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This chapter presents the unique challenges encountered, 
difficult trade-offs required, and promising techniques em-
ployed when moving cognitive state assessment from the la-
boratory to a mobile field environment. 

Introduction 
ork in the field of augmented cognition began by classifying aspects of 
cognitive processing (attention, working memory, executive function, and 
sensory processing) with well-defined, well-understood laboratory tasks 

(often referred to informally as “Psych 101” tasks). As researchers have moved from 
the laboratory environment to the field environment, they have introduced the artifacts 
(motion, electrical, networking traffic, and disconnect) and stressors (information over-
load, physical load, competition, and threat of pain) inherent in some operational envi-
ronments to which augmented cognition systems would be transitioned. The move 
from the laboratory to mobile field environments brings a number of unique 
challenges that must be addressed if cognitive state assessment is to be 
used successfully in task domains that require the operator to be mobile. 
Tough sacrifices need to be made, with limitations on the sensors to be used, 
processing power, and knowledge of the task environment. Therefore, unique tech-
niques must be developed to enable this technology to move beyond sedentary opera-
tor domains. 

W 

Adaptive Automation  
Adaptive automation, in which the automation adapts to the current task environment 
during task execution, either can make a certain component of a task simpler or can aid 
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with adaptive task allocation, shifting a task from a larger multitask context to automa-
tion (Parasuraman, Mouloua, & Hilburn, 1999). Adaptive systems must make timely 
decisions on how best to use varying levels of automation to provide support to hu-
mans. For an adaptive system to decide when to intervene, it must have some model of 
the context of operations, be it a functional model of system performance or possibly a 
model of the operator’s functional state.  

Many adaptive systems derive their inferences about the cognitive state of the operator 
from mental models, performance on the task, or external factors related directly to the 
task environment (Wickens & Hollands, 2000). For example, those working in the 
1980s in the field of associate systems developed adaptive information and automation 
management technologies that depended on a common understanding (between the 
automation and the human operator) of the mission, the current state of the world, the 
platform, and the state of the operator him- or herself. Associate systems then used that 
shared knowledge to plan and suggest courses of action and to adapt information dis-
plays and the behavior of automation to better serve the inferred operator intent and 
needs (Miller & Dorneich, 2006). Associate systems were developed for numerous 
domains, including single-seat fighter aircraft (Banks & Lizza, 1991), attack/scout hel-
icopter operations (Robertson, 2000), petrochemical plants (Cochran, Miller & Bulle-
mer, 1996), and in-home monitoring and caregiving for the elderly (Miller, Wu, Kir-
chbaum, & Kiff, 2004). In contrast to augmented cognition adaptive systems, the pri-
mary means used in associate systems to infer operator intent was logical deduction 
based on knowledge of the mission plan and the functional capabilities of the platform 
(Geddes, 1985).  

As Scerbo et al. (2001) noted in their comparison of various adaptive automation tech-
niques, task performance and operator modeling have advantages and disadvantages 
when used to drive adaptive systems. Although measurement of performance on the 
task has the advantage of being an online technique that can respond to unpredictable 
changes in the cognitive state of the operator, the method is only as good as the ability 
to measure performance. The use of behavioral responses to track cognitive function 
requires regular or periodic performance assessments to keep an updated assessment of 
performance capabilities. Few systems provide opportunities to track overt responses 
for monitoring operator performance (Parasuraman, 2003). Additionally, diagnosing 
cognitive state degradation via human performance degradation occurs after the fact, 
and thus an opportunity to proactively adapt the system to maintain performance is 
limited. 

Modeling techniques have the advantages of offline implementation and ease of incor-
poration into rule-based expert systems. However, these techniques are only as good as 
the underlying models, and they are susceptible to model brittleness. Brittleness occurs 
because the systems model is necessarily an incomplete representation of the world 
(i.e., the system model does not account for all possible scenarios), and therefore the 
system could produce a dramatically incorrect solution when an important, but un-
modeled, feature of the problem affects the choice of optimal solution (Smith, McCoy, 
& Layton, 1997). The more complex the task, the greater the likelihood is that the 
model will not anticipate all aspects of human operator performance.  
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nted cognition technologies drive system adaptations by using phy-
al responses and brain activity to infer the availability of cognitive 
es to cope with mission-relevant task demands. The goal is to en-

human performance when task-related demands surpass the human 
r’s assessed current cognitive capacity, which fluctuates subject to 

, stress, overload, or boredom. Neurophysiologically and physiologi-
cally triggered adaptive automation offers many advantages over the more 
traditional model-based approaches to automation by basing estimates of 
operator state directly on sensed data. These systems hold the promise of 
leveraging the strengths of humans and machines, augmenting human per-
formance with automation specifically when assessed human cognitive ca-
pacity falls short of the demands imposed by task environments. With more 
refined estimates of the operator's cognitive state, measured in real time, 
adaptive automation also offers the opportunity to provide aid before the 
operator even knows he or she needs it.  

�

The potential applications of augmented cognition cover a wide range of human-
computer joint cognitive systems. One such application would be a closed-loop adap-
tive system to help optimize the performance of a stationary operator. Such systems 
may include operators who interact with information displays, such as an unmanned 
air vehicle ground control station operator (Snow, Barker, O’Neill, Offer, & Edwards, 
2006), or an operator of a weapon control system such as the Tactical Tomahawk 
(Tremoulet et al. 2006).  

Augmented cognition technologies can also be used for studying skill acquisition dur-
ing training. Krebs et al. (1998) used positron emission tomography (PET) scans to 
study the learning progression of a novice operating a telerobotic arm. Cognitive state 
assessments during training could also be used to diagnose student difficulties in real 
time and provide appropriate context-specific assistance (Mathan & Dorneich, 2005). 
However, moving these technologies to mobile contexts remains a challenge if they 
are to be used in operational environments.  

Knowledge of instantaneous cognitive state can be used to drive adaptive systems in 
many mobile contexts. Examples include pilots, dismounted soldiers, and ground ve-
hicle operators (Dorneich, Ververs, Mathan, & Whitlow, 2005; Schnell et al., 2006, 
Snow et al., 2006). A truly adaptive system that manages information flow will require 
the ability to operate in a dynamic operational situation with a high degree of fidelity 
in cognitive state assessment and temporal resolution. 

Physiological Measures of Cognitive State  
Neurophysiologically and physiologically based assessments of cognitive state have 
been captured in several different ways, including electrocardiogram (ECG), elec-
troencephalogram (EEG), and functional near-infrared (fNIR) imaging (see Chapters 1 
and 2). ECG measures include heart-rate variability (HRV) in the time domain to as-
sess mental load (Kalsbeek & Ettema, 1963), tonic heart rate to evaluate the impact of 
continuous information processing (Wildervanck, Mulder, & Michon, 1978), variabili-
ty in the spectral domain as an index of cognitive workload (Wilson & Eggemeier, 
1991), and T-wave amplitude during math interruption task performance (Heslegrave 
& Furedy, 1979). As discussed in Chapter 2, with fNIR spectroscopy one can conduct 
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functional brain studies using wavelengths of light introduced at the scalp to measure 
cognition-related hemodynamic changes and to assess cognitive state (Izzetoglu & 
Bunce, 2004). 

Other physiological measures used to assess cognitive state are galvanic skin response 
(Verwey & Veltman, 1996), eyelid movement (Neumann, 2002; Stern, Boyer, & 
Schroeder, 1994; Veltman & Gaillard, 1998; Yamada, 1998), pupil response (Beatty, 
1982; Partala & Surakka, 2003), and respiratory patterns (Backs & Seljos, 1994; Boi-
ten 1998; Porges & Byrne, 1992; Veltman & Gaillard, 1998; Wientjes, 1992). For a 
more complete review of physiological measures of mental workload, see Chapters 1 
and 2, as well as Kramer (1991).  

The suitability of a particular sensor to measure cognitive state depends on many fac-
tors, including ability to detect the underlying cognitive state of interest, temporal reso-
lution needed to effectively drive mitigations, and fieldability issues in the context of 
use (e.g., sensor intrusiveness, processing power required, degree of operator motion). 

As the “gold standard” for providing high-resolution temporal indices of cognitive ac-
tivity, EEG has been used in the context of adaptive systems. Research has shown that 
EEG activity can be used to assess a variety of cognitive states that affect complex task 
performance. These include working memory (Gevins & Smith, 2000), alertness (Ma-
keig & Jung, 1995), executive control (Garavan, Ross, Li, & Stein, 2000), and visual 
information processing (Thorpe, Fize, & Marlot, 1996). These findings point to the 
potential for using EEG measurements as the basis for driving adaptive systems that 
demonstrate a high degree of sensitivity and adaptability to human operators in com-
plex task environments.  

