

Policy based reinforcement learning approach

Of

Jobshop scheduling with high level deadlock detection

by

Mengmeng Chen

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Industrial Engineering

Program of Study Committee:

Sigurdur Olafsson

Hu Guiping

Wu Huaiqing

Iowa State University

Ames, Iowa

2013

Copyright © Mengmeng Chen, 2013. All rights reserved.

Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisor Prof. Siggi Olafsson for the

continuous support of my study and research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of research and writing of this

thesis. I could not have imagined having a better advisor and mentor for my master study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Hu Guiping,

Prof. Wu Huaiqing, for their encouragement, insightful comments, and hard questions.

My sincere thanks also goes to Dr. Sarah Ryan for offering me the teaching assistant support in

our department and leading me working on diverse research projects.

Last but not the least I would like to thank my family: my parents Weijian Chen and Yuanke Xu,

for giving birth to me at the first place and supporting me spiritually throughout my life.

Table of Contents

List of Figures …...……………...………………...……………...………………...……………..v.

List of Tables …...…………………………...……………...………………...… ……………. iv

ABSTRACT …...……………...………………...……………...………………....…………….6

CHAPTER 1 OVERVIEW …………...……...……………….……..………….…...…………7

1.1 Introduction to Deadlock in Job shop scheduling ……...……………...……………….1

1.2 Research Objective ………..……………………………………………...……………4

1.3 Thesis Organization ……...………………………………………………...…...……..4

CHAPTER 2 LITERATURE REVIEW ………….……………………………………………5

2.1 Job shop scheduling Deadlock Detection…,,......………………………………...………5

2.2 Policy based reinforcement learning….………..…………………………………………8

CHAPTER 3 HIGH LEVEL DEADLOCK DETECTION ….……..……....…………………10

3.1 Deadlock Detection based on Digraph Method ….……..………………………………11

3.1.1 First level deadlock ……………….……………………………………………………13

3.1.2 Second level deadlock ………………………………………………………………13

3.1.2 Third level deadlock …………….……………………………………………………17

3.2 Deadlock Detection based on Ranking Matrix …………………………………………21

3.2.1 First level deadlock …………….……………………………………….…………...…22

3.2.2 Second level deadlock ………….…………………………………………..……..……24

3.2.3 Third level deadlock …...…….……………………….……………………….………26

CHAPTER 4 POLICY BASED REINFORCEMENT LEARNING ALGORITHM ………..… 29

CHAPTER 5 EXPERMENTS …………….…………………………………………..…33

CHAPTER 6 CONCLUSIONS ...……….……………….…………...………………… …...39

APPENDIX ……….……………………….……………….…….………….…...………..40

REFERENCES …………….………………………………….………….……...……….44

List of Figures

Figure 3.1. RG.TG and MTG model of a simple DMS…………….……………………………11

Figure 3.2. Circular waiting structure of 1st level DL…………….……………………………..12

Figure 3.3. Instances of potential DL chain(PDC) …………….………………………………..13

Figure 3.4. Instance of 2nd level DL…………….………………..…………….…………….…14

Figure 3.5. General pattern of 2nd level deadlock…………….………………………………...15

Figure 3.6. Instances of 3rd level deadlock…………….………………………………….……18

Figure 3.7. General pattern of PSLD and 3rd level DL…………….…………………………...19

Figure 3.8. General pattern of 3rd level DL…………….………………………………….……20

Figure 3.9. Tail Job, Head Job and Heard Resource, First level DL detection…………….……23

Figure 3.10. Second level DL with 4 resources and 3 jobs & Second level DL detection………24

Figure 3.11. Third Level DL detection …………….………………………………….………...27

Figure 4. Flow chart of DL free Scheduling Algorithm…………….…………………………...32

Figure 5. DL free schedule of LA08…………….………………………………….…..……….38

Figure 6. DL schedule of LA16 …………….………………………………….……,…..….…..38

List of Tables

Table 1. Results of 40 Benchmark Job shop instances and Values …………….……………..40

 6

ABSTRACT

 We present a policy based reinforcement learning scheduling algorithm with high level deadlock

detection for job-shop discrete manufacturing systems without buffer being equipped. Deadlock

is a highly undesirable phenomenon resulting from resource sharing and competition. Hence, we

first propose detection algorithms for second and third level deadlocks. Subsequently, based on

these high level deadlock detection algorithms, a new policy based reinforcement learning

scheduling algorithm is developed in the context of buffer-less job-shop systems. Applying our

reinforcement learning approach into scheduling algorithm to a set of 40 widely-used buffer-less

job shop benchmark, satisfactory makespan can be obtained, which, to our knowledge, have

never been published before. It is safe to conclude that our policy based reinforcement learning

scheduling algorithm can be applied to other discrete event systems (e.g., computer operation

systems, communication systems, and traffic systems).

Keywords – High Level Deadlock Detection, Buffer-Less Job Shop scheduling, Policy based

Reinforcement Learning

 7

CHAPTER I OVERVIEW

1.1 Introduction to Deadlock in Job shop scheduling

Recently, there has been a significant interest in designing and developing flexible

manufacturing systems (FMSs) among manufacturers so as to maintain the competitiveness.

FMSs provides the manufacturers with great flexibility in meeting the demand, especially for

low-volume and high variety products. However, since FMSs exhibits a high degree of resource

sharing, manufacturing shops are subject to system deadlock, which may cause unnecessary

costs due to long downtime and low resource utility.

Deadlock (DL) is a highly undesirable phenomenon in most discrete event systems (DES),

which requires special managing and controlling strategies [3]. Essentially, DL results from

resource sharing [6]. When various customers passing through a buffer-less service system and

competing for limited resources, the system is prone to DL, an insidious halting condition in

which there is a set of customers awaiting the allocation of resources held by other customers in

the same set. The phenomenon is usually named as “circular waiting” or “hold and wait”. Since

no buffer is equipped, a set of customers and servers is restricted in a fixed loop, and cannot be

released via any feasible action within the loop.

With this knowledge, it is highly desirable, if not urgent, to solve the DL problems in FMSs

while maintaining the viability of the system performances such as makespan. With this

objective in mind, a new DL-free scheduling algorithm is proposed in this paper, consisting of a

high-level DL detection method as well as a reinforcement learning approach. Specifically, in the

context of job shop systems, the high-level DL detection method helps to reduce the searching

 8

time for a DL-free schedule. The experimental results show that, for most of the large-size job

shop systems, a DL-free schedule can be found within seconds, which enables the real-time

control of manufacturing shop when DL concern is being incorporated. At the same time, the

reinforcement learning approach facilitates the improvement of the performances of the DL-free

schedules, such as the makespan being considered in this paper. We notice that reinforcement

learning approach has been studied by previous researchers in computer science in general and in

manufacturing scheduling in particular. To our knowledge, Zhang and Dietterich [44] first

applied the reinforcement learning approach in job shop scheduling problem (JSSP).

Reinforcement learning is a machine learning approach to find a policy π which can maximize

expected future return, which calculated based on reward function γ. Policy π determines which

action will be choose by RL agent, and is usually state dependent [45]. A great deal of research

has been invested into the development of JSSP solution methods both in the operations research

and artificial intelligence communities. However, these previous works are all based on the

assumption of unlimited buffer, or in other words, DL is not being considered during the

scheduling process. On the other hand, limit-buffer JSSP or buffer-less JSSP has not studied in

the extant literature whereas there is indeed a request from industry regarding the DL-free

scheduling in job shop systems

Nowadays, several new application areas corresponding to some special FMSs are buffer-less

systems in real production cases: (i) the shop floor of gigantic workpiece such as ‘head of air-

plane’ or ‘shaft of turbine dynamo’ has no spare space for intermediate work in process (WIP),

(ii) to keep high production efficiency in the IC chips photolithographic system, any block

during chip transferring within different equipment chambers (of cluster tool) is unacceptable

under the high chip delivering and handling rate. Hence, in these FMSs, resource competitions

 9

and DLs may occur frequently without well designed job scheduler and manufacturing

controller.

Under this circumstance, as various constraint programming methods, combinatorial

algorithms, and evolutionary algorithms have been widely utilized in schedule searching,

ordinary FMSs (with sufficient buffer capacity and so without DL happening) scheduling has

become a relatively matured technique as stated in extant literature [13, 17, 22, 25].

Nevertheless, for buffer-less FMSs, the scheduling problem is still not well resolved, even for

small-scale FMSs. For example, to the best of our knowledge, for a set of widely-used

benchmark FMSs (which will be introduced later), no DL-free schedule is published in the

previous literature.

Basically, job shop FMS has the following two features: (i) the system resources are limited

and not exemplified, and (ii) each customer is handled in accordance with its scheduled route

(which may result in complex route crosscut). To satisfy these two features, well designed

schedule is expected to handle the competition among customers.

