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Abstract 

In recent years, there has been much expectation that transmission expansion planning should 

address ever increasing demands for transmission services under significant and complex 

economic and regulatory uncertainties. In this paper, towards meeting the aforementioned 

expectation, we develop and analyze a real options framework that provides the valuation of a 

transmission owner’s option to expand in his/her network. What distinguishes our framework 

from the extant literature is that the evolution of the demand follows a Geometric Brownian 

motion process, it explicitly accounts for the physical flow of the electric power economically 

manifested as locational marginal prices, and it shows how the values of the expansion options 

can be determined in the transmission network. Furthermore, our framework shows how to value 

an option to expedite or delay can be determined given that a specific expansion is planned. An 

extensive numerical example is presented so as to illustrate the key features of our framework. 
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Introduction 

Since the deregulation of the US electric power of 1990’s, the transmission aspect of the 

electric power industry has been separated from the generation aspect, and the responsibilities of 

the transmission network owners have been much different from the responsibilities of 

generation unit decision makers (we will use owners and decision makers interchangeably as the 

decisions made in this paper are on behalf of the owners). For example, many generation unit 

decision makers have no obligation to serve while transmission owners are expected to address 

increasing demands and still maintain technical requirements such as reliability and stability. For 

this reason, there have been numerous sophisticated studies on transmission expansion planning 

(see e.g., Buygi et al. 2004), which is characterized by uncertainties ranging from demands to 

fuel costs, substantial and upfront expansion investment costs, and irreversibility of the 

expansion investment. 

 In often-practiced case of the hybrid merchant/regulated mechanism for the expansion 

investment, a major part of the revenue needed for expansion is collected from the market 

participants such as distribution utilities and power generators. e.g., in California, participating 

transmission owners, who obey the regulatory authority of the independent system operator, are 

allowed to collect the Transmission Access Charge (TAC; California 2014a, California 2014b). 

The other major part is through the Financial Transmission Rights (FTR’s), which depends on 

the Locational Marginal Price (LMP) differences. In this mechanism, the transmission network 

owners hold FTR’s, and sells them to market participants to generate the other major part of the 

revenue needed for expansion (see e.g., Pringles et al. 2014). 

 We note that, from the perspective of numerous transmission owners in the hybrid 

merchant/regulated mechanisms, the expansion (and when to do it given that they would do it) 

can be viewed as strategic real options offering managerial flexibility under uncertainties (see 
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e.g., Dixit and Pindyck 1994).  

 In this paper, for such owners in the hybrid merchant/regulated mechanisms, we show 

how the values of the expansion options can be determined in the transmission network. 

Furthermore, our framework shows how to value an option to expedite or delay can be 

determined given that a specific expansion is planned. This is achieved under the assumption that  

the evolution of the demand follows a Geometric Brownian motion process and there are no 

other uncertainties, and through the optimal power flow calculations leading to the appropriate 

LMP levels. 

 The rest of the paper is organized as follows. We first present a review of the relevant 

literature. Next, we explain the general framework of our paper. This is followed by an extensive 

numerical example that illustrates the key features of our framework. Finally, we make 

concluding remarks and provide a technical appendix on LMP calculations. 

Literature Review 

For electricity market, the real options approach has frequently been studied for 

generation expansion planning. As for transmission expansion planning, the real options 

approach has been less frequently studied. Of such studies on transmission expansion planning, 

there primarily are three groups of real options applications.  

In the first group, the configuration of the transmission network is simply bi-nodal (a 

network of two nodes). Hence, there is only one investment decision under consideration (i.e., to 

add a power line between the two nodes; see e.g., Abadie and Chamorro 2011).  

 The second group of studies investigates the option to defer the transmission investment. 

In this case, one can separate such studies into two subgroups based on their network 

configurations. In one subgroup, the researchers quantify the option to defer in bi-nodal networks 
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(see e.g., Blanco et al. 2009). In the other subgroup, the researchers quantify the option to defer 

in multi-node networks of three or more nodes (see e.g., Osthues et al. 2014).  

 In the third group, there exist studies focusing on special electrical devices such as 

flexible AC transmission systems (FACTS) and distributed generations. Blanco et al. (2011) 

evaluates the transmission investment in FACTS devices. In their model, transmission owner 

either invests in a transmission line or FACTS devices that relieve the transmission congestion. 

Similarly, Vasquez and Olsina (2007) focuses on the deferral effect of distributed generation in 

transmission investment. The authors claim that the owner can postpone the investment in 

transmission network by constructing distributed generation units that relieve the transmission 

congestion. 

General Framework 

In this section, we will first elaborate the revenue being generated by LMP differences, 

the binomial lattice construction for demand uncertainties. This is followed by the investment 

valuation process with a flowchart. We note that the optimal power flow (OPF) background to 

facilitate the derivation of the LMP differences is provided as an appendix. 

Revenue Generated by LMP Differences 

When generators are dispatched at optimality and if they are paid according to their own 

LMPs and the consumption centers pay for electricity according to their own LMPs, then there 

exists a surplus amount of money (see, e.g., Pe´rez-Arriaga et al. (2013), Hsu (1997)). This 

surplus results from the congestion in the network and it is generally accepted as the source of 

revenue for the network owner (see, e.g., Garcia et al. (2010), Pringles et al. (2014)). This 

revenue is modeled as in Equation (1). 
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where    denotes the LMP at node  ,    denotes the demand amount at node   and    denotes the 

dispacthed amount of power from generator at node   (at optimality of OPF problem), |  | and 

|  | denotes the set of consumption centers and generator nodes, respectively. Krause (2003) 

states that Equation (1) is always larger than zero if at least one transmission line is congested. If 

none of the power lines is congested, then the difference equals to zero. Although we cannot 

present the detail of this payment mechanism, we utilize this difference as the revenue of the 

network. We note that this revenue is hourly basis (the unit is $/h) because the unit of LMPs is 

dollars per MWh.   

Uncertainty and Discretization by Binomial Lattice 

Since the option evaluation based on a continuous stochastic process such as geometric 

Brownian motion process is difficult, we intend to use the discretized form of this process. 