For instance, researchers have used the engagement index, developed by NASA re-
searchers, in the context of mixed-initiative control of an automated system (Pope, Bo-
gart, & Bartolome, 1995). This method uses a ratio of power in common frequency 
bands (beta / [alpha + theta]), where cognitively alert and focused are represented in 
beta, wakeful and relaxed in alpha, and a daydream state in theta. Higher engagement 
index values indicate increased levels of task engagement.  

The efficacy of the engagement index as the basis for adaptive task allocation has been 
experimentally established. For instance, under manipulations of vigilance levels (Mi-
kulka, Hadley, Freeman, & Scerbo, 1999) and workload (Prinzel, Freeman, Scerbo, 
Mikulka, & Pope, 2000), an adaptive system effectively detected states in which hu-
man performance was likely to fall and took steps to allocate tasks in a manner that 
would raise overall task performance. In a different domain, adaptive scheduling of 
communications based on cognitive state assessment of the readiness to process infor-
mation resulted in a twofold increase in message comprehension and situation aware-
ness (Dorneich et al., 2005). These results highlight the potential benefits of a neuro-
physiologically triggered adaptive automation. 

Challenges Inherent in Mobile Cognitive State Classification 
The effectiveness of neurophysiologically triggered adaptive systems hinges on relia-
ble and effective signal processing and cognitive state classification (see Chapter 3). 
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Although these are difficult technical challenges in any context, they are particularly 
pronounced in a system designed for mobile contexts. Assessment of an operator’s 
state can be notably more difficult if the operator is permitted to move freely to per-
form cognitive tasks in conjunction with physical tasks. What is already a difficult 
problem—gathering clean and robust signals on which to classify cognitive state—is 
further complicated by signal artifacts induced by motion.  

Given the potential usefulness of augmented cognition systems in mobile contexts, 
methods have been developed to classify cognitive state in ambulatory contexts. In this 
chapter, we describe the challenges inherent in mobile cognitive state classification, 
including the ability to (a) collect robust and clean signals, (b) create a mobile compu-
ting and data-processing infrastructure, (c) reliably classify cognitive state, and (d) ex-
perimentally assess the accuracy and specificity of the algorithms in a mobile opera-
tional setting.  
 
The work described in this chapter was developed for the dismounted soldier—
potentially one of the harshest, most mobile application domains for cognitive state 
estimation. Any cognitive state classification solution in this domain must be portable, 
efficient, and robust to extremes of conditions and motion. A robust solution that 
meets the challenges of this domain would result in techniques that are applicable to 
almost any other domain in which motion is a key component of the operator’s work 
environment. We describe the approaches outlined in this chapter in the context of a 
field evaluation that tested the ability to classify cognitive workload level in an uncon-
strained, free-play operation with soldiers executing missions in an urban environment. 

Scenario 
This section presents the mobile dismounted soldier domain and the operational task 
context in which augmented cognition technologies were applied. 

Dismounted Soldier Domain 
Dismounted soldiers experience many stressors that are inherent in the operational en-
vironment, and these stressors have a direct impact on overall cognitive capabilities. 
For instance, physical exertion is one of the primary stressors a soldier faces on the 
battlefield. Simply moving to a rally point in a mission is made difficult when it re-
quires the soldier to carry a load weighing 80 to 120 lb. (Girolamo, 2005). Other com-
mon stressors that can diminish cognition include heat (Buller, Hoyt, Ames, Latzka, & 
Freund, 2005; Steinman, 1987), cold, limited food and water (Buller et al., 2005; Mon-
tain, Sawka, & Wenger, 2001), fear, and sleep deprivation. Stress affects all aspects of 
information processing, including general arousal, selective attention, speed and accu-
racy of performance, and working memory (Hockey, 1986). The degradation in cogni-
tive performance that often results from the effects of stress can have catastrophic out-
comes (APA Monitor, 1988; U.S. Navy, 1988). 

In addition to the physical stressors inherent in military operations, netcentric capabili-
ties impose cognitive stressors on dismounted soldiers. The highly dynamic, informa-
tion-rich environment of the dismounted soldier motivated the development of a tool-
kit for mobile classification of cognitive state. The next-generation dismounted soldier 
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relies on netted communications to build situation awareness—the kind of situational 
understanding that drives decisive actions. Information exchange requirements are be-
ing pushed to the lowest levels, with the goal of enhancing the capabilities of a squad 
(9–10 soldiers) so that it can cover the battlefield in the same way that a platoon (16–
44 soldiers) now does. The network will be characterized by a network of humans col-
laborating through a system of C4ISR (command, control, communications, com-
puters, intelligence, surveillance, and reconnaissance) technologies. Small netted units 
will have robust team communication, state-of-the-art distributed and fused (thermal 
and image intensification) sensors, organic (i.e., belonging to the unit) tactical intelli-
gence/collection assets (e.g., unmanned aerial vehicles, unmanned ground vehicles, 
unmanned ground sensors), and linkage to other assets to enhance situational under-
standing and on-the-move planning (Future Force Warrior, 2004). Mission success 
will depend on the individual soldier’s ability to sort through the vast array of conti-
nuous information flow afforded by a full range of netted communications. This situa-
tion will demand the most from leaders in the field. 

The increase in information flow does not come without a cost, however. Effective use 
of information sources is constrained by the limitations of the human cognitive system. 
Real-time, dynamic exchange of information in a C4ISR environment can be expected 
to increase the likelihood of information overload, such that postulated information 
superiority becomes a profound liability. Potential data overload, coupled with the ef-
ficiency of information flow required in executing military doctrine, places an over-
reliance on the individual soldier. One way to ensure that soldiers are supported appro-
priately is to develop adaptive information management systems to promote superior 
situation awareness on the battlefield by assessing the soldier’s readiness to receive 
and process information. The efficacy of such systems is contingent on reliable and 
timely cognitive assessment. 

Domain Challenges 
Soldiers are subject to extremes of motion, multiple physical and mental stressors, and 
a wide range of cognitive activities (long periods of vigilance punctuated by extreme 
periods of activity). Thus, any approach to the real-time assessment of cognitive state 
has to be robust to motion and noise artifacts. In addition, any cognitive state classifi-
cation approach has to be robust to the potentially wide range of cognitive tasks that 
soldiers perform, which include simple tasks such as sentry duty or defending a posi-
tion and highly complex tasks such as coordinating medical evacuations or the move-
ments of several squads or replanning tactical moves.  

General Approach and Associated Toolkit 
The toolkit described here consists of four principal techniques: 
  
1. signal collection and processing of neurophysiological and physiological sig-

nals in a mobile context; 
2. classification algorithms that address individualization, bias, and generalizabil-

ity; 
3. a computational and experimental infrastructure to support assessment; and 
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4. the design of experiments to assess classification in a domain-relevant opera-
tional setting with soldiers. 

 
Signal Collection in a Mobile Environment 
Inferring cognitive state from noninvasive physiological sensors is a challenging task 
even in pristine laboratory environments. The signal is subject to artifacts—sensor ac-
tivity that obscures or distorts information associated with the cognitive activity of in-
terest. There is a wide range of neurophysiological and psychophysiological measures, 
such as EEG, ECG, PET, fNIR, functional magnetic resolution imaging (fMRI), and 
pupilometry, to name a few (see Chapters 1 and 2). Such measures can be used to 
detect and determine the cognitive state of a human user. However, only a small subset 
of these measures is uniquely suited for a mobile environment. Because the PET and 
fMRI imaging scanners are not portable, this equipment is ill-suited for mobile data 
collection.  

The use of EEG as the basis for cognitive state assessment is motivated by characteris-
tics such as good temporal resolution, low invasiveness, low cost, and portability. The 
use of ECG is motivated by the strength of the signal and maturity of ECG detection 
sensors. However, techniques that use EEG and ECG, as well as fNIR sensors, need to 
focus on ruggedizing the sensor suites and performing advanced signal processing on 
the data collected in order to reduce the effect of artifacts inherent with mobile partici-
pants. If the classification output is desired in real time, then designers must consider 
ways to efficiently perform data calculations within the time, memory, and power con-
straints of mobile processors. Although real-time signal processing and classification 
of physiological signals have been implemented previously (Berka et al., 2004; Gevins 
& Smith, 2003; see also Chapter 3), they have not been realized in a truly mobile, am-
bulatory environment. 

Artifact detection and reduction, necessary to create a “clean” signal that can be classi-
fied, is driven by a consideration of the characteristics of the noise artifacts them-
selves. How noise artifacts are handled depends on where the noise lies in the frequen-
cy band in relation to the signal (see Figure 4.1).  

Artifact re-
duction is 
driven by 
the noise 
profile. 

 

Figure 4.1. Frequency characteristics of the noise in relation to the signal of in-
terest. 