As numerous research works have shown, schedule for a job shop FMS must be found based

on the route constraints of customers and the system performing objectives (e.g., makespan,

costs, and due-dates) required by user. The main task of FMSs controller [40] is to execute the

obtained production schedule that can realize those requirements and achieve more benefits for

FMSs user.

 10

1.2 Research Objective

However, without high level DL detection algorithm, DL-free scheduling for buffer-less job

shop FMSs has not been systematically solved. Hence, the objectives of this paper are

(1) To design and develop high level (second level and third level) DL detection algorithms

(2) To apply reinforcement learning approach in DL-free scheduling so as to improve the

solution performances such as makepsan.

(3) To propose DL-free scheduling algorithm for job shop systems, consisting of the high-level

DL detection methods, as well as the reinforcement learning approach.

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter II presents the previous works related to

this paper. In Chapter III, we introduce the first, second and third level DL patterns as well as the

corresponding detection methods. In Chapter IV, we propose a policy based reinforcement

learning deadlock free scheduling algorithm for buffer-less job shop FMSs. Chapter V provides

the results of experiments on benchmark problems as well as implications drawn from these

results. Finally, conclusion and future works are provided in Chapter VI.

 11

CHAPTER II LITERATURE REVIEW

In this chapter, we review some literatures on Deadlock detection problems and reinforcement

problems.

2.1 Job shop Scheduling Deadlock Detection

Single unit resource allocation system (SU-RAS) [23] is widely considered while modeling

FMSs. Several researchers utilized a pioneer method of empty siphon detection for first level DL

(relative to higher level DL in this paper) checking [7, 21]. Similarly, under the modeling

frameworks of ROPN (Petri Net) [31, 32] and transition graph (Digraph) [8, 9, 10], a DL-free

unsafe state can also be detected via using one-step ahead strategy. However, these studies are

applicable to some specific small-scale FMSs only [1, 16, 37, 38]. A general DL-free scheduling

algorithm for FMSs based on high level DL detection has never been proposed systematically.

Furthermore, automata model is also utilized to analyze DL in the context of computer

operations system [39]. However, modeling the distributed features of job shop FMSs using

automata cells and the corresponding control supervisor is usually intractable. Hence, the

modeling methodology proposed in [39] is only applicable to small-scale FMSs with simple

process routes. Fanti and Zhou [11] provided a complete survey in this area.

Given the modeling frameworks in the extant literature, three strategies to handle DL and the

corresponding research works are illustrated as follows:

(1) Deadlock Prevention, which restrains the resource allocation for customers so that DL can be

prevented. For Petri nets model, synthesis methods (e.g., mixed integer programming [5] and

region theory [14]) are used to find siphon or elementary siphon [7, 21, 36] so as to prevent

DL. In automata model, supervisory controllers [24] are introduced to keep systems in a DL-

 12

free status. However, both synthesis methods and supervisory controllers require enormous

computation consumption, which makes these methods intractable when applying to FMSs

with considerable scale and complicated job shop route constraints.

(2) Deadlock Avoidance, which restrains the way resources are allocated based on the current

state of the system and the next request of resource for each customer. DL avoidance

algorithms are well developed in Petri Net model [2, 23, 29, 30, 32], Automata model [39],

and Digraph model [4, 12, 18, 34] to handle FMSs scheduling problems. However, current

DL avoidance algorithms can not avoid DL-free unsafe state (i.e., high level DL in this

paper). Furthermore, several papers [10, 26, 31] try reserving one resource to avoid DL-free

unsafe state. Nevertheless, by now, no DL avoidance algorithm is available to deal with high

level DL. Hence, current DL avoidance algorithm is only applicable to FMSs with simple

resources sharing structure (without high level DL happening).

(3) Deadlock Detection and Recovery, which concentrates on the expedient resolution after DL

has been detected. Wysk [4, 33] introduced a string multiplication algorithm to detect DL for

buffer-less job shop systems. Generally, an additional buffer is required to re-allocate the

resources and resolve the detected DL. However, as introduced in Section 1, for some

specific systems (e.g., air plane head and turbine dynamo shaft), there is no space for

additional buffer, and resolving DL may bring great inconvenience.

It is well known that DL avoidance and detection in the context of finite-state system is a

polynomial problem. Actually, DL-free scheduling is a kind of DL prevention, which requires all

the customers to reach their end states without DL occurring. As the safety (or Reachability)

problem in FMSs is a non-polynomial problem [15, 27], finding a DL-free schedule for a FMS is

 13

extremely difficult. Hence, for medium- or large-scale buffer-less job shop FMSs, such a

scheduling problem has not been systematically solved in the previous research.

Additionally, inspired by DL-free scheduling algorithms utilized in computer operation

system, a Banker’s method [19] is used to allocate resources within different tasks without

meeting DL. Banker’s method may find DL-free schedule for large-scale buffer-less job shop

FMSs. However, Banker’s method is conservative and may reduce resources utility and

processing efficiency in FMSs, and the obtained DL-free schedule tends to be overly restricted

[19].

Despite of the methods mentioned above, Ramaswamy and Joshi [43] formulated the DL-free

scheduling as an integer programming problem and were able to find the optimal total flow time

of the DL-free schedule for small-size job shop systems. Specifically, based on the typical job

shop scheduling integer programming framework, they added a constraint ensuring that a job

leaves a resource only when it has found space on the next resource. It can be verified that their

integer programming model provides an optimal DL-free schedule for job shop system with no

buffer in terms of total/average flow time.

However, utilizing this integer programming method, only small size job shop scheduling

problem can be solved in acceptable time. The integer programming formulation is shown

below:

 14

In the Experiment section of this paper, we will show that, for job shop systems with 15 jobs or

more and 5 resources or more, a DL-free schedule cannot be obtained in 48 hours on 64-bit

operating system with 3.00GHZ CPU. Meanwhile, incorporating our high level DL detection

method into the DL-free scheduling algorithm, even large-size (e.g., 30 jobs and 10 resources)

job shop scheduling problem can be solved within seconds, and the obtained total flow time is

reasonably acceptable.

2.2 Policy Based Reinforcement Learning

Reinforcement learning is a real time machine learning derived from the conventional optimal

control technique known as dynamic programming. The environment is formulated as a discrete-

time, finite state, markov decision process. The goal of this process is to solve the learning

: ()

: ;

: sin ;

{0,1}:1

iK

ikj

ikj

prqsj

X Completion time of last operation of job i term K

X Completion time of job i operation k on machine j

T proces g time of job i operation k on machine j

Y if job p operation r

       

        

        

       ;

0 .

:

:

: {1, 2,3... }

: {1, 2,3... }

:

i

follows job q operation s on machine j

if otherwise

H big positive number

E small positive number

I Set of all jobs N

J Set of all machines M

Formulation

Min Z X

      

  
 
 

  
  

 
1

(1) (1); (1 ,)](1)

(1) ; (,)]

N

K
i

ikj ikj i k l i k l

prj qsj prqsj prj

X T X i I X is the completion time of job i operation k on machine l l J

X X H Y T j J p q I



                  

        



(1)

2)

; (,)] (3)

(1)

qsj prj prqsj qsj

p r l qsj prqsj

X X HY T j J p q I

X X H Y E



       

    

(1)

; (,) ,] (4)

; (,) ,]q s w prj prqsj

j J p q I l J

X X HY E j J p q I w J

     

         (5)

 15

problem by finding the best policy of action, regardless of the deeper structure of the experience

gathered during interacting with the environment. Zhang and Dietterich [44] were the first to

apply a reinforcement learning approach for a special scheduling problem. They developed a

repair-based scheduler that is trained using the temporal difference reinforcement learning

algorithm starting with a critical-path schedule, and incrementally repairs the violations of the

constraints. Mahadevan et al. [46] presented an average-reward reinforcement learning algorithm

for the optimization of transfer lines in manufacturing systems which incorporates a simplifying

specialization of a scheduling problem. They show that the adaptive resources are able to

effectively learn when they have to request maintenance, and that introducing a hierarchical

decomposition of the learning task is beneficial for obtaining superior results. Another repair-

based approach based on an intelligent computing algorithm is suggested by Zeng and Sycara

[47] who utilized case-based reasoning and a simplified reinforcement learning algorithm to

achieve adaptation in changing optimization criteria.

However, the reinforcement learning approach utilized in the job-shop scheduling algorithm

proposed in this paper,formulate the problem as a sequential decision problem and a Markov

decision process, which is different from the previous works mentioned above. Similar approach

has been utilized by Schneider et al. [48] in manufacturing scheduling problems. However, they

assume a single learning agent that fully observes the state.