Before going on the demand growth in multiple consumption centers, we focus on a demand 

evolution in a single consumption center in order to present the lattice discretization more 

clearly. After that, we introduce the multiple branch lattices for illustrating the demand growth in 

multiple consumption centers. 

Single Consumption Center 

In this section, taking into account the uncertain demand growth in a consumption center, 

we discuss the derivation of binomial lattice parameters, discount rates and the importance and 

derivation of risk-neutral probability. We will address more complex multiple consumption 

centers afterwards. 
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Derivation of Parameters for Binomial Lattice 

 One of the most commonly used discretization method is binomial lattice developed by 

Cox et al. (1979). According to this method, a variable   (in our case,   represents    where   is 

the single consumption center) has two possibilities in the next period; it either goes up or goes 

down. The change in   is determined by the multiplication factors     and    . In other 

words, it becomes either    or    with probabilities   and      , respectively (Figure 1). 

Therefore, the parameters,  ,   and   should be found.  

 

Figure 1. One-step lattice 

 Discretization of geometric Brownian motion process can be performed by considering 

the natural logarithm of the change in  , which is denoted as      . Binomial lattice matches the 

expected value and variance of      . By following the derivation procedure shown by 

Luenberger (1997), the parameters can be obtained as follows: 

     √   (2) 

      √   (3) 

   
 

 
 

 

 
(
  

 
   

 
)√   (4) 

 

where   is the volatility of the process   and    is the length of the time period in lattice. We 

remark that the probability   is derived from the discretization of geometric Brownian motion 
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process; hence, it is not risk-neutral probability. In binomial lattice calculations, risk-neutral 

probability should be used rather than  . 

Discount Rates 

A discount rate here is the interest rate used in discounted cash flow analysis to calculate 

the present value of the future cash flows. Discount rate takes into account not only time value of 

the money, but also risk included in future cash flows (see, e.g., Investopedia (2014)). 

 If it is not desired to include the risk, then it is viable to utilize the risk-free discount rate. 

Zacks (2014) states that risk-free discount rate is typically the amount that an owner expects to 

gain at the end of investing in a zero risk security. In general, the yield on a U.S. Government 

bond is accepted as risk-free discount rate.  

 In the context of company businesses, different discount rates are used for evaluating the 

projects because of the fact that projects have risk. According to Investopedia (2014), weighted 

average cost of capital is generally used in the case that project risk profile is similar to 

company's risk profile. On the other hand, if they are different, capital asset pricing model is 

frequently used to determine the project-specific discount rate. Discount rate calculated by this 

way is called risk-adjusted discount rate. 

 Risk-adjusted discount rate is defined as the sum of risk-free discount rate and risk 

premium (see, e.g., Investopedia (2014)).  Risk premium can be calculated as the (market rate of 

return - risk free discount rate) multiplied by beta of the project. More specifically, Investopedia 

(2014) defines that beta of the project represents the extend "how much a company's share price 

moves against the market as a whole".  If beta is equal to one, then they move in line with each 

other. Otherwise, if it is larger than one, then the share is said to exaggerate the movements of 

market, and if it is less than one, then it is said to be more stable. 
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Risk-Neutral Probability 

In binomial lattice calculations, risk has to be included inside the equations. Mun (2002) 

states that cash flows including risk must be adjusted so that risk can be represented. According 

to Mun (2002), there exist two methods for doing this: (i) cash flows are calculated by utilizing 

the risk-adjusted discount rate or (ii) probabilities of the cash flows are adjusted with risk and 

discount of cash flows is performed with risk-free discount rate. While original (or true) 

probabilities are taken into account during calculations in (i), risk-neutral probabilities are 

considered during calculation in (ii). The methods defined in (ii) is preferred in real options 

analysis because it is expressed that calculating different risk-adjusted discount rates in various 

nodes through binomial lattice is avoided in this case. The following simple example depicted in 

Figure 2 (see, Mun (2002)) explains how risk-neutral probability is obtained.  

 

Figure 2. Simple payoff 

Let    be the payoff of a game. The expected payoff at time 0 (  ) is simply calculated as  

                            (5) 

 

where   is the risk-free discount rate. By assuming that     , then 
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                       (6) 

 

which gives risk-neutral probability (for up movement) as 

   
     

   
 (7) 

 

where   and   are calculated by using Equation (2) and (3). Alternatively, in Wang and Min 

(2006), it is stated that risk-neutral probability can be found by replacing   in Equation (4) with 

 . We now present more general case of multiple consumption centers. 

Multiple Consumption Centers 

 If demand growth is an uncertain factor in multiple nodes, then binomial lattice turns into 

multiple branch lattice because demand in consumption center  ,   , has different drift and 

volatility parameters than those of demand in consumption center  ,   . A state in lattice consists 

of the demand vector           |  |  where    is the set of consumption centers. Hence, the 

number of branches from one point to the next point is  |  |. In lattice, to calculate the demands 

in the next period, all    and    possibilities are taken into account in a permutational manner. 

Figure 3 illustrates an example of demand evolution in two consumption centers for two periods. 



10 
 

 

Figure 3. Multiple branch lattice 

 Although finding the permutation of all    and    at the beginning of next period is easy, 

it is not easy to come up with the probabilities of the branches in multiple branch lattices similar 

to Equation (4). According to Wang and Min (2006), if there is no correlation between the 

demand growths, then the joint probabilities of the branches can be found with the multiplication 

of marginal probabilities. If there is a correlation between demand growths, then 

    ∏      

|  |

   

 
 

 |  |
∑ ∑          

|  |

     

|  |

   

             |  | (8) 

 

gives the joint probability for branch  , where     is the correlation coefficient. Moreover,       

and        are defined as follows: 

       {
                                                  
                                                    

 (9) 
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(10) 

 

 We note that in Equation (8),    
 is the probability defined in Equation (4). Since we 

need risk-neutral probabilities, we first convert    
 to the risk neutral probability    

 by replacing 

   in Equation (4) with  . Then, if we use    
 instead of    

 in Equation (8), we can obtain risk-

neutral probability of branch  .  

