifier to choose a training dataset that considers its particular 

strengths and weaknesses.      

6.1 Future work 

 The focus of this research has been instance selection to increase a model-based 

classifier’s accuracy.  However, in the process of completing this research, interesting areas 

for future investigation have been identified.   

Overfitting – Experimental results in Chapter 4 suggests that instance selection can lead to 

overfitting.  At least part of the overfitting can be contributed to the greedy selection 

procedure used to combine columns into a final selection of instances.  It may be beneficial 

to devise a more sophisticated combination procedure to specifically address overfitting. 

Imbalanced data – In Chapter 5 it was shown that using instance selection to maximize 

class balance accuracy lead to the discovery of a more useful model for imbalanced data.  It 

may be interesting to further investigate the benefit of instance selection for imbalanced 

datasets where the ability to predict each class is important.  Specifically, it would be 

interesting to investigate what instances are important in imbalanced datasets. 

Model simplicity – Many of the techniques used to improve classifier accuracy inherently 

lead to classifiers that are more complex.  For example, ensemble classifiers rely on multiple 

classifiers to make a single prediction, which makes interpretation difficult.  With instance 
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selection the result is a single classifier, and it has been noticed for decision trees and logistic 

regression that this classifier is sometimes simpler than the original.  Meaning, for logistic 

regression the number of non-zero coefficients has decreased, and for decision trees the 

number of branches has decreased.  In fact, the simplification of decision trees through 

instance selection was the focus of Bennette and Olafsson (2011), but it may be worth 

revisiting this area to investigate the tradeoffs between interpretability and accuracy in 

instance selection. 
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APPENDIX A. TABLED RESULTS 

Naïve Bayes 

  Mean Train Accuracy Mean Test Accuracy 

Dataset Before IS After IS CI of Difference Before IS After IS CI of Difference 

Balance 89.8 92.2 [-2.9, -2.0] 89.5 90.5 [-1.5, -0.5] 
Credit 78.4 87.5 [-10.0, -8.2] 78.0 83.7 [-6.5, -4.9] 
Diabetes 77.0 80.3 [-3.7, -2.8] 75.4 74.8 [-0.0, 1.3] 
Ecoli 88.7 92.2 [-4.1, -2.9] 84.5 84.9 [-1.5, 0.6] 
Glass 56.7 78.4 [-23.8, -19.5] 46.2 63.5 [-21.3, -13.2] 
Horse 72.2 79.1 [-8.3, -5.6] 69.0 68.3 [-0.8, 2.1] 

Ionosphere 84.4 95.7 [-12.3, -10.4] 81.6 92.3 [-12.7, -8.7] 
Landsat 79.0 86.4 [-8.7, -6.3] 76.9 80.4 [-4.5, -2.6] 
Spect 79.6 87.7 [-8.9, -7.3] 77.6 79.0 [-3.1, 0.4] 
Tic-tac-toe 72.0 76.8 [-5.6, -4.1] 71.5 73.3 [-2.9, -0.7] 
Waveform 80.1 85.3 [-5.8, -4.6] 79.0 80.7 [-2.4, -1.0] 
Wisconsin Breast Cancer 96.1 97.9 [-1.9, -1.5] 95.9 96.1 [-0.6, 0.2] 

Table 12.  Confidence intervals are constructed using a paired t-test with 95% confidence.  Null 

hypothesis is that the mean difference before and after instance selection (IS) is zero. 

 

Logistic Regression 

  Mean Train Accuracy Mean Test Accuracy 

Dataset Before IS After IS CI of Difference Before IS After IS CI of Difference 

Balance 91.2 93.8 [-3.0, -2.2] 89.3 91.5 [-3.0, -1.3] 
Credit 89.3 90.9 [-2.2, -0.8] 84.7 83.5 [0.2, 2.2] 
Diabetes 78.4 80.6 [-2.6, -1.8] 76.2 75.6 [-0.1, 1.2] 
Ecoli 90.0 92.9 [-3.3, -2.3] 84.7 83.7 [-0.1, 2.2] 
Glass 76.2 85.1 [-10.2, -7.6] 63.5 60.6 [0.7, 5.1] 
Horse 83.2 94.7 [-12.5, -10.5] 64.3 58.8 [2.8, 8.3] 
Ionosphere 96.8 98.9 [-2.9, -1.3] 86.0 84.0 [0.7, 3.4] 
Landsat 100.0 100.0 [-0.0, 0.0] 72.5 72.4 [-0.9, 1.2] 
Spect 87.6 91.9 [-4.7, -4.0] 81.2 78.7 [1.1, 4.0] 
Tic-tac-toe 98.4 98.8 [-0.5, -0.3] 98.1 97.8 [-0.1, 0.6] 
Waveform 86.8 89.1 [-2.6, -2.0] 83.0 82.4 [-0.3, 1.3] 
Wisconsin Breast Cancer 97.0 97.9 [-1.0, -0.8] 96.2 96.6 [-0.8, -0.0] 

Table 13. Confidence intervals are constructed using a paired t-test with 95% confidence.  Null 

hypothesis is that the mean difference before and after instance selection (IS) is zero. 
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Decision Tree 

  Mean Train Accuracy Mean Test Accuracy 

Dataset Before IS After IS CI of Difference Before IS After IS CI of Difference 

Balance 89.8 91.2 [-1.9, -0.9] 77.4 77.7 [-1.5, 1.1] 

Credit 90.2 92.6 [-3.4, -1.4] 84.8 84.4 [-0.4, 1.3] 
Diabetes 86.1 90.6 [-6.1, -2.9] 72.7 71.8 [-0.8, 2.6] 
Ecoli 92.1 94.3 [-3.0, -1.5] 81.4 81.6 [-2.0, 1.5] 
Glass 91.4 95.0 [-4.4, -2.7] 67.8 67.8 [-2.3, 2.1] 
Horse 76.2 83.6 [-9.1, -5.9] 64.3 64.3 [-2.2, 2,2] 
Ionosphere 98.1 98.9 [-1.4, -0.3] 88.5 88.8 [-2.2, 1.7] 
Landsat 95.7 97.1 [-2.0, -0.7] 76.1 75.2 [-1.0, 2.8] 
Spect 87.8 90.5 [-3.3, -2.0] 79.2 79.2 [-1.5, 1.4] 
Tic-tac-toe 92.3 94.8 [-3.3, -1.8] 84.0 86.1 [-3.4, -0.9] 
Waveform 96.1 98.1 [-3.0, -1.0] 72.8 72.2 [-1.1, 2.3] 
Wisconsin Breast Cancer 97.7 98.4 [-1.1, -0.5] 94.4 94.7 [-1.0, 0.3] 

Table 14. Confidence intervals are constructed using a paired t-test with 95% confidence.  Null 

hypothesis is that the mean difference before and after instance selection (IS) is zero. 
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