 16

CHAPTER III. HIGH LEVEL DEADLOCK DETECTION

For job shop DMS, each product in the system must occupy one resource and each resource

can process only one product at a time. Generally, the concerned DMS is running under

conditions of: (i) mutation exclusion, (ii) no preemption and (iii) hold while wait. Since each

product has to follow its own routine path in DMS and M products keep M independent routes,

deadlocks may occur very often if we expect that resources are highly utilized. In this chapter we

will introduce 3 different deadlock detection methods.

3.1 Deadlock Detection based on Digraph Method

Comparing with different DMS models, we believe digraph model, especially the modified

transition digraph (MTG) introduced in this paper, is the most compact one to illustrate coupling

relationships of products’ routines. Our detection algorithm developed later in this section is

based on the up-to-date state of DMS and its modified transition graph correspondingly.

Generally, the immediately detected DL is defined as 1st level DL. As the implicit unsafe state

may appear several steps later, we define them as 2nd level, 3rd level and higher level

respectively.

It is well known that a static routine digraph (RG) that contains all processing paths in

sequential is difficult to be used for model analysis since there are too many connection edges

(for a job-shop system with M product and N resources, there is at most M×N edges) existing to

represent all the handling steps and most of them are not in use at the moment. While transition

digraph (TG) defined in [8,18] only gives the instant resource occupation and indicates the

possible moving tendencies of each product under current state, which may be not enough for the

analysis of potential deadlock. Therefore, in this paper, we define a specially “modified

 17

transition graph” which extends labeling some related edges to several future steps on ordinary

TG, so that one may take more efficient analysis since those steps that may cause system DL in

future are under consideration. A simple DMS (of 3 products and each has 4 routine steps within

5 resources) is given to show relation among RG, TG and MTG in Fig. 3.1

p1

p2

p3

w32

w12

p1

p2

p3

w32

w12

w13

w14

w22

w23
w24

w33

w34

p1

p2

p3

 (a) Routine Graph (b) Transition Graph (c) Modified Transition Graph

Fig. 3.1 RG, TG and MTG Model of a Simple DMS

As shown in Fig. 3.1(a), RG is too complicated and many edges within it are actually no use

for detecting DL and potential DL. On the opposite, according to the TG model in Fig. 3.1(b), a

potential deadlock will be omitted. MTG model in Fig. 3.1(c) removes futile future transitions

and keeps some of them for related key products to help detecting so-called deadlock-free unsafe

state that may possibly cause deadlock several steps later.

By using idea of MTG, DL-detection rule can be developed via the following steps:

(i) Choosing an unblocked transition (including a product entering into the system or a product

which is already in the DMS moving from one resource to another) and virtually firing this

transition, then a virtual system state is generated and the MTG correspondingly.

(ii) Analyzing the virtual MTG via several developed DL detection algorithm (introduced later

this section) to detect whether there is a DL or potential DL (with different level) existing,

(iii) Recover the system to the state before virtually firing with the result of deadlock detection.

We must mention that the result of DL detection is still problematic, since the DL detection

algorithms used in (ii) can only capture 1st, 2nd and 3rd level DL in the system. The transitions

 18

pass DL detection algorithms do not ensure the DMS is DL-free in future since potential DLs

higher than 3rd level may be caused by the supposed feasible transition and still keep “DL-free

unsafe states” of DMS in execution.

Nevertheless, by using 2nd and 3rd DL detections, the feasible state space of DMS can be

greatly reduced during searching. From all the “deadlock-free” transitions, we may spend less

backtracking computation efforts and have higher probability in finding an off-line DL-free

schedule in this reduced state space. For most small and middle scale system (in the range of

benchmark problems), the results obtained in our paper are quick, effective and applicable. We

will explain them in detail in section 6.

For the convenience of analysis, we define some symbols as follows:

HR(pj) the resource which product pj is holding

FRR(pj) the resource which product pj requests next step

SRR(pj) the resource which product pj requests two steps later

TRR(pj) the resource which product pj requests three steps later

3.1.1 First Level Deadlock

The definition of first level deadlock is given as follow:

Definition 1.1: PD is a set of products, if for any product piPD, FRR(pi) is hold by another

product pi’PD, and none of the proper subsets of PD possesses the same property, then we define

PD as first level deadlock.

p1

p5

p2

p4

p3

Fig. 3.2 ‘circular waiting’ structure of 1st level DL

 19

Actually, first level deadlock is a circular waiting cycle of products, and Fig. 3.2 gives a

simple five-product first level deadlock example. For 1st level deadlock detection, we need to

decide if such a loop structure existing at current state. Since first level deadlock detection

algorithm may find in many references [10, 26, 33], we just drop it from our paper.

Definition 1.2: For a set of products PC, if there exists an order for all the products in PC: p1,

p2… pn’ (n’ is the number of products in PC) that HR(pi+1) = FRR(pi) for any i[1, n’-1] and pn’

is not in its last processing step, then we define PC as potential deadlock chain (PDC). We

define p1 as the start product of PDC, and use pS to denote it; define pn’ as the end product of

PDC which is denoted by pE.

Following are some explanations about PDC which are useful for high level DL discussion later:

1. A PDC has its unique start and end product, and they can be the same product. Fig. 3.3(a)

shows the simplest instance of PDC, which has only one product.

2. For a PDC, FRR(pE) can be either idle or occupied. Based on (1) and (2), we can find all the

PDCs in products string shown in Fig. 3.3(b). Let’s taking pi (i = 1…n) as a start product,

every pi (i jn) can be the end product correspondingly. Thus, the total number of different

PDCs in Fig. 3.3(b) is 1
2 n(n+1).

3. Start product pS and end product pE are the most important product in a PDC, while other

products in PDC are usually ignored when analyzing deadlock patterns. So Fig. 3.3(c) is used

to denote a PDC in general and will be used to represent PDC in the following figures.

Fig. 3.3 instances of potential deadlock chain (PDC)

 20

3.1.2 Second Level Deadlock

Definition 1.3: PSD is a set of products without 1st level DL, if after moving any movable

product pPSD, there will be another set of products PDPSD, PD is first level deadlock and none

of the proper subsets of PSD possesses the same property, then we define PSD as second level

deadlock.

Fig. 3.4 instances of 2nd level DL

Based on a reduced example from [8] shown in Fig. 3.4(a), one may understand 2nd level DL

clearly. In Fig 3.4(a), there are 6 PDCs: {p1}, {p2}, {p3}, {p4}, {p2, p1}, {p4, p3}. We consider

PDC {p2, p1} and PDC {p4, p3}, the end of both PDCs request a common resource next step

(FRR(p1) = FRR(p3)) and request the start of the other PDC two steps later (SRR(p1) = HR(p4)

and SRR(p3) = HR(p2)), which makes the two PDCs C0 and C1 coupling in the common idle

resource. If replacing C0 and C1 with the simplest one-product PDC, we will obtain the simplest

2nd level deadlock as shown in Fig. 3.4 (b). Actually, the 2nd level DL instances in Fig. 3.4(a)

and (b) both belong to the pattern shown in Fig. 3.4(c), which represents the general pattern of

two-PDC 2nd level DL.

Intuitively, we can have more PDCs coupled in the common idle resources as shown in Fig.

3.5, which is the general pattern of 2nd level deadlock. In Fig. 3.5, we use CK (K = 0, 1…n) to

denote a PDC, pSK is the start product of CK, while pEK is the end product.

 21

Fig.3.5 general pattern of 2nd level deadlock

Proposition 1.4: Any second level deadlock is a structure of n (n  2) PDCs coupling in a

common idle resource, and for a structure of n (n2) PDCs coupling in a common idle resource,

it is a second level deadlock.

Here we define “couple” in detail. Assume these n PDCs are: C1, C2, …, Cn. Then “couple”

means FRR(pE1) = FRR(pE2) = ... = FRR(pEn) = RI (here RI is the common idle resource) and

HR(pS(i+1)) = SRR(pEi) for i[1, n-1] (HR(pS1) = SRR(pEn)). The proof of Proposition 1 is given

as follow:

Necessity:

Obviously, if n PDCs couple in one common idle resource, then only the end product of every

PDC can be moved. According to the definition of “couple”, moving pEi (i = 1, ... n) will

definitely cause deadlock immediately, and if any product in these n PDCs is removed, the left

products can not form a second level deadlock. Therefore, a structure of n (n2) PDCs coupling

in a common idle resource forms a second level deadlock and the necessity is proven.

Adequacy:

According to definition 3, if a set of products PSD is 2nd level deadlock, then a subset of PSD

will be 1st level deadlock after moving any movable product belonging to PSD. Assume pT is a

 22

movable product in PSD and PD, a sub subset of PSD, will become first level DL after moving pT,

then we can easily deduce that pTPD and PD* = PD - {pT} is a PDC. Here we define PD* as C1

and define FRR(pE1) as common idle resource RI (as the idle resource in the center of Fig. 3.5).