 Before going into detail of transmission investments evaluation, in Table 1, we present 

the notations frequently used during creation of the evaluation lattices. As mentioned earlier, we 

now elaborate on the investment valuation process. 

Investment Valuation Process 

 To facilitate the understanding of the critical flowchart in this subsection, we first provide 

the following list of notations. 

Table 1 
Notations for the Investment Valuation Process 

Notation Explanation 

  A period in multiple branch lattice 

  Last period 

  A state in multiple branch lattice. For each  , its value starts from 1 at the most 

upper node and increments through the most bottom node. For example, in Figure 

3,             from above through bottom in the intermediate set of nodes.   

    Demand vector at the beginning of period   and state   in demand evolution lattice 

    
 Successor states of     at the beginning of the next period    . For instance, the 

cardinality of     
 is 4 in Figure 3. 

   Risk-neutral probability of the successor states (branches)       
 

     The revenue per hour ($/h), which is the results of Equation (1), for a given 

demand vector    . The unit is $/h because the unit of LMP is $/MWh. 

  The fixed operation and maintenance cost ($/h) 

  The number of hours in    

      Net present value of the gained total profit from the beginning of the period   to 

the end of period   at state   ($/year) 
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    Net present value of the network in NPV lattice at the beginning of period   and 

state   ($). Thus, as opposed to      , it includes additionally risk-neutral 

expected value of the next period. (see Equation (13)) 

    Net present value of the network in NPV lattice at the beginning of period   and 

state   ($) 

    Decommissioning cost of the network ($) 

  Supplementary revenue for the owner ($) 

  Initial investment cost ($) 

 

 Given the notations in Table 2, the general process for the investment valuation is as 

follows. For a given network, an investment alternative is defined as adding a power line 

between selected two nodes. In the valuation approach, the investment alternatives between each 

pair of nodes are evaluated separately.  

 The general flowchart for evaluating all investment alternatives existing in the network 

can be seen in Figure 4.  

 Box number <1>: In this step, an investment alternative such as adding a power line 

between node 1 and 2 in the network is selected. The set of investment alternatives are defined as 

the collection of each investment alternative between a pair of nodes in the network.    

 

Figure 4. Flowchart for investment alternatives evaluation 
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  Box number <2>: In this step, NPV lattice for the network without investment is 

created. Constructing the binomial lattice starts from backward. Thus, terminal node values (   ) 

should be determined, at first. At the terminal nodes, LMP-based revenues and corresponding 

profits are calculated for one year. For the corresponding demand values at the beginning of 

period   and state  , we calculate the LMPs by solving the OPF problem. Then, by using 

Equation (1), network revenue denoted by      is computed and       is calculated by using 

Equation (11). In addition to       for the terminal node, we add the discounted 

decommissioning cost with Equation (12). Thus, we obtain     for the terminal node.  

                           (11) 

                     (12) 

 For the intermediate node, after calculating the corresponding       with Equation (11), 

we add it the risk neutral expected value of the next period successor states (corresponding 

      ) by using Equation (13). Thus, we find the NPV value of the network at present time 

denoted by     by the recursive relation presented in Equation (13). 

           ( ∑         

      

)           (13) 

 Box number <3>: This procedure has a sub-procedure illustrated in Figure 5. Option   

represent the investment made at the beginning of the period  . Therefore, for a model horizon 

being equal to  , the owner has   options to evaluate. In each option, at the end of period  , a 

decommissioning cost is incurred. Moreover, we assume that transmission access charge   and 
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initial investment cost   is incurred whenever an investment is made. 

 

Figure 5. Flowchart of evaluation of options existing in one investment alternative 

 Box number 2: Option   represents that an investment is made at the beginning of period 

   . Creating binomial lattice again starts with the terminal node and proceeds by backward 

induction. Thus, at the terminal node, we can still use the same equations, Equation (11) and 

(12). However, we note here that since an investment is made before  , LMPs and LMP-based 

revenue (    ) calculations are performed with respect to the new network configuration. For an 

intermediate node after  , we can still use the same equation, Equation (13). We again note that 

during calculating the LMPs and LMP-based revenues, new network configurations should be 

taken into account. At the beginning of period  , since an investment is made at that time point, 

we should add   and subtract   in Equation (13). For period before  , we can still use Equation 

(13), but we note that since an investment is not available at that time point, LMPs and LMP-

based calculations are performed by considering the network configuration without investment. 

Thus, with the recursive relations,     is obtained with the investment made at the beginning of 
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period  .  

Box number 3: The value of the option   is simply calculated as the difference between     of 

NPV lattice with option   and     of NPV lattice without investment. If the latter one is larger 

than the former one, then we say that value of option   is zero.  

 Box number 4: Option   represents the situation in which an investment is made at the 

beginning of period  . In that case, at the terminal node, the owner still collects the revenue 

based on LMP differences, represented by Equation (11). Since decommissioning cost is 

incurred at the end of period  , the corresponding cost should still be considered in Equation 

(12). However,   must be added and   must be subtracted in Equation (12) because the owner 

makes an investment at the beginning of period  . We note that, for option  , LMPs and LMP-

based revenue calculations are all performed with the upgraded network configuration at the 

terminal node. For the intermediate nodes, we can still use Equation (13), but network 

configuration without investment should be taken into account during calculation of LMPs and 

LMP-based revenues. Thus, this recursive relations, we provide     value at the present time 

with option  . 

 Box number 5: There does not exist any difference between methods in box number 3 

and box number 5. In other words, the value of option   is calculated as the difference between  

    of NPV lattice with option   and     of NPV lattice without investment. If the former one is 

less than the latter one, then the value of option   is said to be zero.  

 Box number 6: In this step, values of all options are evaluated. Since it is better to have 

larger value, option with the maximum value is preferred. It also reveals the optimal timing of 

the investment.  

 Now, we turn to the upper procedure depicted in Figure 4. In box number <4>, 
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investment alternatives are compared according to their optimal timing and their values. 

