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ABSTRACT  

 We present a policy based reinforcement learning scheduling algorithm with high level deadlock 

detection for job-shop discrete manufacturing systems without buffer being equipped. Deadlock 

is a highly undesirable phenomenon resulting from resource sharing and competition. Hence, we 

first propose detection algorithms for second and third level deadlocks. Subsequently, based on 

these high level deadlock detection algorithms, a new policy based reinforcement learning 

scheduling algorithm is developed in the context of buffer-less job-shop systems. Applying our 

reinforcement learning approach into scheduling algorithm to a set of 40 widely-used buffer-less 

job shop benchmark, satisfactory makespan can be obtained, which, to our knowledge, have 

never been published before. It is safe to conclude that our policy based reinforcement learning 

scheduling algorithm can be applied to other discrete event systems (e.g., computer operation 

systems, communication systems, and traffic systems). 

Keywords – High Level Deadlock Detection, Buffer-Less Job Shop scheduling, Policy based 

Reinforcement Learning 
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CHAPTER I  OVERVIEW 

 

1.1  Introduction to Deadlock in Job shop scheduling 

 

Recently, there has been a significant interest in designing and developing flexible 

manufacturing systems (FMSs) among manufacturers so as to maintain the competitiveness. 

FMSs provides the manufacturers with great flexibility in meeting the demand, especially for 

low-volume and high variety products. However, since FMSs exhibits a high degree of resource 

sharing, manufacturing shops are subject to system deadlock, which may cause unnecessary 

costs due to long downtime and low resource utility.  

Deadlock (DL) is a highly undesirable phenomenon in most discrete event systems (DES), 

which requires special managing and controlling strategies [3]. Essentially, DL results from 

resource sharing [6]. When various customers passing through a buffer-less service system and 

competing for limited resources, the system is prone to DL, an insidious halting condition in 

which there is a set of customers awaiting the allocation of resources held by other customers in 

the same set. The phenomenon is usually named as “circular waiting” or “hold and wait”. Since 

no buffer is equipped, a set of customers and servers is restricted in a fixed loop, and cannot be 

released via any feasible action within the loop. 

With this knowledge, it is highly desirable, if not urgent, to solve the DL problems in FMSs 

while maintaining the viability of the system performances such as makespan. With this 

objective in mind, a new DL-free scheduling algorithm is proposed in this paper, consisting of a 

high-level DL detection method as well as a reinforcement learning approach. Specifically, in the 

context of job shop systems, the high-level DL detection method helps to reduce the searching 
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time for a DL-free schedule. The experimental results show that, for most of the large-size job 

shop systems, a DL-free schedule can be found within seconds, which enables the real-time 

control of manufacturing shop when DL concern is being incorporated. At the same time, the 

reinforcement learning approach facilitates the improvement of the performances of the DL-free 

schedules, such as the makespan being considered in this paper. We notice that reinforcement 

learning approach has been studied by previous researchers in computer science in general and in 

manufacturing scheduling in particular. To our knowledge, Zhang and Dietterich [44] first 

applied the reinforcement learning approach in job shop scheduling problem (JSSP). 

Reinforcement learning is a machine learning approach to find a policy π which can maximize 

expected future return, which calculated based on reward function γ. Policy π determines which 

action will be choose by RL agent, and is usually state dependent [45]. A great deal of research 

has been invested into the development of JSSP solution methods both in the operations research 

and artificial intelligence communities. However, these previous works are all based on the 

assumption of unlimited buffer, or in other words, DL is not being considered during the 

scheduling process. On the other hand, limit-buffer JSSP or buffer-less JSSP has not studied in 

the extant literature whereas there is indeed a request from industry regarding the DL-free 

scheduling in job shop systems 

Nowadays, several new application areas corresponding to some special FMSs are buffer-less 

systems in real production cases: (i) the shop floor of gigantic workpiece such as ‘head of air-

plane’ or ‘shaft of turbine dynamo’ has no spare space for intermediate work in process (WIP), 

(ii) to keep high production efficiency in the IC chips photolithographic system, any block 

during chip transferring within different equipment chambers (of cluster tool) is unacceptable 

under the high chip delivering and handling rate. Hence, in these FMSs, resource competitions 
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and DLs may occur frequently without well designed job scheduler and manufacturing 

controller. 

Under this circumstance, as various constraint programming methods, combinatorial 

algorithms, and evolutionary algorithms have been widely utilized in schedule searching, 

ordinary FMSs (with sufficient buffer capacity and so without DL happening) scheduling has 

become a relatively matured technique as stated in extant literature [13, 17, 22, 25]. 

Nevertheless, for buffer-less FMSs, the scheduling problem is still not well resolved, even for 

small-scale FMSs. For example, to the best of our knowledge, for a set of widely-used 

benchmark FMSs (which will be introduced later), no DL-free schedule is published in the 

previous literature. 

Basically, job shop FMS has the following two features: (i) the system resources are limited 

and not exemplified, and (ii) each customer is handled in accordance with its scheduled route 

(which may result in complex route crosscut). To satisfy these two features, well designed 

schedule is expected to handle the competition among customers. 

As numerous research works have shown, schedule for a job shop FMS must be found based 

on the route constraints of customers and the system performing objectives (e.g., makespan, 

costs, and due-dates) required by user. The main task of FMSs controller [40] is to execute the 

obtained production schedule that can realize those requirements and achieve more benefits for 

FMSs user. 
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1.2   Research Objective 

 

However, without high level DL detection algorithm, DL-free scheduling for buffer-less job 

shop FMSs has not been systematically solved. Hence, the objectives of this paper are 

(1) To design and develop high level (second level and third level) DL detection algorithms 

(2) To apply reinforcement learning approach in DL-free scheduling so as to improve the 

solution performances such as makepsan. 

(3) To propose DL-free scheduling algorithm for job shop systems, consisting of the high-level 

DL detection methods, as well as the reinforcement learning approach. 

 

1.3   Thesis Organization 

 

The rest of the thesis is organized as follows: Chapter II presents the previous works related to 

this paper. In Chapter III, we introduce the first, second and third level DL patterns as well as the 

corresponding detection methods. In Chapter IV, we propose a policy based reinforcement 

learning deadlock free scheduling algorithm for buffer-less job shop FMSs. Chapter V provides 

the results of experiments on benchmark problems as well as implications drawn from these 

results. Finally, conclusion and future works are provided in Chapter VI. 
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CHAPTER II  LITERATURE REVIEW 

 

In this chapter, we review some literatures on Deadlock detection problems and reinforcement 

problems. 

2.1 Job shop Scheduling Deadlock Detection 

Single unit resource allocation system (SU-RAS) [23] is widely considered while modeling 

FMSs. Several researchers utilized a pioneer method of empty siphon detection for first level DL 

(relative to higher level DL in this paper) checking [7, 21]. Similarly, under the modeling 

frameworks of ROPN (Petri Net) [31, 32] and transition graph (Digraph) [8, 9, 10], a DL-free 

unsafe state can also be detected via using one-step ahead strategy. However, these studies are 

applicable to some specific small-scale FMSs only [1, 16, 37, 38]. A general DL-free scheduling 

algorithm for FMSs based on high level DL detection has never been proposed systematically. 