Since moving any product belonging to PSD will cause a first level DL, if we move pE1 to RI, it

will also cause a first level DL, which means that SRR(pE1) must be occupied by the start

product of another PDC which we name as C2 (SRR(pE1) = HR(pS2)), and FRR(pE2) = FRR(pE1)

= RI. Recursively, we will have PDCs C3, C4,…,Cn that HR(pS(i+1)) = SRR(pEi) for i[1, n-1] and

FRR(pE1) = FRR(pE2) = ... = FRR(pEn) = RI. Because products number and resource number in

the system are limited, there are only two possibilities for SRR(pEn):

1. SRR(pEn) = HR(pSi) (i[2, n-1]), then there exists a set of products PSD’ = Ci… Cn that

PSD’ PSD and moving any movable product belonging to PSD’ will cause first level deadlock,

which violates the definition of 2nd level deadlock. So if PSD is second level deadlock,

SRR(pEn) = HR(pSi) (i[2, n-1]) must be invalid.

2. SRR(pEn) = HR(pS1), then n PDCs couple in RI and the adequacy is proven.

Therefore, proposition 1 was proven and the structure shown in Fig. 3.5 is the general pattern

of second level deadlock.

In order to detect whether there is second level deadlock in the system, one by one, we assume

every product processing in the system to be the end product of a PDC, and check if there exists

a second level deadlock from that PDC. The detailed algorithm is given in appendix A.1.

3.1.3 Third Level Deadlock

Definition 1.4: PTD is a set of products without 1st and 2nd level DL. All the movable products

in PTD form a set of products PMPTD and PSM is a non-empty subset of PM. If moving any

 23

product in PSM will cause 2nd level DL in PTD and moving any product belonging to PM- PSM will

cause 1st level DL in PTD, then we define PTD as third level deadlock.

 For convenience of 2nd level DL analysis, we define potential deadlock chain. Thus, in order to

well introduce the structure of third level deadlock, we give the following definition:

Definition 1.5: For any second level deadlock PSD, PSD’ = PSD – {pi} and pi is any product

belonging to PSD, then we define PSD’ as potential second level deadlock (PSLD).

Same as PDC, we should also define the start and end product of PSLD. For the start product,

first we check whether there is a product pi’PSD’ that HR(pi’) = FRR(pi), if positive, we define

pi’ as the start product of PSLD, otherwise, we find a product pi’’PSD’ that HR(pi’’) = SRR(pi)

and define pi’’ as the start product of PSLD. For the end product, first we check whether there is a

product pj’PSD’ that HR(pi) = FRR(pj’), if positive, we define pj’ as the end product of PSLD,

otherwise, we find a product pj’’PSD’ that HR(pi) = SRR(pj’’) and FRR(pj’’) is not occupied by

any product in PSD’, then we define pi’’ as the end product of PSLD.

 Based on the definition of PSLD, we give two simple instances of 3rd level DL extended from

the 2nd level DL shown in Fig. 3.4(a) and (b). Removing product p4 from the 2nd level DL in

Fig. 3.4(a), we get a PSLD {p1, p2, p3}. p3 and p1 are the start and end product of PSLD

respectively. If we have another PDC couples with this PSLD in a common idle resource, we

will get a 3rd level DL as shown in Fig. 3.6(a). Similarly, if we remove the product p1 from the

2nd level DL in Fig. 3.4(b), we will get a PSLD {p0} and p0 is both the start and end product of

PSLD. If we have a simplest PDC couples with this PSLD in a common idle resource, we will

get the simplest 3rd level DL as shown in Fig. 3.6(b).

 24

Fig. 3.6 instances of 3rd level deadlock

In Fig. 3.6(a), PSLD {p1, p2, p3} couples with PDC {p4, p5} in resource RC (SRR(p1) =

FRR(p4) = RC, HR(p3) = SRR(p4) and HR(p5) = TRR(p1)). Moving p1 or p4 will cause 2nd level

DL and moving p3 will cause 1st level DL. In Fig. 3.6(b), PSLD {p0} couples with PDC {p1} in

resource RC (HR(p0) = TRR(p1), FRR(p0) = SRR(p1), SRR(p0) = FRR(p1) = RC and TRR(p0) =

HR(p1)). Moving either of two products will cause 2nd level DL.

There are two general patterns of third level deadlock. The first pattern is a PSLD and n (n1)

PDC(s) coupling in a common idle resource.

 First, we need to find out the general structure of PSLD, which can be obtained by removing a

single product from the general pattern of 2nd level DL shown in Fig.3.5. Since the structure in

Fig.3.5 consists of n PDCs and every PDC is symmetrical structurally, we can just remove a

product from PDC C0 and obtain the general pattern of PSLD, as shown in the left part of

Fig.3.7. Then coupling the PSLD and n (n1) PDC(s) we can get the first general pattern of 3rd

level DL, as shown in the right part of Fig.3.7.

 25

Fig.3.7 general pattern of PSLD and 3rd level DL

In the right part of Fig.3.7, the movable products are the end product of PDCs. Among these

movable products, except pE0 and pi-1, moving any other product will cause 2nd level DL.

The second pattern of 3rd level DL is caused by the special routine of products, as shown in

Fig.3.8. In Fig.3.8, the only movable product is pS0, and after moving pE0 we will get the general

pattern of 2nd level DL as shown in Fig.3.5.

 Fig.3.8 general pattern of 3rd level DL

In sum, the two patterns shown in Fig.3.7 and Fig.3.8 cover all the cases of 3rd level DL.

For the first pattern in Fig.3.7, similar to the detection of 2nd level DL, one by one, we assume

every product in the system as the end product of a PDC and check whether there is a third level

DL from that PDC. The detailed detection algorithm of this pattern is given in appendix A.3.

For the second pattern in Fig.3.8, since there is only one movable product, we can virtually

move every product in the system one by one and check whether there is a second level DL in

the generated virtual state. Since the detection algorithm of this pattern is almost the same as that

of 2nd level DL, we do not introduce the detailed algorithm again.

 26

3.2 Deadlock Detection based on Ranking Matrix

In this section, let us consider a job shop system consisting of N resources, denoted by the set

}} ..., ,2 ,1{ ,{ MJjrR j  , on which M jobs, denoted by the set }} ..., ,2 ,1{ ,{ NIipP i  , are

processed as they advance through the system. Furthermore, each job holds a resource in an

exclusive mode, and follows a predefined working procedure. Through this paper, NMijsS ][is

utilized to characterize the system state at any time point, where ijs represents the number of

steps before job ip being processed on resource ir . Here 0ijs implies that job ip has yet been

processed on resource ir ; 0ijs implies that job ip is holding resource ir ; 0ijs implies that job

ip has already been processed on resource ir . Under a state][ijsS  , if job kp is moved from the

current resource to the next resource, the following state matrix can be derived by][ijsS  where

ijij ss  if ki  and 1 ijij ss if ki  . Hence, for the previous example, if we move job 1p from

resource 2r to 4r , the system state 1S becomes system state 2S



















 
















 

1234

2110

0112

1234

2110

1203

2
 :

1
421 SS rrp

3.2.1 First Level Deadlock

Suppose NMijsS ][represents the system state matrix with } ..., ,2 ,1{ MIi  and

} ..., ,2 ,1{ NJj  representing the job and resource index, respectively.

Definition 2.1 If there exists such a set of jobs } ..., ,1 ,{ Ai MiaA  in the system that,

(1) for 1i , there does not exist such Ib and Jx that 0xai
s and 1bxs .

 27

(2) for AMi 1 , there exists such Jy that 0yai
s and 1

1


 yai
s .

(3) for AMi  , there exists such Jz that 1zjk
s and 




Ih
hzs 0 .

then we define 1a as the tail job of Aai  , denoted by 1)(aaTJ i  ,
AMa

as the head job of Aai  ,

denoted by
AMi aaHJ )(, and resource z as the head resource of Aai  , denoted by zaHR i )(.

This definition characterizes a set of sequential jobs in which, except the tail and head jobs,

every job is holding the resource requested by its predecessor while requesting the resource held

by its successor. Moreover, no job in the system is requesting the resource held by the tail job,

nor holding the resource requested by the head job. Figure 1 shows an example, in which each

rectangle represents a resource, indexed by the symbol on the right top corner. The symbol in the

center of the resource represents the job that is holding the resource with blank indicating an

available resource. The arrow represents the transition of a job, characterized by the text above it.

In the text, the symbol before the colon represents the job; the symbol after the colon but before

the arrow represents the original resource; the symbol after the arrow represents the destination

resource. These drawing criteria will be utilized throughout the rest of the paper without further

clarification. In Figure 3.9, job 1, job 3, and resource 4 are the tail job, head job, and head

resource for all the jobs, respectively, i.e., 1)3()2()1( TJTJTJ , 3)3()2()1( HJHJHJ , and

4)3()2()1( HRHRHR .