Numerical Example 

 In this section, a small but comprehensive numerical example on three-node network is 

presented. As can be seen in Figure 6, there are two generators at node 1 and 2. The capacity of 

the first generator    
̅̅ ̅  is 100 MW and its generation cost (  ) is $ 40/MWh. The second 

generator capacity    
̅̅ ̅  is 200 MW and its generation cost (  ) is $ 30/MWh. We note that 

supply curves of these generators are assumed to be linear and not to change for the sake of 

simplification (see, e.g., California ISO (2005)). In other words, generator 1 is willing to produce 

each additional unit of electricity at $ 40/MWh up to 100 MW and generator 2 is willing to 

produce each additional unit of electricity at $ 30/MWh up to 200 MW.  

 The capacity of the power lines     
̅̅ ̅̅     

̅̅ ̅̅     
̅̅ ̅̅   are 30 MW, 36 MW and 35 MW, 

respectively. There is a consumption center at node 3 and the load amount (  ) is 52 MW. 

Susceptance of the power lines are assumed to be equal. 

 

Figure 6. Three-node example 

 Since there exist two generators in adjacent two nodes, it results in counterflow on the 

power line connecting node 1 and 2 (For the detail of this issue, please see Appendix showing 
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the formation of OPF formulation for the existing network). Thus, in this numerical example, we 

assess the impact of counterflow on profit and the value of the expansion option. 

OPF Problem 

 Throughout the numerical example, we solve the OPF problems by using the power flow 

equations analyzed by Bushnell and Stoft (1995). In Bushnell and Stoft (1995), it is stated that 

network losses are negligible, voltage support and reactive power are not represented. Thus, 

linear power equations can be written by using the superposition theorem. This theorem says that 

net power amount flowing on the lines can be found by considering only one generator in each 

step. After finding the individual power flows triggered by only one generator, net power flows 

can be found by adding these individual amounts algebraically. For the detail regarding how to 

construct OPF problem analyzed by Bushnell and Stoft (1995), please see Appendix.  

Demand Lattice 

 Since there is one consumption center in the network, it is legitimate to use binomial 

lattice. We assume that length of period (  ) in binomial lattice is 1 year and modeling horizon is 

2 years. In Jin et al. (2011), drift and volatility of demand growth are estimated by analyzing real 

data from Midcontinent Independent System Operator website. Drift ( ) and volatility ( ) are 

given as 0.0072 and 0.0094, respectively. However, in this numerical example, volatility was 

changed a bit because of maintaining the consistency with other network parameters such as 

capacity of the power lines. Therefore, we use volatility being equal to 0.13. We accept that 

initial demand is 52 MW. By using Equations (2) and (3),   and   values are calculated as 1.138 

and 0.878. Thus, for demand evolution, binomial lattice illustrated in Figure 7 is created.  

 52 MW in demand lattice represents the beginning of the first period and 59.22 (or 45.66 

MW) represents the beginning of the second period. We again note that we denote the period 
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with   and state with  .     denote the demand value at the beginning period   and at state  . 

Thus,          ,           and       . 

 

Figure 7. Demand evolution lattice 

Investment Valuations 

 As can be seen in Figure 6, there are three investment alternatives; between node 1 and 3, 

between node 1 and 2 and between node 2 and 3. In this section, we create the NPV lattice for 

the network without investment at first. After that, for each investment alternative, two options 

(investment made at the beginning of the first year and investment made at the beginning of the 

second year) are evaluated.  

NPV Lattice Without Investment  

 Demand lattice triggers the NPV lattice without investment by matching each node of 

demand lattice to the corresponding node of the NPV lattice except for the terminal nodes. At the 

end of second year, network is removed and decommissioning cost in incurred. In this example, 

we assume that decommissioning cost of the existing network is $ 250,000. 

 We accept that fixed operation and maintenance cost ( ) is $ 30/hour and risk-free 

discount rate ( ) is 5 percent. Moreover, by using Equation (7) (it is enough to use Equation (7) 

instead of Equation (8) because we have just two branches in lattices) and   and   values being 

equal to 1.138 and 0.878, respectively; we calculate the risk-neutral probability of up movement 

( ) as 0.66. Finally, we note that the number of hours in one year ( ) is 8760.  
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 The result of LMP calculations for the all nodes and the network revenue per hour (    ) 

is given in Table 2. We note that the units of     and    is MW, the unit of    is $/MWh and the 

unit of      is $/h. Moreover, we remark that      is calculated as the difference between 

      and           (see Equation (1). We note that we multiply    with     because 

demand is at node 3). For the calculation details regarding LMPs, please see Appendix.   

Table 2 

LMP calculation - without investment 

                                            

2 1 59.22 40 30 50 13.44 45.78 2961 1911 1050 

2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 

1 1 52 30 30 40 0 52 2080 1560 520 

  

 By using Equation (11),       (net present value of total profit gained in one year) for 

the nodes of binomial lattice can be calculated in Table 3. We remark the unit of       is $/year. 

Table 3 

NPV calculation - without investment 

               

2 1 1050 8,509,714 

2 2 0 -250,285 

1 1 520 4,088,000 

 

 For the final lattice, for    , we have to incur decommissioning cost by adding 

                    . Thus, for        , NPV with decommissioning cost is $ 

8,271,619. For        , NPV with decommissioning cost $ -488,381. For        , in 

addition to       value in Table 3, we have to add risk-neutral expected value of the next 

period. Thus, 
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 Therefore, following lattice without investment can be obtained: 

 

Figure 8. NPV lattice without investment ($)  

NPV Lattice - Investment Between Node 1 and 3 

Option 1 (Investment at the beginning of the first period) 

 We assume that a power line is added between node 1 and 3 at the beginning of the first 

period. We further assume that the capacity of the new line is 4 MW and it has the same 

susceptance with the existing power line. With this upgrade, fixed operation and maintenance 

cost increase to $ 40/hour. The updated network can be seen in Figure 9. Since a new line is 

added to the network, underlying OPF problem formulation changes. For the detail of new OPF 

formulation, please see Appendix. 

 

Figure 9. Upgraded network - investment between node 1 and 3 
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 LMP calculations for the upgraded network are given in Table 4. This table has the same 

remarks with Table 2 about the unit of values. For the detail regarding the LMP calculations in 

Table 4, please see Appendix.  