Furthermore, automata model is also utilized to analyze DL in the context of computer 

operations system [39]. However, modeling the distributed features of job shop FMSs using 

automata cells and the corresponding control supervisor is usually intractable. Hence, the 

modeling methodology proposed in [39] is only applicable to small-scale FMSs with simple 

process routes. Fanti and Zhou [11] provided a complete survey in this area. 

Given the modeling frameworks in the extant literature, three strategies to handle DL and the 

corresponding research works are illustrated as follows: 

(1) Deadlock Prevention, which restrains the resource allocation for customers so that DL can be 

prevented. For Petri nets model, synthesis methods (e.g., mixed integer programming [5] and 

region theory [14]) are used to find siphon or elementary siphon [7, 21, 36] so as to prevent 

DL. In automata model, supervisory controllers [24] are introduced to keep systems in a DL-
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free status. However, both synthesis methods and supervisory controllers require enormous 

computation consumption, which makes these methods intractable when applying to FMSs 

with considerable scale and complicated job shop route constraints. 

(2) Deadlock Avoidance, which restrains the way resources are allocated based on the current 

state of the system and the next request of resource for each customer. DL avoidance 

algorithms are well developed in Petri Net model [2, 23, 29, 30, 32], Automata model [39], 

and Digraph model [4, 12, 18, 34] to handle FMSs scheduling problems. However, current 

DL avoidance algorithms can not avoid DL-free unsafe state (i.e., high level DL in this 

paper). Furthermore, several papers [10, 26, 31] try reserving one resource to avoid DL-free 

unsafe state. Nevertheless, by now, no DL avoidance algorithm is available to deal with high 

level DL. Hence, current DL avoidance algorithm is only applicable to FMSs with simple 

resources sharing structure (without high level DL happening). 

(3) Deadlock Detection and Recovery, which concentrates on the expedient resolution after DL 

has been detected. Wysk [4, 33] introduced a string multiplication algorithm to detect DL for 

buffer-less job shop systems. Generally, an additional buffer is required to re-allocate the 

resources and resolve the detected DL. However, as introduced in Section 1, for some 

specific systems (e.g., air plane head and turbine dynamo shaft), there is no space for 

additional buffer, and resolving DL may bring great inconvenience. 

It is well known that DL avoidance and detection in the context of finite-state system is a 

polynomial problem. Actually, DL-free scheduling is a kind of DL prevention, which requires all 

the customers to reach their end states without DL occurring. As the safety (or Reachability) 

problem in FMSs is a non-polynomial problem [15, 27], finding a DL-free schedule for a FMS is 
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extremely difficult. Hence, for medium- or large-scale buffer-less job shop FMSs, such a 

scheduling problem has not been systematically solved in the previous research. 

Additionally, inspired by DL-free scheduling algorithms utilized in computer operation 

system, a Banker’s method [19] is used to allocate resources within different tasks without 

meeting DL. Banker’s method may find DL-free schedule for large-scale buffer-less job shop 

FMSs. However, Banker’s method is conservative and may reduce resources utility and 

processing efficiency in FMSs, and the obtained DL-free schedule tends to be overly restricted 

[19]. 

Despite of the methods mentioned above, Ramaswamy and Joshi [43] formulated the DL-free 

scheduling as an integer programming problem and were able to find the optimal total flow time 

of the DL-free schedule for small-size job shop systems. Specifically, based on the typical job 

shop scheduling integer programming framework, they added a constraint ensuring that a job 

leaves a resource only when it has found space on the next resource. It can be verified that their 

integer programming model provides an optimal DL-free schedule for job shop system with no 

buffer in terms of total/average flow time.  

However, utilizing this integer programming method, only small size job shop scheduling 

problem can be solved in acceptable time. The integer programming formulation is shown 

below: 
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In the Experiment section of this paper, we will show that, for job shop systems with 15 jobs or 

more and 5 resources or more, a DL-free schedule cannot be obtained in 48 hours on 64-bit 

operating system with 3.00GHZ CPU. Meanwhile, incorporating our high level DL detection 

method into the DL-free scheduling algorithm, even large-size (e.g., 30 jobs and 10 resources) 

job shop scheduling problem can be solved within seconds, and the obtained total flow time is 

reasonably acceptable. 

 

2.2 Policy Based Reinforcement Learning 

Reinforcement learning is a real time machine learning derived from the conventional optimal 

control technique known as dynamic programming. The environment is formulated as a discrete-

time, finite state, markov decision process. The goal of this process is to solve the learning 
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problem by finding the best policy of action, regardless of the deeper structure of the experience 

gathered during interacting with the environment.  Zhang and Dietterich [44] were the first to 

apply a reinforcement learning approach for a special scheduling problem. They developed a 

repair-based scheduler that is trained using the temporal difference reinforcement learning 

algorithm starting with a critical-path schedule, and incrementally repairs the violations of the 

constraints. Mahadevan et al. [46] presented an average-reward reinforcement learning algorithm 

for the optimization of transfer lines in manufacturing systems which incorporates a simplifying 

specialization of a scheduling problem. They show that the adaptive resources are able to 

effectively learn when they have to request maintenance, and that introducing a hierarchical 

decomposition of the learning task is beneficial for obtaining superior results. Another repair-

based approach based on an intelligent computing algorithm is suggested by Zeng and Sycara 

[47] who utilized case-based reasoning and a simplified reinforcement learning algorithm to 

achieve adaptation in changing optimization criteria. 

However, the reinforcement learning approach utilized in the job-shop scheduling algorithm 

proposed in this paper,formulate the problem as a sequential decision problem and a Markov 

decision process, which is different from the previous works mentioned above. Similar approach 

has been utilized by Schneider et al. [48] in manufacturing scheduling problems. However, they 

assume a single learning agent that fully observes the state.  
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CHAPTER III.  HIGH LEVEL DEADLOCK DETECTION 

 

For job shop DMS, each product in the system must occupy one resource and each resource 

can process only one product at a time. Generally, the concerned DMS is running under 

conditions of: (i) mutation exclusion, (ii) no preemption and (iii) hold while wait. Since each 

product has to follow its own routine path in DMS and M products keep M independent routes, 

deadlocks may occur very often if we expect that resources are highly utilized. In this chapter we 

will introduce 3 different deadlock detection methods. 

3.1 Deadlock Detection based on Digraph Method 

Comparing with different DMS models, we believe digraph model, especially the modified 

transition digraph (MTG) introduced in this paper, is the most compact one to illustrate coupling 

relationships of products’ routines. Our detection algorithm developed later in this section is 

based on the up-to-date state of DMS and its modified transition graph correspondingly. 

Generally, the immediately detected DL is defined as 1st level DL. As the implicit unsafe state 

may appear several steps later, we define them as 2nd level, 3rd level and higher level 

respectively. 