Figure 3.9. Tail Job, Head Job, and Head Resource

 28

Furthermore, we define 0)(iTJ , 0)(iHJ , and 0)(iHR if the tail job, head job, and head

resource do not exist for job i ; define )(iHR if job i is leaving the system immediately as the

system output can be considered as a fictitious resource r with unlimited capacity [2].

Definition 2.2 The first level DL is a set of jobs in which every job is requesting a resource being

held by another job in the set.

The first level DL defined here is the deadlock defined in other articles [1], which implies an

infinite waiting loop in the system. By Definition 1, we propose the following sufficient and

necessary condition of the first level DL in Proposition 1.

Proposition 1 The sufficient and necessary condition of the existence of the first level DL is that

there exists such Ia that 0)(aHJ (or 0)(aTJ or 0)(aHR).

This proposition entails the existence of circular waiting jobs.

 29

3.2.2 Second Level Deadlock

Definition 2.3 The second level DL is a set of jobs in which

(a) moving any movable job will lead to a first level DL involving that job and other jobs

from the same set.

(b) there does not exist a proper subset of jobs which satisfy condition (a) and (b).

Second level DL has been addressed in the previous articles. Figure 2 shows an example

second level DL. Here, for the sake of readability, we utilize dash line to represent the future

transition while the solid is still representing the immediate transition of a job. In Figure 2, job 1

is not movable; moving job 2 will lead to a first level DL {2,3}; moving job 3 will lead to a first

level DL {1,2,3}. To generalize the structure in Figure 3.10, we propose the following sufficient

and necessary condition of second level DL in Proposition 2.

Figure 3.10 Second Level Deadlock with 4 Resources and 3 Jobs

& Second Level Deadlock Detection

 30

Proposition 2 The sufficient and necessary condition of the existence of second level DL is that

there exists such IIS  that

(a) there exists such Jk that, for SIa , kaHR )(.

(b) for SIb where bbHJ )(, there exist such SIc and J that 2bs , 0cs , and

bcHJ )(.

In Proposition 2, condition (a) implies that all the jobs in the set share the same head resource

k whereas condition (b) implies that, for any head job b in the set, it cannot leave the system in

two steps, and the resource it requests in two steps is being held by another job in the set, whose

head job is not job b. We now apply Proposition 2 to the previous example in Figure 2. The state

matrix of the system in Figure 2 is

 31


















012

210

10

X

X

XX

S

Here X represents the information which is irrelevant to the detection of the second level DL

under the current system state. Obviously, 3)3()2()1( HRHRHR (condition (a) in Proposition 1 is

satisfied); 2)2(HJ , 224 s , 034 s , and 23)3(HJ ; 23)3(HJ , 231 s , 011 s , and 32)1(HJ

(condition (b) in Proposition 1 is satisfied). Therefore, there is a second level DL in current

system state.

3.2.3 Third Level Deadlock

Definition 2.4 The third level DL is a set of jobs in which

(a) moving any movable job will lead to either a first level DL involving that job and other

jobs from the same set, or a second level DL involving that job and other jobs from the

same set.

(b) there does not exist a proper subset of jobs which satisfy condition (a) and (b).

Figure 3 shows an example third level DL. In Figure 3, job 1 is not movable; moving job 2

leads to a second level DL {2,3,4}; moving job 3 leads to a second level DL {1,2,3,4}; moving

job 4 leads to a first level DL {1,2,4}. To generalize the structure in Figure 3.11, we have the

following sufficient and necessary condition of the third level DL in Proposition 3.

Figure 3.11. Third Level Deadlock with 6 Resources and 4 Jobs & Third Level DL detection

 32

Proposition 3 The sufficient and necessary condition of the existence of the third level DL is that

there exists such IIT  that

(a) there exist such Jyx , that

(i) for TIa , 0])([])([ yaHRxaHR

(ii) 0])([])([ 
 TT IaIa

yaHRxaHR .

(b) for TIb where bbHJ )(

(i) there must exist Jk where 2bks ;

(ii) if there exists TIc where 0cks , then bcHJ )(; otherwise, 0))(( ykxk , and there

must exist TId and J where 3bs , 0ds , and)()(bHRdHR  .

In Proposition 3, condition (a) implies that there are two head resources (available resources)

in the third level DL whereas condition (b) implies that, (i) for any head job b in the set, it cannot

leave the system in two steps; (ii) if the resource job b requests in two steps is being held by

 33

another job c in the set, the head job of job c cannot be job b; (iii) if the resource job b requests in

two steps is not being held by another job in the set, then job b cannot leave the system in three

steps, the resource job b requests in two steps must be one of the head resources, and the

resource job b requests in three steps is being held by another job d in the set, whose head

resource cannot be job b's head resource. We now apply Proposition 3 to the previous example in

Figure 3. The state matrix of the system in Figure 3 is





















012

201

3210

10

XXX

XXX

XX

XXXX

S

1. Condition (a).(i) & (ii) in Proposition 3 are satisfied as 3)4()2()1( HRHRHR and

4)5()3(HRHR .

2. Condition (b).(i) in Proposition 3 is satisfied as 2)2(HJ , 3)3(HJ , 4)4(HJ , and

2413624  sss .

3. Condition (b).(ii) in Proposition 3 is satisfied as

 Resource 4, which is requested by job 2 in two steps, is available; Also, 325 s , 035 s ,

and 4)3(3)2( HRHR .

 236 s , 046 s , and 4)4(3)3( HJHJ .

 241 s , 011 s , and 2)1(4)4( HJHJ .

Therefore, there is a third level DL in the current system state.

Thus far, we have defined the first, second, and third level DL as well as the corresponding

sufficient and necessary conditions. By checking these conditions, we are able to detect whether,

under a certain system state, there exists an immediate DL or a DL-free unsafe state [1] (i.e., DL

 34

is not avoidable in the future. In the following section, we will apply these DL detection methods

to the job shop scheduling problems, and propose a DL-free scheduling algorithm.

CHAPTER IV. POLICY BASED REINFORCEMENT LEARNING ALGORITHM

Since the detection strategy for DL higher than third-level has not been found until now, our

DL-free scheduling algorithm is applied off-line before the production batch entering the shop-

floor.

For a job-shop system, an efficient DL-free schedule satisfies: (i) jobs are processed based on

the predefined routines; (ii) system evolves as jobs advance through the resources without DL

occurring, and (iii) resource utilization is maintained in a reasonable level, or in other words,

DL-free schedule performance such as makespan is acceptable under the demand constraints.

Furthermore, computation time consumed to generate the DL-free schedule should be within an

acceptable range so that this algorithm is applicable for real-time implementation.

In this section, suppose that the job-shop system discussed (i) is buffer-less, (ii) consists of M

jobs and N resources (every job has N process steps), and (iii) the current system state can be

observed. Furthermore, suppose S0 and SE represent the initial state (i.e., before each job entering

the system) and the final state (i.e., all jobs finished their process), respectively. Hence, there are

M×N (number of jobs × number of process steps) process steps or M×N different system states

between S0 and SE. Therefore, finding a DL-free schedule is actually finding a multi DL-free

system states transition route from S0 to SE.

Normally, task of reinforcement learning algorithm is to maximize the long-term reward. The

Policy search based RL scheduling algorithm introduced in this section aims to find the schedule

for buffer-less job-shop system with an optimal or sub-optimal makespan (minimum makespan)

 35

effectively. The key point of policy search based multi-state reinforcement learning is to have

independent searching action at each state to improve their local policies subject to a common

goal. Considering an M×N JSP problem as a stochastic problem with M×N states, we choose

every operating action through policy search, and action with the best policy performance will be

selected. Policy search algorithm searches directly in the space of job shop scheduling

dispatching rules without learning value functions, which can be highly effective. Intuitively, at

any time point, the higher degree of concurrency, the less makespan the DL-free schedule will be

subect to. Motivated by this intuition, we utilize policy based reinforcement learning approach as

illustrated below.

Definition 3.1 Given SSi  be the current state of operation i, where)}()...(),({ 21 ii AAAs  , { iA }

corresponds to the set of actions current state can execute, i corresponding policies of each

feasible action. For each action iA at current state, we have a corresponding local action reward

parameter)(iR  . Where
MAX

n

ki
ki

C

MJ

R





 1,

)(

)(

maxC is the corresponding makespan of selecting action,)(
1,

k

i

ki
i MJ 


is the count summary of jobs

and machines been involved during this makespan.

Here)(P represents the performance of policy , and)(R represents the local action reward

parameter.