Noise signals that lie out of the band of the signal of interest can be removed with fil-
tering. Out-of-band artifacts, such as DC drift and 60-Hz line noise, typically have 
well-known characteristics and can be filtered out easily. Noise artifacts that lie within 
the same band as the signal require more sophisticated artifact detection and reduction. 
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If the noise can be measured (e.g., eyeblinks measured via a dedicated ocular sensor), 
the sensor data can be subtracted to decontaminate the signal. However, when the 
noise cannot be directly measured, adaptive filtering can be applied to estimate the 
noise. When adaptive filtering is not feasible, the noise should be detected and the re-
sultant data rejected, to avoid compromising downstream classification. Signal-
processing approaches are specific to the signal type and dependent on factors such as 
signal-to-noise ratio and how specific artifacts affect the signal of interest. Two exam-
ples are discussed below: EEG and ECG.  

The EEG signal is particularly subject to artifacts because of the low power in the un-
derlying signal. High-amplitude artifacts can easily mask the lower-amplitude electric-
al signals associated with cognitive functions. In addition to the typical sources of sig-
nal contamination, mobile applications must consider the effects of artifacts induced 
by shock, cable movement, and gross muscle movement. Artifacts related to partici-
pant motion include high-frequency muscle activity, verbal communication, and ocular 
artifacts consisting of eye movements and blinks. Artifacts related to the operational 
environment include electrical noise that creates interference with the EEG signal (cf. 
Kramer, 1991). These concerns drive an effort to reduce the number of EEG sensors to 
a minimum. The minimum number of channels is dictated by the spatial resolution and 
underlying cognitive function of interest. More detail on these techniques is provided 
later in the chapter. 

The challenges inherent in signal processing of ECG signals are different than those 
associated with EEG. Although heart rate is a very strong signal compared with an 
EEG signal, it is heart-rate variability that is of interest. HRV is sensitive to task de-
mands (Aasman, Mulder, & Mulder, 1987; Beh, 1990; Porges & Raskin, 1969); thus, it 
is important to detect ECG peaks with a high degree of accuracy in order to identify 
small changes in the interbeat interval (IBI) between heart beats. In addition, it is im-
portant to account for missed peaks correctly and ignore spurious peaks, as they can 
have a large detrimental effect on HRV calculation.  

Cognitive State Classification 
Once signal processing has been applied to create a “clean” signal, the classification 
stage can commence. In this section we discuss how to assess classification approaches 
and provide some examples of classification approaches, but this is by no means ex-
haustive (see also Chapter 3). Considerations are presented that help frame decisions 
on how to select, assess, and optimize classification. 

Classification Assessment Approaches 
Effective cognitive state classification approaches need to discriminate between two or 
more classes on a moment-to-moment basis. For discussion purposes, consider a clas-
sification algorithm that should discriminate between low and high cognitive work-
load—workload being an example of a cognitive state of interest. Typically, in the 
course of evaluating such a cognitive state classification approach, one would create a 
task environment containing distinct periods of high and low workload. Often, statis-
tical tests are then conducted on the resultant data to determine if the means were sta-
tistically different in the two conditions. However, statistical significance does not 
suffice when determining if the classification approach is useful for cognitive 

 8 



Dorneich, M.D., Mathan, S., Ververs, P.M, and M.C., Whitlow, S.D. (2008), "Cognitive State Estimation in Mobile Environments", 
Augmented Cognition: A Practitioner’s Guide, Schmorrow D., Stanney K., & Reeves, L. (eds), Santa Monica: HFES Press. 

 
 

 9 

state assessment. Tests of statistical significance, by definition, look at averages 
over an entire data set to create two distributions from the data and then determine if 
the means are statistically different.  

Figure 4.2 shows three notional boxplot distributions between two classes. All three 
are statically significant given enough data points and show that the classification algo-
rithm is tracking workload on average. However, it is important to know how effec-
tively the classification approach differentiated between high and low workload on a 
moment-to-moment basis. The rightmost (third) distribution, though statistically dif-
ferent, shows considerable overlap in the distributions between the two classes. Thus, 
given a cognitive state classification value, it is impossible to say with confidence to 
which distribution it belongs. 

Although differences may show up in averages, real-time classification requires an 
approach whereby index values in low and high conditions have minimal overlap, as in 
the first two distributions. all three plots may be statistically significant, but only the 
two at left show enough discrimination to be useful in classification between two 
states. 

 

  x 
 

Figure 4.2. Boxplot distributions. 

One approach to accomplishing this is to create indices that classify workload based on 
each individual’s unique pattern of electrophysiological activity in response to task 
demands. In this section, we introduce two broad approaches to classification: (a) ge-
nerative classifiers that model the distribution of features in each class (examples in-
clude probability density estimation techniques such as K-nearest neighbor, Parzen 
windows, and Gaussian mixture models) and (b) discriminative classifiers that model a 
mapping function between a set of features and class labels (examples include neural 
nets, support vector machines, and logistic regression). 

Four potential classification approaches are introduced next. The descriptions are by 
no means exhaustive, as many techniques have been employed, but they represent ex-
amples of both generative and discriminative approaches. 

It is important to 
know how effectively 
a classification ap-
proach can differen-
tiate between classes 
on a moment-to-
moment basis. 



Dorneich, M.D., Mathan, S., Ververs, P.M, and M.C., Whitlow, S.D. (2008), "Cognitive State Estimation in Mobile Environments", 
Augmented Cognition: A Practitioner’s Guide, Schmorrow D., Stanney K., & Reeves, L. (eds), Santa Monica: HFES Press. 

 
 

Valua

10

ble Information 
Determ
no sing
tions fo
training
perform
Param

ining a suitable classifier for a given problem is an art. Unfortunately, 
le classifier approach works best on all given problems. Considera-
r choosing an appropriate classifier include real-time performance, 
 time, and sensitivity to parameter setting. Constraints on real-time 
ance and training time may be dictated by the operational context. 

eter setting is important to tune a classifier to data characteristics. 
�
Generative Classifier Approaches 
Generative classification approaches have been used successfully in a mobile but con-
strained test task environment in which estimates of spectral power formed the input 
features to a pattern classification system (Mathan et al., 2005). In this example, classi-
fication systems used parametric and nonparametric techniques to assess likely cogni-
tive state on the basis of spectral features; that is, estimate p(cognitive state | spectral 
features). The classification process relied on probability density estimates derived 
from a set of spectral samples. It is important to note that when using a pattern 
recognition process to train the classifier, the feature set should be gathered 
from tasks that most closely represent the target task environment. Three ex-
amples of generative classification approaches are briefly introduced next: K-nearest 
neighbor, Parzen windows, and Gaussian mixture models. 

K-nearest neighbor (KNN). The K-nearest neighbor approach is one of the simplest 
machine learning algorithms. It is a nonparametric technique that makes no assumption 
about the form of the probability densities underlying a particular set of data. Given a 
particular sample x, the classification process identifies k samples whose features come 
closest (as assessed by Euclidian or Mahalanobis [1936] distance metrics) to the fea-
tures represented in x. The sample x is assigned the modal class of the nearest k neigh-
bors.  

For example, consider the data point represented by the question mark in Figure 4.3. 
Based on k = 5, it would be assigned the label associated with the most common class 
category of its five nearest neighbors (i.e., Class 1). 

 
Gaussian kernels 
placed over each 
data point are 
used to estimate 
the distribution of 
features in each 
class. 

 
Figure 4.3. K-nearest neighbor. 
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Parzen windows. Parzen windows (Parzen, 1967) are a generali-
zation of the K-nearest neighbor technique. Instead of choosing 
the nearest neighbors and assigning a sample x with the label 
associated with the modal class of its neighbors, each vote is 
weighed by using a kernel function. With Gaussian kernels, the 
weight decreases exponentially with the square of the distance. 
As a consequence, faraway points become insignificant.  

Kernel volumes constrain the region within which neighbors are considered. Conse-
quently, Parzen windows are a better choice when there are large differences in the 
variability associated with each class. The data point (?) shown in Figure 4.4 is as-
signed to the dominant class in its immediate vicinity (i.e., class category 2). 

 

 

 

Figure 4.4. Parzen windows. 

Gaussian mixture models (GMM). Gaussian mixture models provide a way to model 
the probability density functions of spectral features associated with each cognitive 
state. This can be accomplished using a superposition of Gaussian kernels (see Figure 
4.5). The unknown probability density associated with each class or cognitive state can 
be approximated by the weighted linear combination of Gaussian density components. 
Given an appropriate number of Gaussian components and appropriately chosen com-
ponent parameters (mean and covariance matrix associated with each component), a 
Gaussian mixture model can model any probability density to an arbitrary degree of 
precision. For more details, see Dempster, Laird, and Rubin (1977).  

A given feature 
vector is assigned 
the class label 
associated with 
the modal class 
of the k samples 
that are the most 
similar to it. 

Small numbers of 
Gaussian kernels 
(dotted lines) are 
used to approx-
imate the distri-
bution of features 
in each class. 
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Figure 4.5. Gaussian mixture models. 