It is well known that a static routine digraph (RG) that contains all processing paths in 

sequential is difficult to be used for model analysis since there are too many connection edges 

(for a job-shop system with M product and N resources, there is at most M×N edges) existing to 

represent all the handling steps and most of them are not in use at the moment. While transition 

digraph (TG) defined in [8,18] only gives the instant resource occupation and indicates the 

possible moving tendencies of each product under current state, which may be not enough for the 

analysis of potential deadlock. Therefore, in this paper, we define a specially “modified 
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transition graph” which extends labeling some related edges to several future steps on ordinary 

TG, so that one may take more efficient analysis since those steps that may cause system DL in 

future are under consideration. A simple DMS (of 3 products and each has 4 routine steps within 

5 resources) is given to show relation among RG, TG and MTG in Fig. 3.1 

p1

p2

p3

w32

w12

p1

p2

p3

w32

w12

w13

w14

w22

w23
w24

w33

w34

p1

p2

p3

 

       (a) Routine Graph      (b) Transition Graph     (c) Modified Transition Graph 

Fig. 3.1 RG, TG and MTG Model of a Simple DMS 

As shown in Fig. 3.1(a), RG is too complicated and many edges within it are actually no use 

for detecting DL and potential DL. On the opposite, according to the TG model in Fig. 3.1(b), a 

potential deadlock will be omitted. MTG model in Fig. 3.1(c) removes futile future transitions 

and keeps some of them for related key products to help detecting so-called deadlock-free unsafe 

state that may possibly cause deadlock several steps later.  

By using idea of MTG, DL-detection rule can be developed via the following steps:  

(i) Choosing an unblocked transition (including a product entering into the system or a product 

which is already in the DMS moving from one resource to another) and virtually firing this 

transition, then a virtual system state is generated and the MTG correspondingly. 

(ii) Analyzing the virtual MTG via several developed DL detection algorithm (introduced later 

this section) to detect whether there is a DL or potential DL (with different level) existing,  

(iii) Recover the system to the state before virtually firing with the result of deadlock detection. 

We must mention that the result of DL detection is still problematic, since the DL detection 

algorithms used in (ii) can only capture 1st, 2nd and 3rd level DL in the system. The transitions 
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pass DL detection algorithms do not ensure the DMS is DL-free in future since potential DLs 

higher than 3rd level may be caused by the supposed feasible transition and still keep “DL-free 

unsafe states” of DMS in execution.  

Nevertheless, by using 2nd and 3rd DL detections, the feasible state space of DMS can be 

greatly reduced during searching. From all the “deadlock-free” transitions, we may spend less 

backtracking computation efforts and have higher probability in finding an off-line DL-free 

schedule in this reduced state space. For most small and middle scale system (in the range of 

benchmark problems), the results obtained in our paper are quick, effective and applicable. We 

will explain them in detail in section 6. 

For the convenience of analysis, we define some symbols as follows: 

HR(pj) the resource which product pj is holding 

FRR(pj) the resource which product pj requests next step 

SRR(pj) the resource which product pj requests two steps later 

TRR(pj) the resource which product pj requests three steps later 

3.1.1 First Level Deadlock 

The definition of first level deadlock is given as follow: 

Definition 1.1: PD is a set of products, if for any product piPD, FRR(pi) is hold by another 

product pi’PD, and none of the proper subsets of PD possesses the same property, then we define 

PD as first level deadlock. 

p1

p5

p2

p4

p3

 

Fig. 3.2 ‘circular waiting’ structure of 1st level DL 
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Actually, first level deadlock is a circular waiting cycle of products, and Fig. 3.2 gives a 

simple five-product first level deadlock example. For 1st level deadlock detection, we need to 

decide if such a loop structure existing at current state. Since first level deadlock detection 

algorithm may find in many references [10, 26, 33], we just drop it from our paper. 

Definition 1.2: For a set of products PC, if there exists an order for all the products in PC: p1, 

p2… pn’ (n’ is the number of products in PC) that HR(pi+1) = FRR(pi) for any i[1, n’-1] and pn’ 

is not in its last processing step, then we define PC as potential deadlock chain (PDC). We 

define p1 as the start product of PDC, and use pS to denote it; define pn’ as the end product of 

PDC which is denoted by pE.  

Following are some explanations about PDC which are useful for high level DL discussion later: 

1. A PDC has its unique start and end product, and they can be the same product. Fig. 3.3(a) 

shows the simplest instance of PDC, which has only one product.  

2. For a PDC, FRR(pE) can be either idle or occupied. Based on (1) and (2), we can find all the 

PDCs in products string shown in Fig. 3.3(b). Let’s taking pi (i = 1…n) as a start product, 

every pi (i jn) can be the end product correspondingly. Thus, the total number of different 

PDCs in Fig. 3.3(b) is 1
2 n(n+1).  

3. Start product pS and end product pE are the most important product in a PDC, while other 

products in PDC are usually ignored when analyzing deadlock patterns. So Fig. 3.3(c) is used 

to denote a PDC in general and will be used to represent PDC in the following figures. 

 

Fig. 3.3 instances of potential deadlock chain (PDC) 
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3.1.2 Second Level Deadlock 

Definition 1.3: PSD is a set of products without 1st level DL, if after moving any movable 

product pPSD, there will be another set of products PDPSD, PD is first level deadlock and none 

of the proper subsets of PSD possesses the same property, then we define PSD as second level 

deadlock. 

  

Fig. 3.4 instances of 2nd level DL 

Based on a reduced example from [8] shown in Fig. 3.4(a), one may understand 2nd level DL 

clearly. In Fig 3.4(a), there are 6 PDCs: {p1}, {p2}, {p3}, {p4}, {p2, p1}, {p4, p3}. We consider 

PDC {p2, p1} and PDC {p4, p3}, the end of both PDCs request a common resource next step 

(FRR(p1) = FRR(p3)) and request the start of the other PDC two steps later (SRR(p1) = HR(p4) 

and SRR(p3) = HR(p2)), which makes the two PDCs C0 and C1 coupling in the common idle 

resource. If replacing C0 and C1 with the simplest one-product PDC, we will obtain the simplest 

2nd level deadlock as shown in Fig. 3.4 (b). Actually, the 2nd level DL instances in Fig. 3.4(a) 

and (b) both belong to the pattern shown in Fig. 3.4(c), which represents the general pattern of 

two-PDC 2nd level DL. 

Intuitively, we can have more PDCs coupled in the common idle resources as shown in Fig. 

3.5, which is the general pattern of 2nd level deadlock. In Fig. 3.5, we use CK (K = 0, 1…n) to 

denote a PDC, pSK is the start product of CK, while pEK is the end product. 
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Fig.3.5 general pattern of 2nd level deadlock 

Proposition 1.4: Any second level deadlock is a structure of n (n  2) PDCs coupling in a 

common idle resource, and for a structure of n (n2) PDCs coupling in a common idle resource, 

it is a second level deadlock.  

Here we define “couple” in detail. Assume these n PDCs are: C1, C2, …, Cn. Then “couple” 

means FRR(pE1) = FRR(pE2) = ... = FRR(pEn) = RI (here RI is the common idle resource) and 

HR(pS(i+1)) = SRR(pEi) for i[1, n-1] (HR(pS1) = SRR(pEn)). The proof of Proposition 1 is given 

as follow: 

Necessity:  

Obviously, if n PDCs couple in one common idle resource, then only the end product of every 

PDC can be moved. According to the definition of “couple”, moving pEi (i = 1, ... n) will 

definitely cause deadlock immediately, and if any product in these n PDCs is removed, the left 

products can not form a second level deadlock. Therefore, a structure of n (n2) PDCs coupling 

in a common idle resource forms a second level deadlock and the necessity is proven. 