Table 4 

LMP calculation - investment between node 1 and 3, option 1 

                                            

2 1 59.22 40 30 45 1.33 57.89 2664.90 1789.90 875 

2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 

1 1 52 30 30 30 0 52 1560 1560 0 

  

 By using Equation (11),       for the nodes of binomial lattice can be calculated as 

shown in Table 5.  

Table 5 

NPV calculation - investment between node 1 and 3, option 1 

               

2 1 875 6,966,285 

2 2 0 -333,714 

1 1 0 -333,714 

 

 We note that decommissioning cost of the network with a new power line, is assumed to 

be $ 300,000. We also remark that decommissioning cost of the network with the new line is 

larger than that of the network before investment. 

 For the final lattice, for    , we have to incur decommissioning cost by adding 

                    . Thus, for        , NPV with decommissioning cost is $ 

6,680,571. For        , NPV with decommissioning cost $ -619,429. For        , in 

addition to       value, we have to add transmission access charge (       ) and initial 

investment cost (       ) as well as risk-neutral expected value of the next period. Thus, 
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Therefore, following lattice with option 1 can be obtained: 

 

Figure 10. NPV lattice ($) - investment between node 1 and 3, option 1 

 

Since $ 5,660,147 is less than $ 9,123,428, the value of option 1 is zero for this investment 

alternative. 

Option 2 (Investment at the beginning of the second period) 

 We assume that a power line is added between node 1 and 3 at the beginning of the 

second year. Moreover, we assume that the capacity of this line is 4 MW and it has the same 

susceptance value.  

 Table 6 gives the corresponding LMPs and LMP-based revenues. This table has the same 

remarks with Table 2 about the unit of values. We note here that with demand value being equal 

to 52 MW, LMP calculations are the same 'without investment' situation because there is no 

investment at that time. For the detail regarding the LMP calculations in Table 6, please see 

Appendix. 

Table 6 

LMP calculation - investment between node 1 and 3, option 2 

                                            

2 1 59.22 40 30 45 1.33 57.89 2664.90 1789.90 875 

2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 

1 1 52 30 30 40 0 52 2080 1560 520 

 By using Equation (11),       for the nodes of binomial lattice can be calculated as 

shown in Table 7 (but   is $ 40/h now for the second period).  
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Table 7 

NPV calculation - investment between node 1 and 3, option 2 

               

2 1 875 6,966,285 

2 2 0 -333,714 

1 1 520 4,088,000 

 

 For the final lattice, for    , we have to incur decommissioning cost by adding 

                    . Moreover,   and   should be added. Thus, for        , 

                                                 

For         

                                                

For        , in addition to       value, we have to add risk-neutral expected value of the 

next period. Thus, 

                                                              

Therefore, following lattice with option 2 can be obtained: 

 

Figure 11. NPV lattice ($) - investment between node 1 and 3, option 2 

 Since $ 9,986,624 is larger than $ 9,123,428 (    value of NPV lattice without 

investment), option 2's value is found as the difference between these two values; that is, $ 

863,196. This is the value of investing in the second period. By comparing these two options, it 

is clear that option 2 turns out to be valuable. 

NPV Lattice - Investment Between Node 1 and 2 

Option 1 (Investment at the beginning of the first period) 
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 We consider that an investment is made between node 1 and 2 at the beginning of the 

first year. For the consistency with the previous investment's parameters, the capacity of the 

power line is assumed to be 4 MW and the susceptance of the new line is assumed to be equal to 

that of the current line. Similarly, we consider that operation and maintenance cost is again $ 

40/h. The upgraded network can be seen in Figure 12. Moreover, updated power flow equations 

can be observed in Appendix. 

 

Figure 12. Upgraded network - investment between node 1 and 2 

 

 LMP calculations for the upgraded network are given in Table 8. This table has the same 

remarks with Table 2 about the unit of values. For the detail regarding the LMP calculations in 

Table 8, please see Appendix. 

Table 8 

LMP calculation - investment between 1 and 2, option 1 

                                            

2 1 59.22 40 30 60 2.66 56.56 3553.20 1803.20 1750 

2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 

1 1 52 30 30 30 0 52 1560 1560 0 

 

 By using Equation (11),       for the nodes of binomial lattice can be calculated as 
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shown in Table 9.  

Table 9 

NPV calculation - investment between 1 and 2, option 1 

               

2 1 1750 14,266,285 

2 2 0 -333,714 

1 1 0 -333,714 

 

 We note that decommissioning cost of the network is the same as with the previous 

investment. That is, we accept the same decommissioning cost, which is equal to $ 300,000. 

 For the final lattice, for    , we have to incur decommissioning cost by adding 

                    . Thus, for        , NPV with decommissioning cost is $ 

13,980,571. For        , NPV with decommissioning cost $ -619,429. For        , in 

addition to       value, we have to add transmission access charge (       ) and initial 

investment cost (       ) as well as risk-neutral expected value of the next period. Thus, 

                                                                     

 Therefore, following lattice with option 1 can be obtained: 

 

Figure 13. NPV lattice ($) - investment between node 1 and 2, option 1 

 Since $ 10,243,941 is larger than $ 9,123,428 (    of NPV lattice without investment), 

the value of the option 1 is found as $ 1,120,513. This is the value of investing between node 1 

and 2 at the beginning of the first year.  

Option 2 (Investment at the beginning of the second period) 
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 We assume that a power line is added between node 1 and 2 at the beginning of the 

second year. Moreover, we assume that the capacity of this line is 4 MW and it has the same 

susceptance value.  

 Table 10 gives the corresponding LMPs and LMP-based revenues. This table has the 

same remarks with Table 2 about the unit of values. We note here that with demand value being 

equal to 52 MW, LMP calculations are the same with 'without investment' situation because 

there is no investment at that time. For the detail regarding the LMP calculations in Table 10, 

please see Appendix. 

Table 10 

LMP calculation - investment between node 1 and 2, option 2 

                                            

2 1 59.22 40 30 60 2.66 56.56 3553.20 1803.20 1750 

2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 

1 1 52 30 30 40 0 52 2080 1560 520 

 By using Equation (11),       for the nodes of binomial lattice can be calculated as 

shown in Table 11 (but   is $ 40/h now for the second period). 