These statistical classification techniques have an advantage over multilayer neural 
networks because they require minimal training time. KNN and Parzen windows re-
quire no training, whereas the GMM converges relatively quickly. KNN and Parzen 
window approaches require all patterns to be held in memory. Every new feature vec-
tor has to be compared with each of these patterns. However, despite the computation-
al cost of these comparisons at run time, such systems have been shown to output clas-
sification decisions well within real-time constraints (Erdogmus, Adami, Pavel, Lan, et 
al. 2005).  

Discriminative Classifier Approach 
A discriminant function analyses approach has been employed in a fully operational 
mobile task evaluation, described later in the chapter. This approach used a support 
vector machine to discriminate between periods of low and high workload (Mathan, 
Whitlow, Dorneich, & Ververs, 2007). 

Support vector machine (SVM). Support vector machines are linear classifiers that use 
a quadratic optimization procedure to find an optimal orientation and location for a 
discriminating hyperplane between classes. The optimization procedure finds a loca-
tion and orientation for the hyperplane that lies as far as possible from examples in 
each class that are likely to be confused with each other (Figure 4.6).  

Class 1
Class 2

Hyperplane

Hyperplane Optimal
Hyperplane

 

Figure 4.6. Optimal hyperplane orientation could lead to better generalization.  
Adapted from Takahashi (2006). 

Separating hyperplanes 
that are identified using 
the SVM procedure has 
been shown to maximize 
generalization perfor-
mance. 
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Separating hyperplanes that are identified using the SVM pro-
cedure has been shown to maximize generalization perfor-
mance (Vapnick, 1999). Although they are linear classifiers, 
SVMs can be used to solve nonlinear problems by means of 
the so-called kernel trick. Data that may not be linearly separ-
able in the original feature space can be projected into a high 
dimensional space where the data may be linearly separable 
(Figure 4.7).  

projection

Original Feature Space Higher Dimensional
Feature Space  

Figure 4.7. Transforms to higher dimensional space may result in separable data.  
Adapted from Takahashi (2006). 
 
Fusion and Composite Techniques 
Often it is possible to employ more than one sensor, or to employ more than one clas-
sification approach. There are two approaches, outlined next, that depend on whether 
you combine the input (i.e., sensor data) into the classifier or combine the output of the 
classifiers. 

Sensor fusion. Sensor fusion uses multiple sources of sensor data to create the fusion 
at the sensor level before the discriminate features are calculated. This strategy for ro-
bust classification in noisy field environments integrates information from multiple 
sensor sources (assuming time synchronization) into a common feature vector that 
serves as input into a single classifier (see Chapter 7). Such an approach exploits the 
joint strengths of different data sources while minimizing their individual weaknesses.  

Composite classifier fusion. Unlike sensor fusion (in which the fusion happens at the 
sensor input stage), composite classifiers fuse the output of multiple classifiers to 
create a final determination. A composite classification system (see Figure 4.8) has 
been developed that uses this technique. It employs three distinct classification ap-
proaches (K-nearest neighbor, Parzen windows, and Gaussian mixture models) and 
then fuses their outputs to make a final determination of cognitive state (Mathan et. al., 
2005). 

Quad on 
procedures find an op-
timal orientation and 
location for a discrimi-
nating hyperplane be-
tween two classes. 

ratic optimizati

Classification 
system uses a 
composite of 
three distinct 
classification ap-
proaches: K-
nearest neighbor 
(KNN), Parzen 
windows, and 
Gaussian mixture 
models (GMM). 
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Figure 4.8. Composite classification system. 

The composite classification system regards the output from each classifier as a vote 
for the likely cognitive state. The majority vote of the three component classifiers 
forms the output of the composite classifier. Fusing the outputs of multiple classifiers 
using a voting scheme is a widely used strategy to increase the robustness of a classifi-
cation system. The equal weighting of different classifiers implicit in the voting 
scheme reflects the fact that no single classifier produces consistently superior results 
across participants and tasks.  

Simple, vote-based fusion has been shown to improve the overall performance of clas-
sification systems (Kittler, Hatef, Duin, & Matas, 1998). There are a variety of alterna-
tive options for combining diverse classifiers. Exploring these options is an objective 
of future research. 

Considerations in Evaluating Cognitive State Classification in Mobile 
Environments 
Cognitive state classification can be achieved with a variety of methods. Each ap-
proach discussed earlier uses statistical pattern recognition techniques to define and, 
later, recognize unique classes of interest. The effectiveness of a particular cognitive 
state classification approach in mobile environments is framed by the following re-
search issues: 

• Bias, variance, and temporal smoothing 
o How well can the classifier fit and discriminate between workload 

classes in an inherently noisy and dynamic environment? 
o How well does the classifier generalize to unseen data over spans of 

tens of minutes—when task characteristics remain the same? 
o Can classification accuracy improve as the output of the classifier is 

integrated over time? 

• Discriminating features: What aspects of signal serve to discriminate between 
high and low workload? 

 14
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• Fusion: Can overall classification accuracy be improved by integrating addi-
tional sensor sources? 

• Sensor density: How many channels (of EEG, for instance) are required for 
accurate classification? 

• Long-term generalization: How well is the classifier likely to generalize over 
time spans of days as the task context and patterns of general physiological ac-
tivity change (e.g., sleep, stimulants)? 

 
Applied Exercise: Classification Design Considerations 
Choice of classific
and foremost, wha
to be deployed? H
training of classifie
able to discriminate
approach, how mu

ation approach is driven by multiple considerations. First 
t is practical given the context? How many sensors need  
ow much individualization is necessary, and how much 
rs will be required? Which classification approach is best 
 between the cognitive states of interest? Within any one 
ch tuning of parameters is needed to achieve good per-

formance? Finally, how can the classification approach be meaningfully as-
sessed to ensure that the resultant algorithms will allow for moment-to-
moment classification? Design a classification approach that addresses 
these considerations. 

� 
 

Computational and Experimental Infrastructure 
This section briefly outlines the computational and experimental infrastructure needed 
to classify cognitive state in an operational setting where mobility is a major challenge. 
In general, a system constructed for a mobile application environment to assess cogni-
tive state classification algorithms consists of the following: 

• Sensors: a variety of sensors to collect raw physiological and neuro-
physiological data.  

• Mobile processing: mobile semirugged computer platforms to process the raw 
sensor data into cognitive state classification assessments. 

• Wireless data network: a wireless data infrastructure to send the classification 
assessment to automation to close the loop, or to convey open-loop feedback 
of subordinates’ state to human leaders. 

• Experimenter’s base station: a computing infrastructure and base station to 
control the IT component of the experiment and to troubleshoot any unex-
pected problems. 

Design of Experiments 
The evaluation of cognitive state classification algorithms in a mobile setting is fraught 
with several unique challenges not found in laboratory settings. First, it is much more 
difficult to design a task environment that reliably produces the cognitive state of in-
terest when moving from a constrained task environment to a “free-play” operational 
environment. Second, because the task environment is not subject to the normal level 
of experimental control, it is much more difficult to know ground truth (i.e., the actual 
cognitive states experienced by the participant). Finally, the metrics used to assess the 
viability of the classification algorithms to distinguish the cognitive states of interest 
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must take into account moment-to-moment discriminability, as opposed to averages of 
means over time (as discussed earlier). 

Manipulating the Cognitive State of Interest 
In addition to the practical and system configuration challenges faced when moving 
from the laboratory to field studies, there are issues of experimental control and the 
characterization of cognitive state in less constrained environments. It is essential to 
select tasks both that are operationally relevant and that afford reasonable adaptations 
that improve performance. In the laboratory it is possible to develop simple tasks in 
which the cognitive state of interest (e.g., cognitive workload) is manipulated precisely 
and consistently. Additionally, a user’s performance can be collected and evaluated 
accurately. This makes it relatively easy to establish ground truth about a user’s likely 
workload, for instance. However, when developing operationally relevant tasks in a 
field environment, it becomes substantially harder to manipulate workload precisely 
and to interpret and assess a user’s performance without compromising operational 
realism.  

In many operational settings, it is not always possible to vary workload directly. In-
stead, one must vary task load to induce cognitive workload. Furthermore, the amount 
of cognitive workload induced in a participant is a function of factors such as stress, 
fatigue, training, experience, and individual differences in capabilities. Thus, methods 
must be devised to correlate task load directly to workload in a systematic way in order 
to derive ground truth. 

Ground Truth 
In order to calculate the accuracy of a classification approach, classifier results are 
compared with ground truth. The output of the classifier at any moment is then com-
pared with ground truth to determine the accuracy of the classifier.  

The principal issue in scenario and task design is to create detectable and sustained 
periods (5–10 min) of high or low workload multiple times within any single data col-
lection session. Definable periods of high and low workload sustained by participants 
are difficult to obtain directly from task characteristics, for the reasons discussed earli-
er. Thus, indirect methods must be used.  