Adequacy:  

According to definition 3, if a set of products PSD is 2nd level deadlock, then a subset of PSD 

will be 1st level deadlock after moving any movable product belonging to PSD. Assume pT is a 
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movable product in PSD and PD, a sub subset of PSD, will become first level DL after moving pT, 

then we can easily deduce that pTPD and PD* = PD - {pT} is a PDC. Here we define PD* as C1 

and define FRR(pE1) as common idle resource RI (as the idle resource in the center of Fig. 3.5).  

Since moving any product belonging to PSD will cause a first level DL, if we move pE1 to RI, it 

will also cause a first level DL, which means that SRR(pE1) must be occupied by the start 

product of another PDC which we name as C2 (SRR(pE1) = HR(pS2)), and FRR(pE2) = FRR(pE1) 

= RI. Recursively, we will have PDCs C3, C4,…,Cn that HR(pS(i+1)) = SRR(pEi) for i[1, n-1] and 

FRR(pE1) = FRR(pE2) = ... = FRR(pEn) = RI. Because products number and resource number in 

the system are limited, there are only two possibilities for SRR(pEn): 

1. SRR(pEn) = HR(pSi) (i[2, n-1]), then there exists a set of products PSD’ = Ci… Cn that 

PSD’ PSD and moving any movable product belonging to PSD’ will cause first level deadlock, 

which violates the definition of 2nd level deadlock. So if PSD is second level deadlock, 

SRR(pEn) = HR(pSi)  (i[2, n-1]) must be invalid. 

2. SRR(pEn) = HR(pS1), then n PDCs couple in RI and the adequacy is proven. 

Therefore, proposition 1 was proven and the structure shown in Fig. 3.5 is the general pattern 

of second level deadlock. 

In order to detect whether there is second level deadlock in the system, one by one, we assume 

every product processing in the system to be the end product of a PDC, and check if there exists 

a second level deadlock from that PDC. The detailed algorithm is given in appendix A.1. 

3.1.3 Third Level Deadlock 

Definition 1.4: PTD is a set of products without 1st and 2nd level DL. All the movable products 

in PTD form a set of products PMPTD and PSM is a non-empty subset of PM. If moving any 
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product in PSM will cause 2nd level DL in PTD and moving any product belonging to PM- PSM will 

cause 1st level DL in PTD, then we define PTD as third level deadlock. 

  For convenience of 2nd level DL analysis, we define potential deadlock chain. Thus, in order to 

well introduce the structure of third level deadlock, we give the following definition: 

Definition 1.5: For any second level deadlock PSD, PSD’ = PSD – {pi} and pi is any product 

belonging to PSD, then we define PSD’ as potential second level deadlock (PSLD).  

Same as PDC, we should also define the start and end product of PSLD. For the start product, 

first we check whether there is a product pi’PSD’ that HR(pi’) = FRR(pi), if positive, we define 

pi’ as the start product of PSLD, otherwise, we find a product pi’’PSD’ that HR(pi’’) = SRR(pi) 

and define pi’’ as the start product of PSLD. For the end product, first we check whether there is a 

product pj’PSD’ that HR(pi) = FRR(pj’), if positive, we define pj’ as the end product of PSLD, 

otherwise, we find a product pj’’PSD’ that HR(pi) = SRR(pj’’) and FRR(pj’’) is not occupied by 

any product in PSD’, then we define pi’’ as the end product of PSLD. 

  Based on the definition of PSLD, we give two simple instances of 3rd level DL extended from 

the 2nd level DL shown in Fig. 3.4(a) and (b). Removing product p4 from the 2nd level DL in 

Fig. 3.4(a), we get a PSLD {p1, p2, p3}. p3 and p1 are the start and end product of PSLD 

respectively. If we have another PDC couples with this PSLD in a common idle resource, we 

will get a 3rd level DL as shown in Fig. 3.6(a). Similarly, if we remove the product p1 from the 

2nd level DL in Fig. 3.4(b), we will get a PSLD {p0} and p0 is both the start and end product of 

PSLD. If we have a simplest PDC couples with this PSLD in a common idle resource, we will 

get the simplest 3rd level DL as shown in Fig. 3.6(b). 
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Fig. 3.6 instances of 3rd level deadlock 

In Fig. 3.6(a), PSLD {p1, p2, p3} couples with PDC {p4, p5} in resource RC (SRR(p1) = 

FRR(p4) = RC, HR(p3) = SRR(p4) and HR(p5) = TRR(p1)). Moving p1 or p4 will cause 2nd level 

DL and moving p3 will cause 1st level DL. In Fig. 3.6(b), PSLD {p0} couples with PDC {p1} in 

resource RC (HR(p0) = TRR(p1), FRR(p0) = SRR(p1), SRR(p0) = FRR(p1) = RC and TRR(p0) = 

HR(p1)). Moving either of two products will cause 2nd level DL. 

There are two general patterns of third level deadlock. The first pattern is a PSLD and n (n1) 

PDC(s) coupling in a common idle resource.  

  First, we need to find out the general structure of PSLD, which can be obtained by removing a 

single product from the general pattern of 2nd level DL shown in Fig.3.5. Since the structure in 

Fig.3.5 consists of n PDCs and every PDC is symmetrical structurally, we can just remove a 

product from PDC C0 and obtain the general pattern of PSLD, as shown in the left part of 

Fig.3.7. Then coupling the PSLD and n (n1) PDC(s) we can get the first general pattern of 3rd 

level DL, as shown in the right part of Fig.3.7. 
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Fig.3.7 general pattern of PSLD and 3rd level DL 

In the right part of Fig.3.7, the movable products are the end product of PDCs. Among these 

movable products, except pE0 and pi-1, moving any other product will cause 2nd level DL. 

The second pattern of 3rd level DL is caused by the special routine of products, as shown in 

Fig.3.8. In Fig.3.8, the only movable product is pS0, and after moving pE0 we will get the general 

pattern of 2nd level DL as shown in Fig.3.5. 

 

  Fig.3.8 general pattern of 3rd level DL 

In sum, the two patterns shown in Fig.3.7 and Fig.3.8 cover all the cases of 3rd level DL. 

For the first pattern in Fig.3.7, similar to the detection of 2nd level DL, one by one, we assume 

every product in the system as the end product of a PDC and check whether there is a third level 

DL from that PDC. The detailed detection algorithm of this pattern is given in appendix A.3. 