Table 11 

NPV calculation - investment between node 1 and 2, option 2 

               

2 1 1750 14,266,285 

2 2 0 -333,714 

1 1 520 4,088,000 

 

 For the final lattice, for    , we have to incur decommissioning cost by adding 

                    . Moreover,   and   should be added. Thus, for        , 
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 For         

                                                

 For        , in addition to       value, we have to add risk-neutral expected value 

of the next period. Thus, 

                                                                

 Therefore, following lattice with option 2 can be obtained: 

 

Figure 14. NPV lattice ($) - investment between node 1 and 2, option 2 

 Since $ 14,570,417 is larger than $ 9,123,428 (    of NPV lattice without investment), 

the value of option 2 is found as $ 5,446,990. Thus, it can be said that the value of investing 

between node 1 and 2 at the beginning of the second year is $ 5,446,990. Since the value of the  

option 2 is larger than that of option 1, option 2 becomes more likely to be implemented. 

NPV Lattice - Investment Between Node 2 and 3 

Option 1 (Investment at the beginning of the first period) 

 We consider that another power line is added between node 2 and 3. For maintaining the 

consistency with the previous investment alternatives, the capacity of the new line is assumed to 

be 4 MW and susceptance of it is equal to that of the existing power line between node 2 and 3. 

The upgraded network can be seen in Figure 15. Furthermore, the new power flow formulation 

can be checked in Appendix.  
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Figure 15. Upgraded network - investment between node 2 and 3 

 

 For the network with the corresponding new line, LMP calculations are given in Table 

12. This table has the same remarks with Table 2 regarding the unit of values. For the detail of 

LMP calculations, please see Appendix.  

Table 12 

LMP calculation - investment between node 2 and 3, option 1 

                                            

2 1 59.22 40 30 50 20.94 38.28 2961 1986 975 

2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 

1 1 52 40 30 50 6.5 45.5 2600 1625 975 

 

 By using Equation (11),       for the nodes of binomial lattice can be calculated as 

shown in Table 13.  

Table 13 

NPV calculation - investment between node 2 and 3, option 1 

               

2 1 975 7,800,571 

2 2 0 -333,714 

1 1 975 7,800,571 
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 For the final lattice, for    , we have to incur decommissioning cost by adding 

                    . Thus, for        , NPV with decommissioning cost is $ 

7,514,857. For        , NPV with decommissioning cost $ -619,429. For        , in 

addition to       value, we have to add transmission access charge (       ) and initial 

investment cost (       ) as well as risk-neutral expected value of the next period. Thus, 

                                                                     

 Therefore, following lattice with option 1 can be obtained:  

 

Figure 16. NPV lattice ($) - investment between node 2 and 3, option 1 

 

 Since $ 14,318,295 is larger than $ 9,123,428 (    of NPV lattice without investment), 

option 1's value is found as $ 5,194,868. This is the value of investing between node 2 and 3 at 

the beginning of the first year.  

Option 2 (Investment at the beginning of the second period) 

 We assume that a power line is added between node 2 and 3 at the beginning of the 

second year. Moreover, we assume that the capacity of this line is 4 MW and it has the same 

susceptance value.  

 Table 14 gives the corresponding LMPs and LMP-based revenues. This table has the 

same remarks with Table 2 about the unit of values. We note here that with demand value being 

equal to 52 MW, LMP calculations are the same 'without investment' situation because there is 
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no investment at that time. For the detail regarding the LMP calculations in Table 14, please see 

Appendix. 

Table 14 

LMP calculation - investment between node 2 and 3, option 2 

                                            

2 1 59.22 40 30 50 20.94 38.28 2961 1986 975 

2 2 45.66 30 30 30 0 45.66 1369.80 1369.80 0 

1 1 52 30 30 40 0 52 2080 1560 520 

 By using Equation (11),       for the nodes of binomial lattice can be calculated as 

shown in Table 15. (but   is $ 40/h now for the second period). 

Table 15 

NPV calculation - investment between node 2 and 3, option 2 

               

2 1 975 7,800,571 

2 2 0 -333,714 

1 1 520 4,088,000 

 

 For the final lattice, for    , we have to incur decommissioning cost by adding 

                    . Moreover,   and   should be added. Thus, for        , 

                                                 

 For         

                                                

 For        , in addition to       value, we have to add risk-neutral expected value 

of the next period. Thus, 

                                                               

 Therefore, following lattice with option 2 can be obtained: 
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Figure 17. NPV lattice ($) - investment between node 2 and 3, option 2 

 Since $ 10,510,486 is larger than $ 9,123,428 (    of NPV lattice without investment), 

value of option 2 is found as $ 1,387,058. This is the value of investing between node 2 and 3 at 

the beginning of second year. Among two options, first one is more preferable because it has 

larger value. 

 After all these calculations, we can present Table 16 as a summary for all investment 

alternatives. 

Table 16 

Investment alternatives, their values and times 

Investment Alternative Value Timing of the Investment 

Node 1 - 3 $ 863,196 2 

Node 1 - 2 $ 5,446,990 2 

Node 2 - 3 $ 5,194,868 1 

 

 The owner has two different flexibilities. One is that he/she can expand the network or 

not because expansion is not an obligatory issue. The other flexibility is that if the owner decides 

to invest, he/she can defer the investment, which means he/she can invest at the beginning of any 

year.  

 Investment made between node 2 and 3 behaves differently as opposed to other 

investment alternatives. Similar to the investment made between node 1 and 2, expansion has 
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nonzero value in both periods. However, investing at the beginning of the first year is the most 

preferable because more revenues are gained. This interesting observation results from the 

following issue: Since added power line has the same susceptance (thus total susceptance is 

doubled on that circuit), it dramatically changes the network configuration and more power tries 

to flow on that circuit. However, since the capacity of the new line is very low (4 MW) with 

respect to the existing power line (35 MW), the congestion occurs and the degree of congestion 

becomes more than that of congestion without investment. That results in the advantageous of 

investing between node 2 and 3 at the beginning of the first year. Therefore, there is no deferring 

option value. We note that additional observations on the results of Table 16 can be made in a 

similar fashion. 