There are several classes of indirect methods: observation, secondary task perfor-
mance, and participant self-reporting. Often, human experts can observe the experi-
ment and determine ground truth based on their knowledge of task demands and the 
demonstrated behavior of the participant. When possible, secondary tasks can be intro-
duced as discrete probes (in which metrics include performance and response latency) 
or as continuous tasks in which performance declines on the secondary tasks when the 
primary tasks induce higher workload. Participants can do a postscenario cognitive 
walkthrough, often with time-stamped videos, and report their self-assessment of their 
level of cognitive workload. These methods can be used individually or together to 
produce ground truth. 

There are two important considerations when using some or all of these techniques. 
First, both the ground truth data and the classification data must be on a common (and 
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accurate) time-stamp system, to allow for a moment-to-moment determination of clas-
sification accuracy. Second, for participants doing self-assessments, the terms high 
workload and low workload should be defined in an understandable manner. 

• Operationally, low workload can be defined as times when the participant 
would have been able to take on additional cognitive tasks. 

• High workload can be defined as times when it was not possible for the partic-
ipant to take on any additional tasks and/or was not able to handle the current 
task load. 

Classification Metrics 
As discussed earlier, it is important to know how effectively a classification approach 
can differentiate between classes on a moment-to-moment basis. A metric used to eva-
luate classification performance is the Area under the Receiver Operating Characteris-
tic (ROC) curve (see Duda, Hart, & Stork, 2001; see Chapter 6). ROC curves plot true 
positives (on the y axis) against false positives (on the x axis) as a threshold for discri-
minating between targets and distractors.  

The ROC curve provides a way to assess the degree of overlap between two univariate 
distributions. It is widely used to evaluate human and machine signal detection capa-
bilities. In addition, the ROC curve provides a way to assess the degree of overlap be-
tween the output of a classifier for two classes of data. Perfect classification produces 
an area under the curve value (Az) of 1.0, and chance performance produces an Az 
value of 0.5. 

Test Your Knowledge 
W
test for evalua
tions (class

hat is the motivation for using an ROC curve versus a simple statistical 
ting a significant difference between the means of distribu-

es)?  

 
�
Tuning Classification Parameters 
A major concern in the environments in which dismounted soldiers function is that 
noise from myriad sources could completely mask features that could be used to dis-
criminate between high and low workload. Thus, a classifier may fail to discriminate 
adequately between workload classes. The capacity of a classifier to overfit training 
data is known as the bias of the classifier. These noise characteristics can also change 
dramatically over time—so that even if a classifier is able to effectively discriminate 
between workload classes over a short temporal window, it may fail to generalize ade-
quately to unseen data collected a few seconds or minutes beyond the duration of the 
data used to train the classifier. The capacity of a classifier to generalize is referred to 
as the variance of the classifier. 

One way to explore the bias and variance of a classifier is through a process called n-
fold cross validation. This procedure entails splitting the data into n subsets. At each 
iteration of the validation procedure, one of these subsets (ni) is used for testing the 
classifier, and the remaining 1 – 1/n sets are used for training the classifier. A typical 
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choice of n is 10. Estimates of bias and variance get more conservative as the size of n 
decreases—the classifier has to be trained with less of the data and is assessed by ge-
neralizing to a larger subset of unseen data. 

Advanced Warfighting Experiment 
The general toolkit described in the previous section was realized in a mobile system 
that facilitated the evaluation of cognitive state algorithms (Dorneich, Mathan, Verv-
ers, & Whitlow, 2007). The work discussed in the remainder of this chapter is 
grounded in an experiment conducted in an outdoor field environment. The Advanced 
Warfighting Experiment (AWE) was an evaluation of a MOUT (Mobile Operations in 
Urban Terrain) exercise at the U.S. Army Aberdeen Proving Grounds. The overall ob-
jective of the AWE was to evaluate the effectiveness of the toolkit’s sensor-driven 
cognitive state assessment technologies in a realistic, operational, mobile environment.  

Scenario Description 
The AWE used a full Army platoon as participants. Of the 32 soldiers, four key leaders 
were instrumented with an augmented cognition system. There were two principal 
phases of the 12-day training session: part-mission training and full-mission execution. 
In part-mission training, the tasks changed each day, starting from simple entry tech-
niques (e.g., door and wall breaching, upper-level entry, use of suppression devices), 
progressing to clearing techniques (e.g., room, hall, and stairwell entry and clearing; 
reflexive fire techniques), then on to defensive techniques (e.g., hasty defense of an 
urban area, security, protection, fields of fire), and finally to battle drills. Soldiers mas-
tered a technique before moving to the next, as each technique built upon what was 
learned previously.  

Battle drills were a culmination of all the training that soldiers received and enabled 
them to establish their own standard operating procedures. Examples included con-
ducting a platoon attack, entering and clearing a building, reacting to an ambush, and 
securing at a halt. These tasks were not performed until the individual teams and 
squads demonstrated proficiency in all basic skills. 

The second phase of the AWE was a full-mission evaluation involving a 24-hour train-
ing exercise. For this exercise, soldiers used techniques and skills learned during the 
part-mission training. The 24-hour period was divided into three 8-h phases: 

1. Conduct dismounted movement along the lines of communication to an objec-
tive to ensure routes are free of mines and obstacles. 

2. Conduct a cordon and search of the objective to kill, capture, or expel opposi-
tion forces operating in an urban area. 

3. Prepare to defend the objective for an extended period and report any enemy 
activity in and around this key terrain. 

 
This evaluation focused primarily on a platoon leader (PL), platoon sergeant (PSG), 
and two squad leaders (SL1 and SL2); however, the activities of their subordinates and 
responses from senior leaders had a direct impact on stress levels experienced by the 
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leaders. The MOUT training facility, known as Mulberry Point, contained preassault 
staging and assault areas. It was a compound with several single- and multistory build-
ings with windows, doors, and hallways. This site served as a close combat training 
area.  

The test site was equipped for data collection, including cameras in and around build-
ings. These data were used by experts in determining the workload ground truth. There 
were several stressors that the platoon-level training exercise introduced in the MOUT 
facility. These stressors were used to ensure that participants were placed in the cogni-
tive states of interest (low and high workload). Each is summarized in Table 4.1. 

In the remainder of this section, we address how the four principal challenges dis-
cussed in the “General Approach and Associated Toolkit” section (i.e., signal 
processing, classification, computational and experimental infrastructure, and design 
of experiments) were addressed in the AWE. 

Table 4.1. Stressors Encountered by Soldiers in a MOUT Environment 

Category 
 

Example Stressors

Distributed operations Distributed squads, loss of sight, reliance on faulty radios 
 

Fatigue Extended operational period (e.g., 24 h of operation): lengthy march fol-
lowed by assault and then lengthy occupation of site in defensive posture 
 

Realistic threats Use of human OPFOR to prevent assault on urban facility, and to "hit" the 
friendly forces at different times; use of simunitions (soap bullets) 
 

Evaluation stress Evaluation of performance by commanders, Army trainers 
 

Surprise / confusion Unexpected elements imposed that affect plan, conditions, and mission; 
loss of communications and assets 
 

Severe weather Periods of high heat and humidity; intense rainfall 
 

Information Gaps Information flow variations from subordinates and commander 
 

  

Signal Processing 
Signal processing on the EEG signal was performed with a system that supported an 
independent signal-processing stream. Six channels were sampled at 256 samples/s 
with a bandpass from 0.5 Hz and 65 Hz (at 3 dB attenuation) obtained digitally with 
Sigma-Delta A/D converters. Quantification of the EEG in real time was achieved us-
ing signal analysis techniques that identified and decontaminated eyeblinks and identi-
fied and rejected data points contaminated with electromyographic (EMG), amplifier 
saturation, and/or excursions attributable to movement artifacts (see Berka et al., 2004, 
for a detailed description of the artifact decontamination procedures).  

Decontaminated EEG was then segmented into overlapping 256 data-point windows 
called overlays. An epoch (the temporal window of analysis) consisted of three con-
secutive overlays. Fast-Fourier Transform (FFT) was applied to each overlay of the 
decontaminated EEG signal, multiplied by the Kaiser window (α = 6.0), to compute 
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the power spectral density (PSD). The PSDs were adjusted to take into account zero 
values inserted for artifact contaminated data points. The PSDs between 70 and 128 Hz 
were used to detect EMG artifact. Overlays with excessive EMG artifacts or with few-
er than 128 data points were rejected. The remaining overlays were then averaged to 
derive a PSD for each epoch with a 50% overlapping window. Epochs with two or 
more overlays with EMG or missing data were classified as invalid. For each channel, 
PSD values were derived for each 1-Hz bin from 3 to 40 Hz and the total PSD from 3 
to 40 Hz. Relative power variables were also computed for each channel and bin using 
the formula (total band power/total bin power). 