For the second pattern in Fig.3.8, since there is only one movable product, we can virtually 

move every product in the system one by one and check whether there is a second level DL in 

the generated virtual state. Since the detection algorithm of this pattern is almost the same as that 

of 2nd level DL, we do not introduce the detailed algorithm again. 
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3.2 Deadlock Detection based on Ranking Matrix 

In this section, let us consider a job shop system consisting of N resources, denoted by the set

}}  ..., ,2  ,1{ ,{ MJjrR j  , on which M jobs, denoted by the set }}  ..., ,2  ,1{  ,{ NIipP i  , are 

processed as they advance through the system. Furthermore, each job holds a resource in an 

exclusive mode, and follows a predefined working procedure. Through this paper, NMijsS  ][  is 

utilized to characterize the system state at any time point, where ijs  represents the number of 

steps before job ip  being processed on resource ir . Here 0ijs  implies that job ip  has yet been 

processed on resource ir ; 0ijs  implies that job ip  is holding resource ir ; 0ijs  implies that job 

ip  has already been processed on resource ir . Under a state ][ ijsS  , if job kp  is moved from the 

current resource to the next resource, the following state matrix can be derived by ][ ijsS   where 

ijij ss   if ki   and 1 ijij ss  if ki  . Hence, for the previous example, if we move job 1p from 

resource 2r to 4r , the system state 1S becomes system state 2S  
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3.2.1 First Level Deadlock 

 

Suppose NMijsS  ][  represents the system state matrix with } ..., ,2  ,1{ MIi   and 

}  ..., ,2  ,1{ NJj   representing the job and resource index, respectively.  

Definition 2.1 If there exists such a set of jobs }  ...,  ,1  ,{ Ai MiaA   in the system that, 

(1) for 1i , there does not exist such Ib  and Jx  that 0xai
s  and 1bxs . 
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(2) for AMi 1 , there exists such Jy  that 0yai
s  and 1

1


 yai
s . 

(3) for AMi  ,  there exists such Jz  that 1zjk
s  and 




Ih
hzs 0 . 

then we define 1a  as the tail job of Aai  , denoted by 1)( aaTJ i  , 
AMa  

as the head job of Aai  , 

denoted by 
AMi aaHJ )( , and resource z  as the head resource of Aai  , denoted by zaHR i )( . 

This definition characterizes a set of sequential jobs in which, except the tail and head jobs, 

every job is holding the resource requested by its predecessor while requesting the resource held 

by its successor. Moreover, no job in the system is requesting the resource held by the tail job, 

nor holding the resource requested by the head job. Figure 1 shows an example, in which each 

rectangle represents a resource, indexed by the symbol on the right top corner. The symbol in the 

center of the resource represents the job that is holding the resource with blank indicating an 

available resource. The arrow represents the transition of a job, characterized by the text above it. 

In the text, the symbol before the colon represents the job; the symbol after the colon but before 

the arrow represents the original resource; the symbol after the arrow represents the destination 

resource. These drawing criteria will be utilized throughout the rest of the paper without further 

clarification. In Figure 3.9, job 1, job 3, and resource 4 are the tail job, head job, and head 

resource for all the jobs, respectively, i.e., 1)3()2()1(  TJTJTJ , 3)3()2()1(  HJHJHJ , and 

4)3()2()1(  HRHRHR .  

 

Figure 3.9. Tail Job, Head Job, and Head Resource 
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Furthermore, we define 0)( iTJ , 0)( iHJ , and 0)( iHR  if the tail job, head job, and head 

resource do not exist for job i ;  define )(iHR  if job i  is leaving the system immediately as the 

system output can be considered as a fictitious resource r  with unlimited capacity [2]. 

Definition 2.2 The first level DL is a set of jobs in which every job is requesting a resource being 

held by another job in the set. 

The first level DL defined here is the deadlock defined in other articles [1], which implies an 

infinite waiting loop in the system. By Definition 1, we propose the following sufficient and 

necessary condition of the first level DL in Proposition 1. 

Proposition 1 The sufficient and necessary condition of the existence of the first level DL is that 

there exists such Ia  that 0)( aHJ  (or 0)( aTJ  or 0)( aHR ). 

This proposition entails the existence of circular waiting jobs.  
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3.2.2 Second Level Deadlock 

 

Definition 2.3 The second level DL is a set of jobs in which  

(a) moving any movable job will lead to a first level DL involving that job and other jobs 

from the same set. 

(b) there does not exist a proper subset of jobs which satisfy condition (a) and (b). 

Second level DL has been addressed in the previous articles. Figure 2 shows an example 

second level DL. Here, for the sake of readability, we utilize dash line to represent the future 

transition while the solid is still representing the immediate transition of a job. In Figure 2, job 1 

is not movable; moving job 2 will lead to a first level DL {2,3}; moving job 3 will lead to a first 

level DL {1,2,3}. To generalize the structure in Figure 3.10, we propose the following sufficient 

and necessary condition of second level DL in Proposition 2. 

 

Figure 3.10 Second Level Deadlock with 4 Resources and 3 Jobs 

& Second Level Deadlock Detection 
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Proposition 2 The sufficient and necessary condition of the existence of second level DL is that 

there exists such IIS   that 

(a) there exists such Jk  that, for SIa , kaHR )( . 

(b) for SIb  where bbHJ )( , there exist such SIc  and J  that 2bs , 0cs , and 

bcHJ )( . 

In Proposition 2, condition (a) implies that all the jobs in the set share the same head resource 

k whereas condition (b) implies that, for any head job b in the set, it cannot leave the system in 

two steps, and the resource it requests in two steps is being held by another job in the set, whose 

head job is not job b. We now apply Proposition 2 to the previous example in Figure 2. The state 

matrix of the system in Figure 2 is  
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Here X represents the information which is irrelevant to the detection of the second level DL 

under the current system state. Obviously, 3)3()2()1(  HRHRHR  (condition (a) in Proposition 1 is 

satisfied); 2)2( HJ , 224 s , 034 s , and 23)3( HJ ; 23)3( HJ , 231 s , 011 s , and 32)1( HJ  

(condition (b) in Proposition 1  is satisfied). Therefore, there is a second level DL in current 

system state. 

 

3.2.3 Third Level Deadlock 

Definition 2.4 The third level DL is a set of jobs in which 

(a) moving any movable job will lead to either a first level DL involving that job and other 

jobs from the same set, or a second level DL involving that job and other jobs from the 

same set. 

(b) there does not exist a proper subset of jobs which satisfy condition (a) and (b). 

Figure 3 shows an example third level DL. In Figure 3, job 1 is not movable; moving job 2 

leads to a second level DL {2,3,4}; moving job 3 leads to a second level DL {1,2,3,4}; moving 

job 4 leads to a first level DL {1,2,4}. To generalize the structure in Figure 3.11, we have the 

following sufficient and necessary condition of the third level DL in Proposition 3. 

 

Figure 3.11. Third Level Deadlock with 6 Resources and 4 Jobs & Third Level DL detection 
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Proposition 3 The sufficient and necessary condition of the existence of the third level DL is that 

there exists such IIT   that 

(a) there exist such Jyx ,  that 

(i) for TIa , 0])([])([  yaHRxaHR   

(ii) 0])([])([  
 TT IaIa

yaHRxaHR . 

(b) for TIb  where bbHJ )(   

(i) there must exist Jk  where 2bks ; 

(ii) if there exists TIc  where 0cks , then bcHJ )( ; otherwise, 0))((  ykxk , and there 

must exist TId  and J  where 3bs , 0ds , and )()( bHRdHR  . 