Conclusion 

In this paper, we developed and analyzed a real options framework that provides the 

valuation of a transmission owner’s option to expand in his/her network. Specifically, under the 

assumption that the evolution of the demand follows a Geometric Brownian motion process, our 

framework explicitly accounted for the physical flow of the electric power - economically 

manifested as locational marginal prices. Through this framework, we showed how the values of 

the expansion options can be determined in the transmission network. Moreover, given that a 

specific expansion is already planned, we showed how to value an option to expedite or delay. 

An extensive numerical example was provided so as to illustrate the key features of our 

framework with interesting managerial insights. 

 We note that the framework in this paper can be used as a basis for several expanded 

studies. For example, additional uncertainties such as fuel costs and regulatory changes can be 

incorporated. Also, more computationally intense models can be considered where the number of 
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periods is into the hundreds (e.g., a 10-year span with a potential decision point in each month). 

Through such realistic extensions, we hope that this line of study will be helpful in understanding 

the critical issues in transmission expansion planning faced with substantial and increasing 

uncertainties in the near future. 
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Appendix: Derivation of LMP Differences 

OPF Problem 
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For the detail of OPF problem, please see the relevant references Kirschen and Strbac (2004) and 

McCalley (2007). 

Approximation of AC Power Flow Equations 

For the detail regarding the approximation procedure, please see the relevant references Kirschen 

and Strbac (2004) and McCalley (2007).  

OPF Formulation for the Network Without Investment  

As stated in the main text, it is assumed that network losses are negligible, voltage drops and 

reactive powers are not represented (see e.g., Bushnell and Stoft (1995), Kirschen and Strbac 

(2004)). Thus, we are allowed to use the linear power flow equations found by dividing the 

power dispatched from one generator with respect to the path's total susceptance (Bushnell and 

Stoft (1995) explains this principle by using admittance. However, admittance and susceptance 

are equivalent in this context because we are just worried about the easiness of flow on the 

power lines. Therefore, it does not matter to use admittance or susceptance in this context). This 

principle is also known as power transfer distribution factors. Therefore, superposition principle 

can be utilized. In this principle, only one generator  is taken into for each step and power 

amounts on the lines are found. At the end, power amounts on the lines are summed algebraically 

and net power amounts are obtained.   
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 In this example, we assume that the direction of power flows occurs as seen in above 

figure. Let's consider the generator 1, at first. If power is dispatched from this generator, then it 

flows in two paths: node 1 to 3 and node 1 to 2 to 3. If two power lines are connected serial, then 

total susceptance is found by  

 

    
 

 

   
 

 

   
 

 

 
 

 

 
 

 

 
      

 

 
 

where      denotes the total susceptance of path from node 1 to 2 to 3,     denotes the 

susceptance of power line connecting node 1 and 2 and     denotes the susceptance of power 

line connecting node 2 and 3. Here, we denote one unit susceptance as  . Let    and    denote 

the voltage at node 1 and 3, respectively. By using the Ohm's law, we can write that 

      
   

   
 

    

    
 

   

 
 

    

 
 

 

where     denotes the power flow from node 1 to 3 and      denotes the power flow from node 

1 to 2 to 3. Therefore, from the above equation, we can say that          . Hence, following 

power flow equations can be written: 

    
 

 
          

 

 
          

 

 
   

where    denotes the dispatch amount of generator at node  . Let's now consider the second 

generator. If power is dispatched from the generator, then it flows in two paths: from node 2 to 1 

to 3 and from node 2 to 3. By using the Ohm's law, we can write that  

      
   

   
 

    

    
 

   

 
 

    

 
 

           

 Hence, power flows equations can be written in the following form: 
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 By summing up these power flows, one can reach the net power amounts as follows: 

    
 

 
   

 

 
   

    
 

 
   

 

 
   

    
 

 
   

 

 
   

 We note that net power flows on the line connecting node 1 and 2 have reverse direction. 

Thus, the sign of these power flows are reverse. In fact, the power flows on the line connecting 

node 1 and 2 do not cancel each other. Rather, superposition principle is used for finding the 

actual power flow on the line. Thus, we can call the individual power amounts triggered by each 

generator as fictitious (see e.g., Kuphaldt (2006)).  

 Thermal limit constraints of the power lines and capacity constraints for the generator are 

added.  

           

           

           

         

         

 Since we do not know right direction of power flows on the lines, we add the capacity of 

the power lines with both negative and positive signs. Finally, the demand amount should be 

equal to the total amount of power dispatched. Thus, as a final equation, we add the following 

constraint: 
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 The objective of the OPF problem is to minimize the generation costs. Thus, the objective 

function is  

   
     

          

LMP and LMP-based Revenue Calculation Without Investment 

We remind that a demand value is denoted by     at the beginning of period   and state  .  

                       

 Solution of OPF: We consider at first the cheapest generator (generator 2). If all 59.22 

MW is dispatched from this generator, then             ,               and     

        . However,        
̅̅ ̅̅ . Thus, we have to increase the dispatch amount of generator 1 

and simultaneously decrease the dispatch amount of generator 2. Let     and     be the change 

in dispatch of generators 1 and 2, respectively. Thus, it should be           and  
 

 
    

 

 
              . The solution of this set of equations are           and     

      . Thus,             and            . Since the power flows on the other lines 

resulting from the dispatch do not violate the capacity limits, we can say that this is the optimal 

solution. 

 LMP at node 1: In order to calculate LMP at node 1, we increase the load amount at this 

node. After that, we at first check the cheapest generator (generator 2) to supply this additional 

load. If the dispatch amount of this generator is increased by 1 MW, then 
 

 
 MW power flows 

from node 2 to node 1. In this case,              which violates    
̅̅ ̅̅ . Thus, we check the 

second cheapest generator in order to supply 1 MW additional load. Since remaining capacity of 

this generator is sufficient for supplying, then this generator is dispatched. The change in total 
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system cost is $ 40/h, and thus, LMP at node 1 is $ 40/MWh. 