Signal processing on the ECG signal focused on the importance of detecting the ECG 
peaks with a high degree of accuracy, accounting for missed peaks, and ignoring spu-
rious peaks. Without appropriate correction, missing a single valid beat or adding a 
single spurious beat can lead to questionable estimates of spectral HRV measures. 
Heartbeat peaks within areas of the signal are identified with high-frequency content. 
False peaks are eliminated based on statistical comparisons to expected QRS morphol-
ogy (QRS waves are related to the contraction of the left and right ventricles).  

Scerbo et al. (2001) found that that the efficacy of HRV measures has mostly been li-
mited to lab contexts, whereas IBI is a better measure in operational contexts. The IBI 
was computed as the time between successive peaks. The IBI was resampled at a rate 
of 256 Hz using a cubic spline interpolation. The resampled IBI was used as the work-
load indicator. Spectral methods, though not as effective, were also employed. The IBI 
signal was spectrally decomposed and the power in the band between .05 and .15 was 
used as an additional workload indicator. 

Classification Approach 
Cognitive state estimation was based on a support vector machine approach. The sup-
port vector machine used in this effort employed a radial basis function kernel with a 
kernel parameter of 1 and a slack parameter of .05. 

The AWE evaluated the effectiveness of the classification algorithms to detect the us-
er’s cognitive state by correlating classification output to performance in various task 
load conditions. Experimentally, the principal hypothesis that was tested in the AWE 
was as follows: 

The cognitive state classification algorithms would be able to dif-
ferentiate periods of high and low cognitive workload using a 
combination of physiological (ECG) and neurophysiological 
(EEG) sensors. 

Computational and Experimental Infrastructure 
Cognitive state classification was based on two sensor sources: EEG and ECG. An 
elaborate experimental infrastructure was developed to meet some of the challenges of 
collecting data in a harsh, mobile environment. 
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Sensors 
EEG data were collected from the Advanced Brain Monitoring (ABM) EEG sensor 
headset (see Figures 4.9a and 4.9b). The sensor headset acquired six channels of EEG 
using a bipolar montage. Differential EEG were sampled from bipolar channels 
CzPOz, FzPOz, F3Cz, F3F4, FzC3, and C3C4 obtained digitally. Data were transmit-
ted across a Bluetooth RF link to the collection laptop via an RS232 interface. 

The Sensor Headset was developed by ABM as a portable system to record EEG sig-
nals. The headset fit snugly on the head and housed EEG sensors. It was important to 
minimize the movement of sensors to reduce signal artifacts. Snug-fitting caps reduced 
signal noise caused by sheering of the sensors against the head and scalp. Physiologi-
cal recordings were made with an experimental eight-channel digital physiological 
recorder with low-powered EEG and EOG amplifiers designed specifically for ambu-
latory recordings. Amplification at the electrode site was important to boost the signal-
to-noise ratio. 

    a  b   c   d 

    

Figure 4.9. (a & b) ABM's wireless EEG Sensor Headset, (c & d) Hidalgo VSDS for 
ECG. 

The Hidalgo Vital Signs Detection System (VSDS) measured heart rate, respiration 
rate, and body motion and position (see Figures 4.9c and 4.9d). Both waveform and 
summary data were transmitted across a Bluetooth communications link. The AWE 
used the ECG waveform (two views, sampled at 256 Hz) and three-axis accelerometry 
waveform (sampled at 25.6 Hz) signals. 

Mobile Processing and Data Collection Platform 
Each of the four primary soldier participants (PL, PSG, SL1, and SL2) was followed 
by a member of the experimental personnel in the role of shadower. Each shadower 
remained within a 30-m range of his/her participant to ensure Bluetooth connectivity. 
Each shadower carried a specially designed backpack (based on the MOdular 
Lightweight Load-carrying Equipment [MOLLE] system), which contained a Panason-
ic Toughbook® CF-51 computer equipped to receive Bluetooth communication from 
the participant’s EEG and ECG sensors and audio from a wireless microphone. In ad-
dition to logging data, shadowers processed raw sensor data on their computers using 
Honeywell's Cognitive State Classification algorithms to produce a real-time assess-
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ment of their participants’ cognitive state. That cognitive state assessment was then 
transmitted to the base station via a wireless data network (see next section).  

The use of shadowers allowed sufficient computing power to process the raw data 
from the sensors without interfering with the mobility of the participant, as well as pro-
tecting the equipment from being broken during the more physical aspects of the mis-
sions. Ideally, small mobile, ruggedized systems configured with sufficient computing 
power worn on the body by the soldier would be used once parameters are downse-
lected through the research process. Additionally, the shadower wore a webcam and 
logged video to the computer for later review by experts to enable determination of the 
workload ground truth. The participant wore a wireless microphone, and the resultant 
audio stream was multiplexed into the webcam video. 

The base station received data from the four shadowers’ computers via the wireless 
data network. The base station was the test team’s command and control center for the 
devices and facilitated the diagnosis of problems, resetting of systems, and monitoring 
of system status. The base station performed several functions, including remote con-
trol of the four shadower computers (ability to stop/start processes), monitoring of 
processes on four shadower computers, running of the master radio, remote trouble-
shooting of the shadower computers, data collection, and the shutting down of 
processes at the end of a trial. 

Wireless Network 
The AWE employed a 900-MHz radio modem system to create a wireless data net-
work connecting the four shadowers’ computers to the base station. The ABM EEG 
and the Hidalgo VSDS communicated to the shadower computer via Bluetooth. Figure 
4.10 illustrates the final data collection system and experimental infrastructure confi-
guration. 
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Figure 4.10. Final data collection system and experimental infrastructure. 
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Several practical challenges were encountered during the AWE. First and foremost, the 
pace of the training was subject to each soldier’s progress through a predefined set of 
tasks, drills, and procedures. Soldiers were trained to performance on battle drills. The 
use of “simunitions” (soap bullets) implied that all hardware—including potentially 
sensitive equipment such as EEG sensors—had to be hardened to withstand a direct hit 
of a simunition round. During the experiment, the ABM EEG system sustained a direct 
hit but was not damaged.  

The weather was another challenge: During two of the days of training, 12 inches of 
rain fell. The AWE required that wireless connectivity be maintained over two net-
works, the Bluetooth connections (between sensors and shadowers) and the 900-MHz 
radio modem network. Power consumption of the mobile equipment was always a 
challenge, and battery management was key to ensuring that all devices continued to 
function despite inevitable delays and schedule changes.  

Finally, EEG sensor integration with soldier’s standard equipment was a challenge that 
required special modifications to the padding and padding configuration under the sol-
diers’ helmets. 

Design of Experiments 
The independent variable in the AWE was workload (for all phases). The experimental 
scenarios were manipulated to ensure definable periods of high and low cognitive 
workload. Low-workload periods were characterized by engagement in a single task 
that was well within the current cognitive capability of the soldier, usually under little 
or no stress or time pressure. Periods of low workload included completing initial pa-
perwork, reporting activities, preplanning, establishing a hasty defense position (e.g., 
foxhole), consolidation/transition, after-action reviews, and periods of low activity dur-
ing missions.  

High-workload periods were characterized by multiple-task performance, often under 
time pressure and fatigue. Examples of high workload included replanning caused by 
changing circumstance (e.g., enemy location, available squads, loss of communica-
tion), directing squad movements during preassault, assault, managing multiple com-
munications (i.e., responding to commanders, squad leaders, or other platoon leaders), 
or calling for fire. Stressors that contributed to high workload included frustration, loss 
of communication, lack of asset availability, and loss of situation awareness of squad 
locations and activities. 

Ground Truth 
During the AWE, multiple streams of data were collected with the objective of provid-
ing experts with enough insight to make a determination of ground truth levels of 
workload for each participant in each scenario. Data included video from a roaming 
camcorder (focused on the platoon-level action), video from the webcam of the sha-
dower (focused on the participant), notes from an observer at a central (video) moni-
toring site, annotations radioed in from the shadower and entered at the base station 
into the time-stamped data stream via an annotator's interface, postscenario cognitive 
walthroughs with the participants as they reviewed (with an experimenter) the video of 

 23



Dorneich, M.D., Mathan, S., Ververs, P.M, and M.C., Whitlow, S.D. (2008), "Cognitive State Estimation in Mobile Environments", 
Augmented Cognition: A Practitioner’s Guide, Schmorrow D., Stanney K., & Reeves, L. (eds), Santa Monica: HFES Press. 

 
 

the day’s events, postscenario NASA TLX surveys (Hart & Staveland, 1988), and 
questionnaires. 

Not all data were collected for every part-mission and full-mission scenario, but some 
combination of data streams was available for expert review. The notes, annotations, 
and cognitive walkthrough feedback data streams were merged (by time stamp) into a 
spreadsheet. An expert then reviewed the video streams, taking into account the vari-
ous data sources, to make a moment-to-moment assessment of the cognitive workload 
being experienced by the participant at any given time stamp. The result was a time-
stamped series of blocks of low, medium, or high cognitive workload. Physical load 
was also assessed by the experts.  