In Proposition 3, condition (a) implies that there are two head resources (available resources) 

in the third level DL whereas condition (b) implies that, (i) for any head job b in the set, it cannot 

leave the system in two steps; (ii) if the resource job b requests in two steps is being held by 
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another job c in the set, the head job of job c cannot be job b; (iii) if the resource job b requests in 

two steps is not being held by another job in the set, then job b cannot leave the system in three 

steps, the resource job b requests in two steps must be one of the head resources, and the 

resource job b requests in three steps is being held by another job d in the set, whose head 

resource cannot be job b's head resource. We now apply Proposition 3 to the previous example in 

Figure 3. The state matrix of the system in Figure 3 is 


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
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1. Condition (a).(i) & (ii) in Proposition 3 are satisfied as 3)4()2()1(  HRHRHR  and 

4)5()3( HRHR .  

2. Condition (b).(i) in Proposition 3 is satisfied as 2)2( HJ , 3)3( HJ , 4)4( HJ , and 

2413624  sss . 

3. Condition (b).(ii) in Proposition 3 is satisfied as 

 Resource 4, which is requested by job 2 in two steps, is available; Also, 325 s , 035 s , 

and 4)3(3)2(  HRHR . 

 236 s , 046 s , and 4)4(3)3(  HJHJ . 

 241 s , 011 s , and 2)1(4)4(  HJHJ . 

Therefore, there is a third level DL in the current system state. 

Thus far, we have defined the first, second, and third level DL as well as the corresponding 

sufficient and necessary conditions. By checking these conditions, we are able to detect whether, 

under a certain system state, there exists an immediate DL or a DL-free unsafe state [1] (i.e., DL 
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is not avoidable in the future. In the following section, we will apply these DL detection methods 

to the job shop scheduling problems, and propose a DL-free scheduling algorithm. 

 

CHAPTER IV.  POLICY BASED REINFORCEMENT LEARNING ALGORITHM 

Since the detection strategy for DL higher than third-level has not been found until now, our 

DL-free scheduling algorithm is applied off-line before the production batch entering the shop-

floor. 

For a job-shop system, an efficient DL-free schedule satisfies: (i) jobs are processed based on 

the predefined routines; (ii) system evolves as jobs advance through the resources without DL 

occurring, and (iii) resource utilization is maintained in a reasonable level, or in other words, 

DL-free schedule performance such as makespan is acceptable under the demand constraints. 

Furthermore, computation time consumed to generate the DL-free schedule should be within an 

acceptable range so that this algorithm is applicable for real-time implementation. 

In this section, suppose that the job-shop system discussed (i) is buffer-less, (ii) consists of M 

jobs and N resources (every job has N process steps), and (iii) the current system state can be 

observed. Furthermore, suppose S0 and SE represent the initial state (i.e., before each job entering 

the system) and the final state (i.e., all jobs finished their process), respectively. Hence, there are 

M×N (number of jobs × number of process steps) process steps or M×N different system states 

between S0 and SE. Therefore, finding a DL-free schedule is actually finding a multi DL-free 

system states transition route from S0 to SE. 

Normally, task of reinforcement learning algorithm is to maximize the long-term reward. The 

Policy search based RL scheduling algorithm introduced in this section aims to find the schedule 

for buffer-less job-shop system with an optimal or sub-optimal makespan (minimum makespan) 
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effectively. The key point of policy search based multi-state reinforcement learning is to have 

independent searching action at each state to improve their local policies subject to a common 

goal. Considering an M×N JSP problem as a stochastic problem with M×N states, we choose 

every operating action through policy search, and action with the best policy performance will be 

selected. Policy search algorithm searches directly in the space of job shop scheduling 

dispatching rules without learning value functions, which can be highly effective. Intuitively, at 

any time point, the higher degree of concurrency, the less makespan the DL-free schedule will be 

subect to. Motivated by this intuition, we utilize policy based reinforcement learning approach as 

illustrated below.  

Definition 3.1 Given SSi  be the current state of operation i, where )}()...(),({ 21 ii AAAs  , { iA } 

corresponds to the set of actions current state can execute, i corresponding policies of each 

feasible action.  For each action iA at current state, we have a corresponding local action reward 

parameter )( iR  . Where 
MAX

n

ki
ki

C

MJ

R





 1,

)(

)(  

maxC is the corresponding makespan of selecting action, )(
1,

k

i

ki
i MJ 


is the count summary of jobs 

and machines been involved during this makespan. 

Here )(P  represents the performance of policy , and )(R  represents the local action reward 

parameter. 

Definition 3.2 Given a distribution over a set SS 0 of starting states, for policy  , which need 

to be chosen from the spaces of policies at each state until reaching a final state, the 

performance )(P  of π, is defined as the expected value of local action reward parameter )(R . 


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In JSP problems, the discount factor   can be safely set to 1 because the existence of a 

termination state SE is assumed. Once the final state is reached, the process stops and receives no 

further rewards. The essential idea of the policy search-based reinforcement learning is to 

directly adapt the most promising policy to be learned with respect to its performance, Definition 

6 provides a straightforward implementation of a procedure that is tailored for policy search 

reinforcement learning and that enables a single agent interact with the environment and improve 

its policy independently. 

As discussed before, we consider teams of cooperative actions that all seek to optimize a 

global reward and we assume that the corresponding multi-action stochastic system can be 

modeled using our reinforcement learning approach with searching action sets. Therefore, there 

exists at least one sequence of actions that maximizes the expected reward )(P for all actions, or 

we can say, minimizes the makespan for JSSP. 

There are two strategies when selecting the transition: 

(1) DL DETECTION  

According to Proposition 1, 2, and 3, by checking the system state matrix, we are able to 

tell whether an operation/state change will result in first, second, or third level DL. 

Therefore, a set of DL-free operations can be generated out of the DL detection process. 

(2) POLICY BASED REINFORCEMENT LEARNING ALGORITHM 

After the DL detection process, a policy based RL algorithm will be applied against the 

DL-free operations so as to select the operation with the highest priority to move. After 

moving the highest priority operations to its next resource, the system advances to the next 

state, and hence, the system state matrix will be updated. 
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Figure 4. Flow Chart of DL-free Scheduling Algorithm 

 

However, since our DL detection algorithms are not applicable to DL higher than third level, it 

is possible that, under some system states, no feasible transition is detected to be DL-free. This is 

because a DL higher than third level has already occurred in the previous system state without 

being detected. Under this circumstance, we have to “backtrack” the system and choose another 

DL-free transition with a relatively lower priority. Here by “backtrack”, we mean recovering the 

system to the state one-step before. Therefore, the system will reach the final state SE in the end 

and a DL-free schedule will be obtained. The flow chart of DL-free scheduling algorithm is 

given in Figure 4. The details of the algorithm are given in Appendix A2. 
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CHAPTER V.  EXPERIMENTS 

In this section, we apply the DL-free scheduling algorithm to the job-shop benchmark 

problems. These problems are widely-used as reference for researchers to check the performance 

of their scheduling methods in terms of makespan, flow time, and/or computation time. For 

detailed description of these benchmark problems, please refer to [20]. 

There are 40 benchmark problems of 8 different scales (5 problems for each scale). Data of 

each problem includes scale (number of jobs and resources), process route of each operation 

action, and process time for each step. These problems are designed with complicated resource 

crosscutting structure to increase the scheduling difficulty. Hence, if these systems are assumed 

to be buffer-less, the scheduling problem will become even more difficult. 