Definition 3.2 Given a distribution over a set SS 0 of starting states, for policy  , which need

to be chosen from the spaces of policies at each state until reaching a final state, the

performance)(P of π, is defined as the expected value of local action reward parameter)(R .





n

in

n

i

i R
n

iRESsREP
11

000)(
1

lim]|))(([],|[)(

 36

In JSP problems, the discount factor  can be safely set to 1 because the existence of a

termination state SE is assumed. Once the final state is reached, the process stops and receives no

further rewards. The essential idea of the policy search-based reinforcement learning is to

directly adapt the most promising policy to be learned with respect to its performance, Definition

6 provides a straightforward implementation of a procedure that is tailored for policy search

reinforcement learning and that enables a single agent interact with the environment and improve

its policy independently.

As discussed before, we consider teams of cooperative actions that all seek to optimize a

global reward and we assume that the corresponding multi-action stochastic system can be

modeled using our reinforcement learning approach with searching action sets. Therefore, there

exists at least one sequence of actions that maximizes the expected reward)(P for all actions, or

we can say, minimizes the makespan for JSSP.

There are two strategies when selecting the transition:

(1) DL DETECTION

According to Proposition 1, 2, and 3, by checking the system state matrix, we are able to

tell whether an operation/state change will result in first, second, or third level DL.

Therefore, a set of DL-free operations can be generated out of the DL detection process.

(2) POLICY BASED REINFORCEMENT LEARNING ALGORITHM

After the DL detection process, a policy based RL algorithm will be applied against the

DL-free operations so as to select the operation with the highest priority to move. After

moving the highest priority operations to its next resource, the system advances to the next

state, and hence, the system state matrix will be updated.

 37

Figure 4. Flow Chart of DL-free Scheduling Algorithm

However, since our DL detection algorithms are not applicable to DL higher than third level, it

is possible that, under some system states, no feasible transition is detected to be DL-free. This is

because a DL higher than third level has already occurred in the previous system state without

being detected. Under this circumstance, we have to “backtrack” the system and choose another

DL-free transition with a relatively lower priority. Here by “backtrack”, we mean recovering the

system to the state one-step before. Therefore, the system will reach the final state SE in the end

and a DL-free schedule will be obtained. The flow chart of DL-free scheduling algorithm is

given in Figure 4. The details of the algorithm are given in Appendix A2.

 38

CHAPTER V. EXPERIMENTS

In this section, we apply the DL-free scheduling algorithm to the job-shop benchmark

problems. These problems are widely-used as reference for researchers to check the performance

of their scheduling methods in terms of makespan, flow time, and/or computation time. For

detailed description of these benchmark problems, please refer to [20].

There are 40 benchmark problems of 8 different scales (5 problems for each scale). Data of

each problem includes scale (number of jobs and resources), process route of each operation

action, and process time for each step. These problems are designed with complicated resource

crosscutting structure to increase the scheduling difficulty. Hence, if these systems are assumed

to be buffer-less, the scheduling problem will become even more difficult.

We first study the performances of our DL-free scheduling algorithm in terms of makespan

and backtrack number. Subsequently, we compare the computational time between scheduling

algorithm with and without DL detection. The experimental results of 40 benchmark FMSs

scheduling using our DL-free scheduling algorithm are given in Table 1.

 39

Table 1. Results of 40 benchmark job shop instances

Problem (size)
2LD 3LD

Makespan
Optimal

Makespan Time Backtrack Time Backtrack

FT06 <1 sec. 0 <1 sec. 0 512 512

LA01 (10x5) <1 sec. 0 <1 sec. 0 1096 1073

LA02 (10x5) <1 sec. 0 <1 sec. 0 1025 1025

LA03 (10x5) <1 sec. 0 <1 sec. 0 857 817

LA04 (10x5) <1 sec. 0 <1 sec. 0 933 827

LA05 (10x5) <1 sec. 0 <1 sec. 0 879 879

LA06 (15x5) <1 sec. 0 <1 sec. 7 1390 N/A in 48 hours

LA07 (15x5) <1 sec. 0 <1 sec. 13 1337 N/A in 48 hours

LA08 (15x5) <1 sec. 0 <1 sec. 19 1314 N/A in 48 hours

LA09 (15x5) <1 sec. 0 <1 sec. 0 1609 N/A in 48 hours

LA10 (15x5) <1 sec. 0 <1 sec. 8 1525 N/A in 48 hours

LA11(20x5) <1 sec. 0 <1 sec. 3 1873 N/A in 48 hours

LA12 (20x5) <1 sec. 0 <1 sec. 17 1726 N/A in 48 hours

LA13 (20x5) <1 sec. 0 <1 sec. 14 1895 N/A in 48 hours

LA14 (20x5) <1 sec. 0 <1 sec. 0 1901 N/A in 48 hours

LA15 (20x5) <1 sec. 0 <1 sec. 0 2015 N/A in 48 hours

LA16 (10x10) <1 sec. 1 <1 sec. 16 1498 N/A in 48 hours

LA17 (10x10) <1 sec. 0 <1 sec. 113 1187 N/A in 48 hours

LA18 (10x10) <1 sec. 0 <1 sec. 12 1478 N/A in 48 hours

LA19 (10x10) <1 sec. 6 <1 sec. 31 1412 N/A in 48 hours

LA20 (10x10) <1 sec. 0 <1 sec. 0 1514 N/A in 48 hours

LA21 (15x10) <1 sec. 21 <1 sec. 409 2051 N/A in 48 hours

LA22 (15x10) <1 sec. 29 3 sec. 12053 1811 N/A in 48 hours

LA23 (15x10) <1 sec. 143 <1 sec. 1339 2032 N/A in 48 hours

LA24 (15x10) <1 sec. 22 <1 sec. 888 1934 N/A in 48 hours

LA25 (15x10) <1 sec. 108 <1 sec. 12430 1983 N/A in 48 hours

LA26 (20x10) <1 sec. 38 45 sec. 624349 2666 N/A in 48 hours

LA27 (20x10) <1 sec. 36 <1 sec. 221 2730 N/A in 48 hours

LA28 (20x10) <1 sec. 6 <1 sec. 799 2600 N/A in 48 hours

 40

LA29 (20x10) <1 sec. 196 <1 sec. 8683 2621 N/A in 48 hours

LA30 (20x10) <1 sec. 23 <1 sec. 591 2774 N/A in 48 hours

LA31 (30x10) <1 sec. 33 <1 sec. 3174 3701 N/A in 48 hours

LA32 (30x10) <1 sec. 73 47 sec. 295725 3997 N/A in 48 hours

LA33 (30x10) <1 sec. 71 4 sec. 46982 3791 N/A in 48 hours

LA34 (30x10) <1 sec. 94 4 sec. 26426 3929 N/A in 48 hours

LA35 (30x10) <1 sec. 68 <1 sec. 9705 4076 N/A in 48 hours

LA36 (15x15)
<1

sec..
69 Not available in 3 hrs 2543 N/A in 48 hours

LA37 (15x15) <1 sec. 239 <1 sec 1765 2800 N/A in 48 hours

LA38 (15x15) <1 sec. 339 8 min. 2301 N/A in 48 hours

LA39 (15x15) <1 sec. 35 <1 sec. 1922 2386 N/A in 48 hours

LA40 (15x15) <1 sec. 415 15 min. 8518357 2578 N/A in 48 hours

From the results shown in Table 1, we have the following explanations and conclusions:

(1) All benchmark problems can be solved via using our DL-free scheduling algorithm within

reasonably acceptable time. For small- and middle-size problems, the search time is less than

1 second.

(2) The obtained makespans are for small-size job shop problems are very close to the optimal

value. We notice that, for some problems such as FT06, LA02, and LA05, the obtained

makespans are actually optimal. These results imply that the policy based reinforcement

learning approach is extremely efficient in terms of reducing makespan. We also notice that,

due to the complexity of these problems. The optimal values cannot be found in 48 hours,

while our algorithm is able to find the DL-free schedule with sub-optimal makespan within 1

second for all the presented job shop problems.

(3) The total flow time of the obtained DL-free schedules is fairly close to the optimal value for

small-size job shop problems. As for the middle- and large-size job shop problems, the

 41

optimal flow time cannot be found in 48 hours. Therefore, the results presented in this paper

provide the upper bounds of the total flow time of the DL-free schedules for those job shop

problems, which can be utilized as references for future research.

(4) Backtracks number increases as the system becomes larger. For small-scale systems, such as

LA01~LA15, backtracks for most problems are 0 (except LA12 and LA13). This is because,

for systems with 5 resources, each operation action has only 5 processing steps. Hence, it is

rare to generate a system state with DL higher than third level (recall that DL lower than

forth level can be detected) during the manufacturing process, even in the well-designed

benchmark problems. For large-scale FMSs, more work-pieces/jobs and longer processing

routes may cause the occurrence of DL higher than third level, which results in Backtrack.