Two experts independently performed the ground truth analysis described earlier. 
Their respective results were then compared to gain a measure of interrater reliability 
on the cognitive workload assessments of ground truth. For the data sets analyzed, 
agreement between the raters was high: Agreement in the rating of physical load was 
94.9%, and agreement in the rating of cognitive workload was 87.9%. 

A final, canonical, assessment of ground truth was created by reconciling the two indi-
vidual expert’s assessments. Periods of disagreement were flagged. The two experts 
then jointly reviewed the video and other data streams to make a final assessment of 
the workload in the disputed block. In cases in which no consensus was reached, a 
third rater was available to resolve the disagreement; however, this option was never 
needed. Reconciled ground truth tables were used to calculate the accuracy metric of 
the classification algorithms. 

Test Your Knowledge 
T
pants (i.e., so
ela
w
classificati
exper

he AWE was an evaluation in a mobile, operational context using partici-
ldiers) performing their natural, domain-specific tasks. The 

borate setup described was designed to meet four challenges, which 
ere made particularly difficult in a mobile setting (i.e., signal processing, 

on, computational and experimental infrastructure, and design of 
iments). The objective of the evaluation was to assess workload clas-

sification techniques during multiple operational tasks requiring different le-
vels of cognitive and physical engagement. How were these challenges 
overcome? Which strategies were the most effective in overcoming these 
challenges?  

�
Lessons Learned  
The AWE data analysis forms a good example of the specific lessons learned when 
evaluating the general approach outlined earlier in the chapter. For a more extensive 
description of classification results, see Mathan, Whitlow, Dorneich, and Ververs 
(2007). The lessons derived from the results reviewed here fall into three principal cat-
egories: (a) choosing parameters of the classification approaches to improve perfor-
mance in mobile environments, (b) creating a set of features that adequately captures 
the cognitive state of interest, and (c) improving classification while minimizing com-
putational demands.  
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Tuning Classification Parameters 
In noisy operational environments, EEG and other electrophysiological sensors could 
be compromised by noise over short temporal windows. One strategy for dealing with 
momentary fluctuations in classification accuracy is to median-filter the output of the 
classifier over different time windows. One consequence of such temporal smoothing 
of classifier output is it may introduce a lag in the decision process. The analysis must 
consider the trade-off in accuracy as the temporal window of output smoothing is va-
ried.  

The classification approach was assessed with two individuals, the platoon leader and 
the platoon sergeant, both employing the widely used tenfold cross-validation ap-
proach and the more conservative twofold cross-validation procedure. 
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Figure 4.11. EEG-based classification accuracy for the PL (left) and PSG (right) as 
a function of validation technique and temporal smoothing window.  

As Figure 4.11 illustrates, base EEG classification accuracy for the PL ranged from 
0.76 (using twofold cross validation) to 0.83 (using tenfold cross validation). Base re-
sults for the PSG ranged from 0.66 (using twofold cross validation) to 0.75 (using ten-
fold cross validation), as seen in Figure 4.11 (right). Accuracy for both soldiers rose 
monotonically up to a 1-min-long temporal smoothing window. However, the rate at 
which temporal smoothing benefited accuracy diminished beyond approximately 2 to 3 
s of smoothing. This analysis confirms the lesson learned that the single-point analysis 
of classifier accuracy does not convey the bias, variance, and generalizability of a clas-
sifier approach. 

The discrepancy between the more conservative twofold validation and more optimis-
tic tenfold cross validation was more pronounced for the PSG than it was for the PL. 
This could indicate some change in the features that serve to discriminate between 
high and low workload over time; these changes could stem from changes in task, 
strategy, artifacts, or a variety of physiological factors. 

Discriminating Features 
The analysis included a qualitative examination of the spectral features that serve to 
discriminate between high and low workload. Figure 4.12 depicts the power spectral 
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densities (PSD) for high and low workload across six channels of EEG for the PL (left) 
and the PSG (right).  

Each graph in Figure 4.12 represents a channel. The x axis in each graph represents 
frequency, and the y axis represents amplitude. One line in each graph represents aver-
age spectral power in the high-workload condition; another line represents average 
spectral power in the low-workload condition. Finally, the center line in each graph 
corresponds to the mean spectral power across both high- and low-workload condi-
tions. Qualitatively, the key distinction is the separation (if any) between the high and 
low spectral power lines. 

An analysis of the graphs for both participants suggests that power in the beta (12 to 30 
Hz) and gamma (30 to 40 Hz) bands is the most discriminative feature for both partici-
pants. However, this pattern is most pronounced for PL and may account for the supe-
rior classification results observed relative to PSG. This discrepancy across individuals 
also points to the lesson of the importance of an individualized approach to classifica-
tion, rather than an approach that relies on group norms. 

Review: Techniques for Improving Classification in Mobile 
Env
Mob
tiona
clas
facts
mizi

ironments 
ile environments require that the number of sensors and the computa-
l demands of the classification algorithms are minimized while accurate 

sification is maintained in the presence of motion-induced noise arti-
. Robust classification is addressed by sensor fusion techniques. Mini-

ng computational demand requires that the minimum number of sensors 
be identified. 
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Figure 4.12. Power spectral densities in each band for the PL (left) and PSG 
(right).  
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Sensor Fusion 
One lesson learned in the work reported here was the utility of fusing data from mul-
tiple sensor sources to improve classification in noisy field environments. Such an ap-
proach exploits the joint strengths of different data sources while minimizing their in-
dividual weaknesses. Fusing multiple sensor sources into a common feature vector 
allows a classifier to find an optimal weighting for each feature based on training data.  

We assessed the effect of including IBI estimates as a feature for classification. The 
fusion of cardiac data provided a substantial boost to overall classification perfor-
mance—these improvements were most pronounced for PSG, as seen in Figure 4.13. 
Base classification for PL went up from 0.76–0.83 to 0.87–0.95, and base classifica-
tion for PSG went up from 0.66–0.75 to 0.83–0.86.   
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Figure 4.13. Classification accuracy for the fused sensor data for the PL (left) and 
PSG (right).  

Sensor Density 
The EEG system used in the field evaluation consisted of a six-channel system. In a 
mobile setting, such as dismounted soldier operations, it is important to reduce the 
number of sensors to the minimum required to capture the underlying cognitive state 
of interest. An analysis was conducted to identify a subset of the six EEG channels that 
could match or exceed the performance of all channels together. With each iteration of 
a backward elimination-ranking algorithm, each channel of the current set was sequen-
tially eliminated from consideration. The channel whose exclusion led to the best per-
formance results was eliminated from further consideration.  

The ranking assigned to each channel corresponded to the order in which it was elimi-
nated. The first channel to be eliminated was ranked as being last in importance, whe-
reas the last channel to remain was regarded as being of the highest importance. Per-
formance of each feature subset was assessed using tenfold cross validation. The per-
formance metric used was the area under the Receiver Operating Curve (Az; see Chap-
ter 6). The channel-ranking procedure produced the channel ranks shown in Figure 
4.14 (PL left and PSG right), which plots classification accuracy as a function of the 
top n channels. 
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 Figure 4.14. Classification accuracy as a function of the top n channels.  

The channel-ranking procedure yielded a consistent set of features for both partici-
pants. Classification performance suffered little with the exclusion of all but the two 
most salient channels. The top channels were identical for both participants (C3C4). 
These channels, which were located at the apex of the skull, are likely to have been 
least affected by helmet-related artifacts because of good clearance between the sen-
sors and the helmet at this location. The lesson learned was the importance of stable 
electrode sensor sites, which is possible even in noisy conditions. 

Although these results require further validation, the lesson learned was that accurate 
workload classification may be feasible with as few as one or two sensors. This has 
compelling implications for the design of practical EEG systems that could be inte-
grated easily within helmets and find broad user acceptance.  

Best Practices 
The best practices derived from this work stem from the approaches taken to overcome 
four principal challenges: (a) collecting and processing EEG signals in a mobile con-
text; (b) developing classification algorithms that address individualization, bias, and 
generalizability; (c) designing experiments to assess classification in a domain-relevant 
operational setting with soldiers; and (d) building a computational and experimental 
infrastructure to support assessment. For each challenge, a table of best practices and 
practical recommendations is given. 

Meeting the Mobility Challenge 
Table 4.2 outlines some of the best practices, guidelines, and recommendations in sev-
eral areas when meeting the challenge of collecting and processing EEG signals in a 
mobile context. 
 
Table 4.2. Best Practices, Guidelines, and Recommendations Addressing Mobility 
Challenges  

Area 
 

Best Practices Guidelines / Recommendations

Equipment Develop the capability to collect 
data in the actual environment. 