We first study the performances of our DL-free scheduling algorithm in terms of makespan 

and backtrack number. Subsequently, we compare the computational time between scheduling 

algorithm with and without DL detection. The experimental results of 40 benchmark FMSs 

scheduling using our DL-free scheduling algorithm are given in Table 1. 
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Table 1. Results of 40 benchmark job shop instances 

Problem (size) 
2LD 3LD

Makespan  
Optimal 

Makespan  Time Backtrack Time Backtrack

FT06 <1 sec. 0 <1 sec. 0 512 512

LA01 (10x5) <1 sec. 0 <1 sec. 0 1096 1073

LA02 (10x5) <1 sec. 0 <1 sec. 0 1025 1025

LA03 (10x5) <1 sec. 0 <1 sec. 0 857 817

LA04 (10x5) <1 sec. 0 <1 sec. 0 933 827

LA05 (10x5) <1 sec. 0 <1 sec. 0 879 879

LA06 (15x5) <1 sec. 0 <1 sec. 7 1390 N/A in 48 hours

LA07 (15x5) <1 sec. 0 <1 sec. 13 1337 N/A in 48 hours

LA08 (15x5) <1 sec. 0 <1 sec. 19 1314 N/A in 48 hours

LA09 (15x5) <1 sec. 0 <1 sec. 0 1609 N/A in 48 hours

LA10 (15x5) <1 sec. 0 <1 sec. 8 1525 N/A in 48 hours

LA11(20x5) <1 sec. 0 <1 sec. 3 1873 N/A in 48 hours

LA12 (20x5) <1 sec. 0 <1 sec. 17 1726 N/A in 48 hours

LA13 (20x5) <1 sec. 0 <1 sec. 14 1895 N/A in 48 hours

LA14 (20x5) <1 sec. 0 <1 sec. 0 1901 N/A in 48 hours

LA15 (20x5) <1 sec. 0 <1 sec. 0 2015 N/A in 48 hours

LA16 (10x10) <1 sec. 1 <1 sec. 16 1498 N/A in 48 hours

LA17 (10x10) <1 sec. 0 <1 sec. 113 1187 N/A in 48 hours

LA18 (10x10) <1 sec. 0 <1 sec. 12 1478 N/A in 48 hours

LA19 (10x10) <1 sec. 6 <1 sec. 31 1412 N/A in 48 hours

LA20 (10x10) <1 sec. 0 <1 sec. 0 1514 N/A in 48 hours

LA21 (15x10) <1 sec. 21 <1 sec. 409 2051 N/A in 48 hours

LA22 (15x10) <1 sec. 29 3 sec. 12053 1811 N/A in 48 hours

LA23 (15x10) <1 sec. 143 <1 sec. 1339 2032 N/A in 48 hours

LA24 (15x10) <1 sec. 22 <1 sec. 888 1934 N/A in 48 hours

LA25 (15x10) <1 sec. 108 <1 sec. 12430 1983 N/A in 48 hours

LA26 (20x10) <1 sec. 38 45 sec. 624349 2666 N/A in 48 hours

LA27 (20x10) <1 sec. 36 <1 sec. 221 2730 N/A in 48 hours

LA28 (20x10) <1 sec. 6 <1 sec. 799 2600 N/A in 48 hours
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LA29 (20x10) <1 sec. 196 <1 sec. 8683 2621 N/A in 48 hours

LA30 (20x10) <1 sec. 23 <1 sec. 591 2774 N/A in 48 hours

LA31 (30x10) <1 sec. 33 <1 sec. 3174 3701 N/A in 48 hours

LA32 (30x10) <1 sec. 73 47 sec. 295725 3997 N/A in 48 hours

LA33 (30x10) <1 sec. 71 4 sec. 46982 3791 N/A in 48 hours

LA34 (30x10) <1 sec. 94 4 sec. 26426 3929 N/A in 48 hours

LA35 (30x10) <1 sec. 68 <1 sec. 9705 4076 N/A in 48 hours

LA36 (15x15) 
<1 

sec.. 
69 Not available in 3 hrs 2543 N/A in 48 hours 

LA37 (15x15) <1 sec. 239 <1 sec 1765 2800 N/A in 48 hours

LA38 (15x15) <1 sec. 339 8 min.  2301 N/A in 48 hours 

LA39 (15x15) <1 sec. 35 <1 sec. 1922 2386 N/A in 48 hours

LA40 (15x15) <1 sec. 415 15 min. 8518357 2578 N/A in 48 hours

 

From the results shown in Table 1, we have the following explanations and conclusions: 

(1) All benchmark problems can be solved via using our DL-free scheduling algorithm within 

reasonably acceptable time. For small- and middle-size problems, the search time is less than 

1 second.  

(2) The obtained makespans are for small-size job shop problems are very close to the optimal 

value. We notice that, for some problems such as FT06, LA02, and LA05, the obtained 

makespans are actually optimal. These results imply that the policy based reinforcement 

learning approach is extremely efficient in terms of reducing makespan. We also notice that, 

due to the complexity of these problems. The optimal values cannot be found in 48 hours, 

while our algorithm is able to find the DL-free schedule with sub-optimal makespan within 1 

second for all the presented job shop problems.  

(3) The total flow time of the obtained DL-free schedules is fairly close to the optimal value for 

small-size job shop problems. As for the middle- and large-size job shop problems, the 
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optimal flow time cannot be found in 48 hours. Therefore, the results presented in this paper 

provide the upper bounds of the total flow time of the DL-free schedules for those job shop 

problems, which can be utilized as references for future research. 

(4) Backtracks number increases as the system becomes larger. For small-scale systems, such as 

LA01~LA15, backtracks for most problems are 0 (except LA12 and LA13). This is because, 

for systems with 5 resources, each operation action has only 5 processing steps. Hence, it is 

rare to generate a system state with DL higher than third level (recall that DL lower than 

forth level can be detected) during the manufacturing process, even in the well-designed 

benchmark problems. For large-scale FMSs, more work-pieces/jobs and longer processing 

routes may cause the occurrence of DL higher than third level, which results in Backtrack. 

However, the number of backtrack used is kept in a relatively low level for all benchmark 

problems. 

Therefore, one may expect our DL-free scheduling algorithm to be applied to other problems 

with similar scale and structure features. Moreover, although this is an off-line scheduling 

algorithm, the negligible computation time makes it an eligible tool for quick response to the 

disturbances in systems, such as adding new JOBs, removing JOBs being processed, change of 

priorities, and machine breakdown. Once a disturbance event happens, our scheduling algorithm 

can re-schedule and generate a new DL-free schedule within 1 second, which is indistinguishable 

to the on-line scheduling. 

According to DL-free schedules obtained, one may picture the Gantt chart of production 

process. To increase the intuitiveness of job shop scheduling, as an example, Figure 5 and 6 give 

the Gantt chart of LA08 (scale of 15×5) and LA16 (scale of 10×10), which can be used as 

references for real shop implementation. In Figure 5 and 6, each row represents the loading 
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process of a machine; each block represents a single process on a machine; block width 

represents the process time; the number at top left corner of each block represents the operation 

action label; the number at top left corner of the whole figure is the makespan. Reader may check 

the process and prove the schedule is DL free. 