However, the number of backtrack used is kept in a relatively low level for all benchmark

problems.

Therefore, one may expect our DL-free scheduling algorithm to be applied to other problems

with similar scale and structure features. Moreover, although this is an off-line scheduling

algorithm, the negligible computation time makes it an eligible tool for quick response to the

disturbances in systems, such as adding new JOBs, removing JOBs being processed, change of

priorities, and machine breakdown. Once a disturbance event happens, our scheduling algorithm

can re-schedule and generate a new DL-free schedule within 1 second, which is indistinguishable

to the on-line scheduling.

According to DL-free schedules obtained, one may picture the Gantt chart of production

process. To increase the intuitiveness of job shop scheduling, as an example, Figure 5 and 6 give

the Gantt chart of LA08 (scale of 15×5) and LA16 (scale of 10×10), which can be used as

references for real shop implementation. In Figure 5 and 6, each row represents the loading

 42

process of a machine; each block represents a single process on a machine; block width

represents the process time; the number at top left corner of each block represents the operation

action label; the number at top left corner of the whole figure is the makespan. Reader may check

the process and prove the schedule is DL free.

Figure 5. DL-free Schedule of LA08 (15 jobs on 5 machines) with makespan = 1314

Figure 6. DL-free Schedule of LA16 (10 jobs on 10 machines) with makespan = 1543

 43

CHAPTER VI. CONCLUSION AND FUTURE RESEARCH

In this paper, based on transition graph model, we analyzed the general pattern of high level

DL in the context of discrete manufacturing systems, and propose the corresponding detection

algorithms. With the help of these DL detection algorithms, we were able to develop a DL-free

scheduling algorithm for buffer-less job shop FMSs (e.g., production plants for air-plane head or

turbine dynamo shaft). Applying our DL-free scheduling algorithm to 40 widely-used benchmark

problems, DL-free schedules for all the benchmark FMSs can be obtained within 1 second, with

acceptable makespans. To the best of our knowledge, for FMSs with considerable scale, under

the restriction of NO-buffer, those solutions have never been published in the extant literature.

Hence, it is safe to conclude that our DL-free scheduling algorithm is applicable to the real

implementations of job-shop FMSs. Furthermore, the basic idea of our high level DL detection

algorithm can also be extended to other man-made “resource intensive and highly sharing”

systems (e.g., computer operation systems, communication systems, and traffic systems), which

could be one direction of the future works.

 44

Appendix

Representation Scheme:

M number of Jobs in the system

N number of resources in the system

S number of system state in a search

unblk[S] Set of unblocked (movable) job(s) at step S

DLfr[S] Set of DL-free job(s) at step S

HR(pj) the resource which job pj is holding

FRR(pj) the resource which job pj requests next step

SRR(pj) the resource which job pj requests two steps later

TRR(pj) the resource which job pj requests three steps later

SE final state of the system

A.1 Deadlock-free Scheduling Algorithm

The details of our deadlock free scheduling algorithm are given as follows, and readers may

refer to the flow chart of the schedule algorithm shown in Fig.3.1:

Step 1: System initialization. Set search index SI = 0

Step 2: Search initialization. Set step number S = 0, backtrack number B = 0

Step 3: From the unblocked products set of current step P_unblk[S], using DL detection

algorithm, we exclude the product(s) which will cause deadlock or DL free unsafe state, and put

the left products(s) into DL free products set of current step P_DLfr[S]. If P_DLfr[S] Ø, go to

step 5. Otherwise, set B = B + 1 and check whether B reaches UBB. If B = UBB, go to step 5; if

B<UBB, recover the system to step S-1 and set S = S – 1, then try Step 3 again.

 45

Step 4: Use HNGP to select one product p from P_DLfr[S], set P_unblk[S] = P_unblk[S] – {p}.

Move product p, set S = S + 1 and update the state of system. If S = SE, end algorithm and store

the obtained schedule.

Step 5: Set SI = SI + 1, if SI reaches the product number M, end the program. Otherwise, go

back to step 2 and start another search.

A.2 Second Level Deadlock Detection Algorithm

Assume that the set of products processing in the system is P= {pj | j = 1, …, M} and set j=1 at

the beginning of the algorithm. Now we describe the 2nd level deadlock detection algorithm as

follows:

If j>M, there is no 2nd level DL and we end the algorithm. If pj doesn’t have two more steps to

process in future or SRR(pj) is idle, set j = j+1 and repeat (1); otherwise, we use pT to denote

the product that occupies SRR(pj) and set FRR(pj) as central resource RC, then go to (2)

If FRR(pT) = RC, then go to (3); otherwise go to (4)

If SRR(pT) = HR(pj), then the system is under 2nd level deadlock status and we end the

algorithm; if SRR(pT) is idle or the product processing in SRR(pT) has already been searched

(that is have already been denoted by pT), then we set j=j+1 and go back to (1); else we use pT

to denote the product processing in SRR(pT) and go back to (2)

(4) If FRR(pT)= HR(pj) and the algorithm has at least been to step(3) once, then the system is

under 2nd level deadlock status and end the algorithm; if FRR(pT) is idle or the product

processing in FRR(pT) has already been searched, then we set j=j+1 and go back to (1); else we

use pT to denote the product processing in FRR(pT) and go back to (2)

 46

The algorithm is in polynomial computation, since only M products in system and utmost N-1

steps may be tried to find the conclusion (usually M is bigger than N), the computation

complexity is O(1)->O(N2 - 2N + 1).

A.3 Third level Deadlock Detection Algorithm

Assume the set of products processing in the system is P= {pj | j = 1, …, M}, where N<M, N is

the number of machine resource in system. Set j=1 at the beginning of the algorithm. Now we

describe the algorithm to detect the first pattern of 3rd level deadlock shown in Fig.3.7 as

follows:

If j>M, the system is not under third level deadlock and end the algorithm, then let j=j+1 and

repeat (1). If pj does not have three more steps to process in the future or TRR(pj) is idle, then let

j=j+1 and go to (1), else use p to denote the product that occupies TRR(pj) and set FRR(pj) and

SRR(pj) as FCR and SCR respectively, then go to (2)

If FRR(pT)=SCR, then go to (3); otherwise, go to (6)

If SRR(pT)=FCR, then go to (4); otherwise, go to (5)

If TRR(pT)= HR(pj), then system is under 3rd level deadlock and terminate the algorithm; if

TRR(pT) is idle or the product processing in TRR(pT) has already been searched, then set j=j+1

and go to (1); otherwise, set pT to be the product processing in TRR(pT) and go to (7)

If SRR(pT) is idle or the product processing in SRR(pT) has already been searched, then let

j=j+1 and go to (1); otherwise, set pT to be the product processing in SRR(pT) and go to (2)

If FRR(pT) is idle or the product processing in FRR(pT) has already been searched, or

FRR(pT)= HR(pj), then let j=j+1 and go back to (1), otherwise, set pT to be the product

processing in FRR(pT) and go to (2)

If FRR(pT)=FCR, then go to (8); otherwise, go to (10)

 47

If SRR(pT)= HR(pj), then the system is under 3rd level DL and end the algorithm; if SRR(pT) =

SCR, then go to (9); otherwise, set pT to be the product processing in SRR(pT) and go to (7)

If TRR(pT) is idle or the product processing in TRR(pT) has already been searched, then let

j=j+1 and go to (1); otherwise, set pT to be the product processing TRR(pT) and go back to (7)

If FRR(pT)= HR(pj), then the system is under 3rd level deadlock and end the algorithm; if

FRR(pT) is idle or the product processing in FRR(pT) has already been searched, then let j=j+1

and go back to (1); otherwise, set pT to be the product processing in FRR(pT) and go to (7)

The algorithm is in polynomial computation, since only M products in system and utmost N-1

steps may be tried to find the conclusion (usually M is bigger than N), the computation

complexity is O(1)->O((N-1)(N-2)(N-3)).

 48

References
[1] Abdallah, I. B., Elmaraghy, H. A., Elmekkawy, T. (2002). Deadlock free scheduling in

flexible manufacturing systems using Petri Net, Int. J. of Prod. Res., 40, 2733-2756.
[2] Abdallah, I. B., Elmaraghy, A. (1998). Deadlock prevention and avoidance in FMS: A Petri

net based approach, Int. J. Adv. Manuf. Tech., 14(10), 704–715.
[3] Cassandras, C. G., Lafortune, S. (1999). Introduction to Discrete Event Systems. Boston,

MA.
[4] Cho, H., Kumaran, T. K., Wysk, R. A. (1995). Graph-Theoretic deadlock detection and

resolution for flexible manufacturing systems. IEEE Trans. Robotics Automat., 11, 413–421.
[5] Chu, F., Xie, X. (1997). Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Trans. Robot. Automat., 13, 793–804.
[6] Coffman, E. G., Elphick, M. J., Shoshani, A. (1971). System deadlocks. ACM Comput. Surv.,

3, 67–78.
[7] Ezpeleta, J., Colom, J. M., Martinez, J. (1995). A Petri net based deadlock prevention policy

for flexible manufacturing system. IEEE Trans. Robotics Automat., 11, 173–184.
[8] Fanti, M. P., Maione, B. , Mascolo, S. , Turchiano, B. (1997a). Event-based feedback control

for deadlock avoidance in flexible production systems. IEEE Trans. on Robotics and
Automat., 13(3), 347-363.