Select an EEG system that preamplifies the 
signal at the electrode site to enable low noise 
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measurements. 
 
Cabling between the sensor and data collection 
equipment must be secured to avoid cable 
sway-induced noise artifacts. 

Signal 
processing 

Understand the noise artifacts, 
and understand the signal of 
interest. 

Understand the noise artifacts by running a se-
ries of experiments in which you control (in turn) 
every type of mobility condition (e.g., stationary, 
standing, walking, running, head motion). 
 
Understand the signal of interest by first collect-
ing data in pristine environments in order to be 
able to identify the signal later amid all the noise 
artifacts introduced by the operational environ-
ment. 

Signal 
processing 

Develop stability controls to im-
prove adaptive filtering (see 
Chapter 7). When faced with the 
extreme artifacts in a mobile 
environment, most adaptive fil-
ters would become unstable and 
unusable. 

If the benefits of adaptive filter algorithms are to 
be obtained in a mobile environment, the algo-
rithms must be stabilized during high-amplitude 
spikes. See, for instance, Mathan, Dorneich, 
and Whitlow (2007). 

Signal 
processing 

Findings from prior research 
were quickly identified as inade-
quate for identifying relevant 
EEG sites for use in applied op-
erational domains.  

Run pilot studies in the operational environment 
that use the same or a similar task to identify the 
cognitive states of interest. Start with many EEG 
sites and run sensor density analysis to rank the 
channel contributions. 

Signal 
processing 

Collect sufficient data to deter-
mine how much training data are 
required to provide good classifi-
cation performance.  
 

Use pilot studies to determine how much train-
ing data are needed. The amount of data 
needed varies depending on the nature of the 
task environment, signal-to-noise ratio, and 
classification techniques used. 

 
Meeting the Classification Challenge 
Table 4.3 outlines some of the best practices, guidelines, and recommendations in sev-
eral areas when meeting the challenge of developing classification algorithms that ad-
dress individualization, bias, and generalizability. 

Table 4.3. Best Practices, Guidelines, and Recommendations Addressing Classifi-
cation Challenges 

Area Best Practices
 

Guidelines / Recommendations

Classification Fit the approach to the constraints 
of the environment.  

Determine the spatial density of EEG sensor 
arrays based on an understanding of the na-
ture of the tasks, pace of task switching, and 
specific types of cognitive processing in-
volved. 
 
Consider the constraints imposed by sensor 
density, computational efficiency, precise task 
adaptation needs, and the desire for a high 
degree of classification accuracy during ongo-
ing research studies. 

Classification Explore multiple temporal windows. Temporal smoothing should be employed to 
stabilize classifier output. Classifier update 
rates need only satisfy the requirements of 
the pace of adaptation switching. 

Sensor density Determine the ideal number of Once the classifier approach goes beyond the 
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sensors by considering processing 
demands, the operational 
environment, and the 
generalizability of classification 
across multiple situations. 

most informative features (site by frequency 
band) the classifier begins to overfit to noise 
and degrade classification performance, much 
as does adding unnecessary parameters to a 
regression model. 

Sensor loca-
tion 

Choose the sensor location based 
on the cognitive state of interest. 

Generic workload assessment can employ a 
low-density array over the frontal central and 
parietal lobes. Data from sensors located in 
the occipital area tend to be noisier and do 
not provide discretionary information, given 
that most tasks involve visual processing. 

Sensor type Choose the sensor type based on 
the cognitive state of interest. 

If you need immediate feedback on specific 
events, use a time-locked EEG measure such 
as evoked response potentials (ERPs). If you 
need general task loading over extended pe-
riods, use oscillatory EEG measures such as 
PSDs. 

Fusion Utilize complementary measures of 
cognitive state where appropriate. 

ECG provides information on tonic states (i.e., 
slowly changing), whereas EEG provides high 
temporal fidelity (i.e., moment-to-moment). 
Together, the two have been shown to im-
prove classification accuracy. 

 
Meeting the Infrastructure Challenge 
Table 4.4 outlines some of the best practices, guidelines, and recommendations in sev-
eral areas when meeting the challenge of building a computational and experimental 
infrastructure to support assessment. 

 

Table 4.4. Best Practices, Guidelines, and Recommendations Addressing Infra-
structure Challenges 

Area Best Practices
 

Guidelines / Recommendations 

System inte-
gration 

Ruggedize the equipment 
for testing in a field envi-
ronment.  

Use ruggedized laptops that come with shock-mounted 
hard drives to protect your data, and include effective 
thermal management. 

System inte-
gration 

Ruggedize all connec-
tions. 

Secure all cable connections. For instance, typical USB 
connectors were not designed to maintain a connection 
under mobile conditions. 

 
Meeting the Assessment Challenge 
Table 4.5 outlines some of the best practices, guidelines, and recommendations in sev-
eral areas when meeting the challenge of designing experiments to assess classification 
in a domain-relevant operational setting with soldiers. 

Table 4.5. Best Practices, Guidelines and Recommendations Addressing Assess-
ment Challenges 

Area Best Practices Guidelines / Recommendations 
 

Task definition Consult domain experts.  Even if it is not possible to perform the actual task 
in early experiments, developing representative 
tasks lends confidence that the findings will be 
transferable to the actual domain. Not only does 
designing tasks with input from domain experts 
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save considerable time, but results will be better 
received because of their ecological validity. 

Task definition Baseline tasks early and often 
to ensure that representative 
participants perform and 
perceive different task loads 
as low and high.  

Task load does not produce the same workload in 
different participants, or even in the same partici-
pant over time.  
 
Maximize discrepant task loading for good binary 
classification. 

Experimental 
control 

Evaluation of techniques in 
operational environments 
often results in a loss of expe-
rimental control as evaluations 
move from the lab to the field. 

Free-play evaluations with high ecological validity 
are very effective in loading leaders with varying 
levels of workload. Even in a free-play evaluation, 
an operator or controller can manipulate the work-
load of participants by changing the scenario, in-
troducing unexpected events, and controlling the 
pace of operations. 

Experimental 
design 

Whenever possible, simplify 
the experimental design to 
reduce the complexity of con-
ducting field studies.  

Inevitably, the system integration phase will take 
three times longer than expected. Limit the number 
of research questions of interest and avoid rolling 
up everything into a single study. 

Risk manage-
ment 

Consider an experimental 
design that includes segments 
with severable benefits. 

Ensure that data analysis is possible on the cumu-
lative data collected (i.e., each day's data), so if 
data collection becomes impossible, the experi-
ment can still produce results on whatever data 
were collected thus far. 

Ground truth Explicitly design the data col-
lection plan for ground truth. 

If you are videoing the participant, make sure that 
a microphone channel is included, as it is often 
difficult to decipher the state of the participant from 
video alone.  
 
Reviewing video (and audio) with the participant 
immediately after the experimental trial provides 
the single best data source for insight into the par-
ticipant's cognitive loading at any given moment. 
 
Make sure that all data streams share a common 
time stamp. 
 

Design Guidelines 
Design guidelines take the form of overarching considerations that become important 
when cognitive state classification work is matured outside the laboratory and is used 
in real-world, mobile, operational contexts. Table 4.6 captures a principal guideline in 
each of the four challenge areas. 

Table 4.6. Design Guidelines  

Area Design Guideline
 

Mobility Thorough advanced signal-processing algorithms are essential to ensure a 
clean signal for cognitive state classifiers. It is particularly important to remove 
or identify noise artifacts in harsh operational environments. 
 

Classification There is not a one-size-fits-all approach to cognitive state classification. Indi-
vidualized measurements are necessary for each individual. In addition, be-
cause of changes in physiological data over time, regularly scheduled base-
lines will need to be captured to maintain a high level of classification accura-
cy. 
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Infrastructure There is a need to further ruggedize physiological and neurophysiological 
sensors and sensor systems to enable the deployment of this capability. 
 

Assessment The assessment of classification effectiveness will always require an evalua-
tion to capture the context of the mission and task and incorporate user feed-
back as a basis of ground truth information. In addition to a complete under-
standing of the target environment, thorough interviews with participants and 
multiple raters of ground truth classification will help to minimize errors in 
cognitive state classification caused by poor insight into the cognitive loading 
requirements of the task environment. 
 

 

Parting Message 
The evaluation of cognitive state classification techniques outside the laboratory is 
wrought with challenges apart form the classification techniques themselves. Success-
ful assessment will depend on the ability to collect valid signals robustly in a noisy 
environment, and require a computing and experimental infrastructure that can enable 
realistic experiments in the domain of use. The design of these experiments is itself a 
major challenge, as one no longer has the benefit of well-defined, well-understood la-
boratory tasks that engage the cognitive state of interest. Failure to address any of 
these challenges severely compromises the ability to draw meaningful conclusions 
about the use of cognitive state classification algorithms in the target operational do-
main. 
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