 

Figure 5. DL-free Schedule of LA08 (15 jobs on 5 machines) with makespan = 1314 

 

Figure 6. DL-free Schedule of LA16 (10 jobs on 10 machines) with makespan = 1543 
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CHAPTER VI.  CONCLUSION AND FUTURE RESEARCH 

In this paper, based on transition graph model, we analyzed the general pattern of high level 

DL in the context of discrete manufacturing systems, and propose the corresponding detection 

algorithms. With the help of these DL detection algorithms, we were able to develop a DL-free 

scheduling algorithm for buffer-less job shop FMSs (e.g., production plants for air-plane head or 

turbine dynamo shaft). Applying our DL-free scheduling algorithm to 40 widely-used benchmark 

problems, DL-free schedules for all the benchmark FMSs can be obtained within 1 second, with 

acceptable makespans. To the best of our knowledge, for FMSs with considerable scale, under 

the restriction of NO-buffer, those solutions have never been published in the extant literature. 

Hence, it is safe to conclude that our DL-free scheduling algorithm is applicable to the real 

implementations of job-shop FMSs. Furthermore, the basic idea of our high level DL detection 

algorithm can also be extended to other man-made “resource intensive and highly sharing” 

systems (e.g., computer operation systems, communication systems, and traffic systems), which 

could be one direction of the future works. 
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Appendix 

Representation Scheme: 

M number of Jobs in the system 

N number of resources in the system 

S number of system state in a search 

unblk[S] Set of unblocked (movable) job(s) at step S 

DLfr[S] Set of DL-free job(s) at step S 

HR(pj) the resource which job pj is holding 

FRR(pj) the resource which job pj requests next step 

SRR(pj) the resource which job pj requests two steps later 

TRR(pj) the resource which job pj requests three steps later 

SE final state of the system 

A.1 Deadlock-free Scheduling Algorithm 

The details of our deadlock free scheduling algorithm are given as follows, and readers may 

refer to the flow chart of the schedule algorithm shown in Fig.3.1: 

Step 1: System initialization. Set search index SI = 0 

Step 2: Search initialization. Set step number S = 0, backtrack number B = 0 

Step 3: From the unblocked products set of current step P_unblk[S], using DL detection 

algorithm, we exclude the product(s) which will cause deadlock or DL free unsafe state, and put 

the left products(s) into DL free products set of current step P_DLfr[S]. If P_DLfr[S] Ø, go to 

step 5. Otherwise, set B = B + 1 and check whether B reaches UBB. If B = UBB, go to step 5; if 

B<UBB, recover the system to step S-1 and set S = S – 1, then try Step 3 again. 
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Step 4: Use HNGP to select one product p from P_DLfr[S], set P_unblk[S] = P_unblk[S] – {p}. 

Move product p, set S = S + 1 and update the state of system. If S = SE, end algorithm and store 

the obtained schedule. 

Step 5: Set SI = SI + 1, if SI reaches the product number M, end the program. Otherwise, go 

back to step 2 and start another search. 

A.2 Second Level Deadlock Detection Algorithm 

Assume that the set of products processing in the system is P= {pj | j = 1, …, M} and set j=1 at 

the beginning of the algorithm. Now we describe the 2nd level deadlock detection algorithm as 

follows: 

If j>M, there is no 2nd level DL and we end the algorithm. If pj doesn’t have two more steps to 

process in future or SRR(pj) is idle, set j = j+1 and repeat (1); otherwise, we use pT to denote 

the product that occupies SRR(pj) and set FRR(pj) as central resource RC, then go to (2) 

If FRR(pT) = RC, then go to (3); otherwise go to (4) 

If SRR(pT) = HR(pj), then the system is under 2nd level deadlock status and we end the 

algorithm; if SRR(pT) is idle or the product processing in SRR(pT) has already been searched 

(that is have already been denoted by pT), then we set j=j+1 and go back to (1); else we use pT 

to denote the product processing in SRR(pT) and go back to (2) 

(4) If FRR(pT)= HR(pj) and the algorithm has at least been to step(3) once, then the system is 

under 2nd level deadlock status and end the algorithm; if FRR(pT) is idle or the product 

processing in FRR(pT) has already been searched, then we set j=j+1 and go back to (1); else we 

use pT to denote the product processing in FRR(pT) and go back to (2) 



 

 46 
 

The algorithm is in polynomial computation, since only M products in system and utmost N-1 

steps may be tried to find the conclusion (usually M is bigger than N), the computation 

complexity is O(1)->O(N2 - 2N + 1). 

A.3 Third level Deadlock Detection Algorithm 

Assume the set of products processing in the system is P= {pj | j = 1, …, M}, where N<M, N is 

the number of machine resource in system. Set j=1 at the beginning of the algorithm. Now we 

describe the algorithm to detect the first pattern of 3rd level deadlock shown in Fig.3.7 as 

follows: 

If j>M, the system is not under third level deadlock and end the algorithm, then let j=j+1 and 

repeat (1). If pj does not have three more steps to process in the future or TRR(pj) is idle, then let 

j=j+1 and go to (1), else use p to denote the product that occupies TRR(pj) and set FRR(pj) and 

SRR(pj) as FCR and SCR respectively, then go to (2) 

If FRR(pT)=SCR, then go to (3); otherwise, go to (6) 

If SRR(pT)=FCR, then go to (4); otherwise, go to (5) 

If TRR(pT)= HR(pj), then system is under 3rd level deadlock and terminate the algorithm; if 

TRR(pT) is idle or the product processing in TRR(pT) has already been searched, then set j=j+1 

and go to (1); otherwise, set pT to be the product processing in TRR(pT) and go to (7) 

If SRR(pT) is idle or the product processing in SRR(pT) has already been searched, then let 

j=j+1 and go to (1); otherwise, set pT to be the product processing in SRR(pT) and go to (2) 

If FRR(pT) is idle or the product processing in FRR(pT) has already been searched, or 

FRR(pT)= HR(pj), then let j=j+1 and go back to (1), otherwise, set pT to be the product 

processing in FRR(pT) and go to (2) 

If FRR(pT)=FCR, then go to (8); otherwise, go to (10) 
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If SRR(pT)= HR(pj), then the system is under 3rd level DL and end the algorithm; if SRR(pT) = 

SCR, then go to (9); otherwise, set pT to be the product processing in SRR(pT) and go to (7) 

If TRR(pT) is idle or the product processing in TRR(pT) has already been searched, then let 

j=j+1 and go to (1); otherwise, set pT to be the product processing TRR(pT) and go back to (7) 

If FRR(pT)= HR(pj), then the system is under 3rd level deadlock and end the algorithm; if 

FRR(pT) is idle or the product processing in FRR(pT) has already been searched, then let j=j+1 

and go back to (1); otherwise, set pT to be the product processing in FRR(pT) and go to (7) 

The algorithm is in polynomial computation, since only M products in system and utmost N-1 

steps may be tried to find the conclusion (usually M is bigger than N), the computation 

complexity is O(1)->O( (N-1)(N-2)(N-3) ). 
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