[9] Fanti, M. P., Maione, B., Mascolo, S., Turchiano, B. (1996). Performance of deadlock
avoidance algorithms in flexible manufacturing systems. J. Manufact. Syst., 15(3), 164–178.

[10] Fanti, M. P., Maione, B., Mascolo, S., Turchiano, B. (1997b). Low-Cost deadlock
avoidance policies for flexible production systems. Int. J. Model. Simulation, 17(4), 310–316.

[11] Fanti, M. P., Zhou, M. C. (2004). Deadlock control methods in automated manufacturing
systems. IEEE Trans. on Systems, Man and Cybernetics, A, 34(1), 5-22.

[12] Gebraeel, N. Z., Lawley, M. A. (2001). Deadlock detection, prevention and avoidance
for automated tool shared systems, IEEE Trans. on Robotics and Automation, 17, 342-356.

[13] Gen, M., Cheng, R. (2000). Genetic Algorithms and Engineering Optimization, John
Wiley & Sons.

[14] Ghaffari, A., Nidhal, N., Xie, X. L. (2003). Design of live and maximally permissive
Petri net controller using the theory of regions, IEEE Trans, on Robotics and Automation, 19,
137-142.

[15] Gold, E. M. (1978). Deadlock prediction: easy and difficult cases, SIAM J. Com., 7, 320-
336.

[16] Hsieh, F., Chang, S. (1994). Dispatching-driven deadlock avoidance controller synthesis
for flexible manufacturing systems. IEEE Trans, on Robotics and Automation, 10, 196–209.

[17] Kolonko, M. (1999). Some new results on simulated annealing applied to the job shop
scheduling problem. European Journal of Operation Research, 113, 123-136.

[18] Kumaran, T. K., Chang, W., Cho, H., Wysk, R. A. (1994). A structured approach to
deadlock detection, avoidance and resolution in flexible manufacturing systems. Int. J. Prod.
Res., 32(10), 2361–2379.

 49

[19] Lawley, M. A., Reveliotis, S. A., Ferreira, P. (1998). The application and evaluation of
Banker’s algorithm for deadlock freebuffer space allocation in flexible manufacturing
systems. International Jr. of Flexible Manufacturing Systems, 10, 73-100.

[20] Lawrance, S. (1984). Resource constrained project scheduling: an experiment
investigation of heuristic scheduling techniques, Dissertation, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1984.

[21] Lee, D., DiCesare, E. (1994). Scheduling FMS using Petri net and heuristic search. IEEE
Trans. on Robotics and Automation, 10(2), 123-132.

[22] Li, Z., Zhou, M. C. (2004). Elementary siphons of Petri nets and their application to
deadlock prevention in flexible manufacturing systems, IEEE Trans. on System, Man and
Cybernetics, A, 34(1), 38-51.

[23] Mattfeld, D. (1995). Evolutionary search and the job shop: investigation on genetic
algorithms for production scheduling, Springer.

[24] Park, J., Reveliotis, S. A. (2000). Algebraic synthesis of efficient dead lock avoidance
policy for flexible manufacturing systems. IEEE Trans. on Robotics and Automation, 16,
190–195.

[25] Ramaswamy, S., Joshi, S. (1996). Deadlock free scheduling for automated
manufacturing workstation. IEEE Trans, on Robotics and Automation, 12(3), 391-400.

[26] Ramirez, S. A., Benhabib, B. (2000). Supervisory control of multiworkcell
manufacturing systems with shared resources. IEEE Trans. Syst., Man, Cybern. part B, 30,
668–683.

[27] Reingold, E. M., Nievergelt, J., Deo, N. (1997). Combinatorial Algorithms: Theory and
Practice. Englewood Cliffs, Prentice-Hall, NJ.

[28] Reveliotis S. A., Ferreira, P. M. (1996). Deadlock avoidance policies for automated
manufacturing cells. IEEE Transactions on Robotics and Automation, 12(6), 845-857.

[29] Reveliotis, S. A., Lawely, M. A., Ferreira, P. M. (1997). Polynomial-complexity
deadlock avoidance policies for sequential resource allocation systems. IEEE Trans.
Automat. Contr., 42, 1344–1357.

[30] Shi, X. Q., Wu, Z. M. (2005). Deadlock free scheduling method for FMSs using beam
search. IEEE Inter. Conf. on System, Man and Cybernetics, 2, 1188-1193.

[31] Taubin, A., Kondratyev, A., Kinshinevsky, M. (1998). Deadlock prevention using Petri
nets and their unfoldings. Int. J. Manufact. Technol., 14, 750–759.

[32] Viswanadham, N., Narahari, Y., Johnson, T. L. (1990). Deadlock prevention and
deadlock avoidance in flexible manufacturing system using Petri net models. IEEE Trans. on
Robotics and Automation, 6(6), 713-723.

[33] Wu, N. Q. (1999). Necessary and sufficient conditions for deadlock-free operation in
flexible manufacturing systems using a colored Petri net model. IEEE Trans. Syst., Man,
Cyber. C, 29, 192–204.

[34] Wu, N. Q., Zhou, M. C. (2001). Avoiding deadlock and reducing starvation and blocking
in automated manufacturing systems. IEEE Trans. on Robotics and Automation, 17, 657-668.

 50

[35] Wysk, R. A., Yang, N. S., Joshi, S. (1991). Detection of deadlocks in flexible
manufacturing cells. IEEE Transactions on Robotics and Automation, 7(6), 853-859.

[36] Wysk, R. A., Yang, N. S., Joshi, S. (1994). Resolution of deadlocks in flexible
manufacturing systems: Avoidance and recovery approaches. J. Manufact. Syst., 13(2), 128–
138.

[37] Xia, W. J., Wu, Z. M. (2006). A hybrid particle swarm optimization approach for the
job-shop scheduling problem. Inter. Jr. Advanced Manufacturing Technology, 29, 360-366.

[38] Xie, X., Jeng, M. (1999). ERCN-merged nets and their analysis using siphons, IEEE
Trans. on Robotics and Automation, 15(4), 692-703.

[39] Xiong, Zhou, M. C. (1997). Deadlock-free scheduling of an automated manufacturing
system based on Petri nets. Proceedings-IEEE Inter. Conf. on Robotics and Automation, 2,
945-950.

[40] Xu, G., Wu, Z. M. (2004). Deadlock free scheduling strategy for automated production
cell. IEEE Trans, Systems, Man and Cybernetics, part A, 34(1), 113-122.

[41] Yalcin, A., Boucher, T. O. (2000). Deadlock avoidance in flexible manufacturing
systems using finite automata. IEEE Trans. on Robot. Auto., 16, 424–429.

[42] Zhou, M. C., Venkatesh, K. (1998). Modeling, Simulation and Control of Flexible
Manufacturing Systems, A Petri Net Approach. World Scientific, Singapore.

[43] S. E., Ramaswamy and S. B. Joshi, "Deadlock-free scheduling for automated
manufacturing workstations," IEEE Transactions on Robotics and Automation, vol. 12, pp.
391-400, 1996.

[44] W. Zhang and T. Dietterich, "A reinforcement learning approach to job-shop
scheduling," Proceedings of the 14th International Joint Conference on Artificial
Intelligence. pp. 1114-1120, Montreal, Canada, 1995.

[45] R. Sutton and A. Barto, "Reinforcement Learning. An Introduction," MIT Press,
Cambridge, MA, USA, 1998

[46] S. Mahadevan N. Marchalleck, T. Das, and A. Gosavi, "Self-improving factory
simulation using continuous-time average-reward reinforcement learning," Proceedings of
the 14th International Conference on Machine Learning, pp. 202-210, Nashville, USA, 1997.

[47] D. Zeng and K. Sycara, "Using case-based reasoning as a reinforcement learning
framework for optimization with changing criteria," Proceedings of the 7th International
Conference on Tools with Artificial Intelligence, pp. 56-62, Takamatsu, Japan, 1997

[48] J. Schneider, W. Wong, A. Moore, and M. Riedmiller, "Distributed value functions,"
Proceedings of 16th International Conference on Machine Learning, pp. 371-378, Beld,
Slovenia, 1999.

	111
	A policy based reinforcement learning approach