 LMP at node 2: We increase load amount at node 2. At first, the cheapest generator 

should be checked to supply 1 MW load. Since the remaining capacity of this generator is 

sufficient for supplying, then this generator is dispatched. The change in total system cost is $ 

30/h and LMP at this node is $ 30/MWh. 

 LMP at node 3: The load amount at this node is increased by 1 MW. We check the 

cheapest generator at first. It is observed that if 1 MW load is supplied by this generator, then 

         . Since        
̅̅ ̅̅ , it means that we cannot dispatch the generator 2 on its own. 

Secondly, we have to check the first generator to supply 1 MW load. If the dispatch of this 

generator is increased by 1 MW, then          , which also violates    
̅̅ ̅̅ . Then, it means that 

we cannot dispatch this generator by its own. At this point, we find a combinational dispatch of 

the generators. Let     and     be the changes in dispatch of the generators 1 and 2, 

respectively. Then, 

          

 

 
    

 

 
      

where first equation represents that change in total dispatch should be equal to one additional 

demand and second equation represents that power flow on the line connecting node 2 and 3 

must stay at 35 MW. If we solve this set of equations, we get       and       . Thus, the 

change in total system cost is           ⁄            ⁄         and LMP at 

this node is $ 50/MWh. 

 Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding LMPs at each node, demand value and the dispatch amount of the 

generators:      ,      ,      ,         ,          and         .  By using 
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Equation (1) and these values, network revenue denoted by      in the main text are calculated 

as $ 1050/h.  

                       

 Solution of OPF: We consider at first the cheapest generator (generator 2). If all 45.66 

MW is dispatched from this generator, then             ,               and     

        . Since none of these power flows violates the capacity limits of the corresponding 

power lines, this is accepted as optimal solution. Thus, at optimality,         and    

        .  

 LMP at node 1: We increase the load amount at node 1. After that, we at first check the 

cheapest generator to supply this additional load. If the dispatch amount of this generator is 

increased by 1 MW, then 
 

 
 MW flows from node 2 to 3 to 1. Additionally, 

 

 
 MW power flows 

from node 2 to node 1 directly. In this case,           ,           and          . Since 

none of these values violates the capacity limits of the corresponding power lines, generator 2 

can be dispatched to supply the additional load at node 1. Thus, the change in total system cost is 

$ 30/h, and thus, LMP at node 1 is $ 30/MWh. 

 LMP at node 2: We increase load amount at node 2. At first, the cheapest generator 

should be checked to supply 1 MW load. Since the remaining capacity of this generator is 

sufficient for supplying, then this generator is dispatched. The change in total system cost is $ 

30/h and LMP at this node is $ 30/MWh. 

 LMP at node 3: The load amount at this node is increased by 1 MW. We check the 

cheapest generator at first. It is observed that if 1 MW load is supplied by this generator, then 

            ,               and          . Since none of these violates the 

capacity limits of the corresponding power lines, generator 2 can be dispatched to supply the 
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additional load at node 3. Thus, the change in total system cost is $ 30/h and LMP at this node is 

$ 30/MWh. 

 Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding LMPs at each node, demand value and the dispatch amount of the 

generators:      ,      ,      ,         ,      and         .  By using 

Equation (1) and these values, network revenue denoted by      in the main text are calculated 

as $ 0/h. 

                   

 Solution of OPF: We consider at first the cheapest generator. If all 52 MW is dispatched 

from this generator, then             ,               and             . Since 

none of the power flows violates the capacity limits of the corresponding power lines, this is 

accepted as optimal solution. Thus, at optimality,         and         .  

 LMP at node 1: We increase the load amount at node 1. After that, we at first check the 

cheapest generator to supply this additional load. If the dispatch amount of this generator is 

increased by 1 MW, then 
 

 
 MW flows from node 2 to 3 to 1. Additionally, 

 

 
 MW power flows 

from node 2 to node 1 directly. In this case,           ,           and          . 

Since none of these values violates the capacity limits of the corresponding power lines, 

generator 2 can be dispatched to supply the additional load at node 1. Thus, the change in total 

system cost is $ 30/h, and thus, LMP at node 1 is $ 30/MWh. 

 LMP at node 2: We increase load amount at node 2. At first, the cheapest generator 

should be checked to supply 1 MW load. Since the remaining capacity of this generator is 

sufficient for supplying, then this generator is dispatched. The change in total system cost is $ 

30/h and LMP at this node is $ 30/MWh. 
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 LMP at node 3: The load amount at this node is increased by 1 MW. We check the 

cheapest generator at first (generator 2). It is observed that if 1 MW load is supplied by this 

generator, then 
 

 
 MW additional power flows on the line from node 2 to 3. Thus,     

        . Since        
̅̅ ̅̅ , it means that we cannot dispatch the generator 2 on its own. 

Secondly, we have to check the first generator to supply 1 MW load. If the dispatch of this 

generator is increased by 1 MW, then              
̅̅ ̅̅ . Thus, additional load at node 3 can 

be supplied from generator 1. The change in total system cost is $ 40/h and LMP at this node is $ 

40/MWh. 

 Network Revenue: In summary, at the end of all these calculations, the following values 

are obtained regarding LMPs at each node, demand value and the dispatch amount of the 

generators:      ,      ,      ,      ,      and      .  By using Equation (1) 

and these values, network revenue denoted by      in the main text are calculated as $ 520/h. 

 For the upgraded network with investment, same procedure can be followed for 

calculating the LMPs and LMP-based revenues.   

OPF Formulation for the Network With Investment Between Node 1 and 3 

The same procedure with 'without investment' case can be followed. However, the susceptance 

of the power line between node 1 and 3 is now doubled.   

OPF Formulation for the Network With Investment Between Node 1 and 2 

The same procedure with 'without investment' case can be followed. However, the susceptance 

of the power line between node 1 and 2 is now doubled. 

OPF Formulation for the Network With Investment Between Node 2 and 3 

The same procedure with 'without investment' case can be followed. However, the susceptance 

of the power line between node 2 and 3 is now doubled. 


